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A COMPARATIVE STUDY OF GEOMETRIC TRANSFORMATION 

MODELS FOR THE HISTORICAL

‘MAP OF FRANCE’ REGISTRATION

Pierre-Alexis Herrault1,2, David Sheeren1, Mathieu Fauvel1, 

Claude Monteil1, Martin Paegelow2

Abstract

It is widely recognized that present-day biological diversity may reflect past land use and 

landscape features. Understanding the historical background is essential to explain the 

ecosystem functioning of landscapes today. Numerous historical spatial data have been used 

to reconstruct these pathways but resulted in problems of sources, formats and supports. One 

major problem is how to incorporate historical data in current coordinate systems to enable 

them to be compared with each other and with current sources. Previous works on the 

registration of historical maps already demonstrated the superiority of local methods (e.g. a 

Delaunay-based method) over global methods (like polynomial mapping models) because of 

the existence of local geometric distortions. The same studies also highlighted the importance 

of selecting ground control points with a homogeneous spatial distribution to improve the 

accuracy of registration. Furthermore, while kernel-based methods have already proved their 

efficiency for many other applications, they have rarely been used for map registration even 

though they provide an interesting alternative to conventional methods. In this paper, we 

present a comparative study of various geometric transformation methods to register an 

excerpt of the historical ‘Map of France’ (an Ordnance Survey map) dating from the 19th 

century. We compare the performance of several global and local methods with kernel-based 

methods (Gaussian and polynomials) and analyze the impact of the number of control points, 

their nature and their spatial distribution on the quality of registration. A protocol was 

developed to apply the transformation models in various situations and to identify the best 

strategy for the georeferencing of historical maps.

Key Words: Historical map registration, geometric correction, kernel regression.

INTRODUCTION

It is widely recognized that present day biodiversity may reflect past land use 

because of a possible delay between changes in a landscape and changes in the associated 

plant or animal population. Knowing the historical background of landscapes is therefore a 

precondition to understanding ecosystems functioning (Jackson, 2006). Historical ecology 

concerns all the elements in a landscape. For example, using archival and archeological 

data (Hewlett, 1977), reconstructed river valleys in Great Britain from the year 1000. Later, 

other authors used similar approaches to explain current forest biodiversity with respect to 

forest history (Hermy and Stieperaere, 1981). 

Different problems arise when users want to use historical spatial data, for instance 

maps drawn in the 19th century. Firstly, the variety of sources with different formats and 

supports increase the heterogeneity of spatial data. Secondly, because of the technical and 

financial means at that time, the quality of historical data may differ from one source to 

another and may lead to inconsistencies and biases in the assessment of landscape changes 

(Pontius and Lippit, 2006). Finally, these data are generally not georeferenced. In order to 
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incorporate them in current coordinate systems and to compare them with present data, a 

registration step (or georeferencing) is required. Georeferencing is a crucial step in the use 

of historical data. Several studies have already focused on this issue (e.g. Baiocchi and 

Lelo, 2005; Bitelli et al., 2009). 

Generally speaking, two main approaches are used for map (or image) registration: 

global or local (Zitova and Flusser, 2003).The global approach is appropriate when map 

distortions are homogeneous. With this method, only one transformation model is 

computed and applied using all available ground control points (GCPs). However, a local 

approach is more efficient if local distortions have to be taken into account. With this 

method, the map or image is partitioned into a set of regions and one transformation model 

is computed for each region individually. 

The local approach is known to be more efficient to register historical maps (Fuse et 

al., 2009). The low quality of the survey instruments, the lack of cartographical 

specifications and the diversity of the surveying engineers and campaigns led to numerous 

local planimetric errors that cannot be handled correctly by global transformation models.

However, other registration techniques could be used to improve the accuracy of the 

geometric transformation models. In particular, nonparametric methods like kernel 

smoothing regression are a possible alternative to conventional approaches because they are 

locally sensitive but provide one global model. These methods have already proven to be 

very efficient for many applications including image processing and pattern recognition 

(Shawe-Taylor and Cristanini, 2004; Takeda et al., 2007).

Like the number of points, the spatial distribution of the GCPs is also important in 

the map registration process since it may affect the accuracy of the transformation models 

(Mather, 1995; Wang et al., 2012). Regular spatial distribution of GCPs provides a best-

fitting process but requires many points for efficient registration (Boutoura and Livieratos, 

2006). In the case of old topographic maps, the GCP problem is often difficult to overcome 

due to the possible change in the landscape objects over the past centuries and in the 

characteristics of the GCPs themselves (reliability and accuracy, kind of object, graphic 

representation). In contrast to aerial and satellite images, the effect of the sampling design 

of the GCPs, their number and their category on the geometric correction of old maps have 

been less studied.   

The aims of this paper are to test and assess the potential of the kernel regression 

method to register an historical map from the 19th century. We compare the method with 

other global and local conventional approaches. Second, we independently investigate the 

effect of three parameters used to select GCPs on the accuracy of map registration:

1. The spatial distribution of the GCPs (regular or random);

2. The number of GCPs; 

3. Whether the GCPs are reliable or unreliable.

The paper is organized as follows. In section 2, we describe the data and the 

experimental protocol with the kernel regression and other registration methods. In section 

3 we present and discuss the results of the experiments. Finally, some conclusions are 

drawn along with some perspectives.



2. MATERIAL AND METHODS

2.1. Data

In this comparative study, we used an excerpt of the historical ‘Map of France’ 

produced from 1825 to 1866 at 1:40000 in the projection of Bonne. This excerpt covers an 

area of 20 km² in southwestern France surrounded by contrasting landscapes: valleys 

bottoms, mountains and a plateau. This historical Map of France is known for its 

planimetric accuracy, considerably better than the previous Cassini map published during 

the reign of Louis XV. Moreover, the Map of France is in color, which makes it easier for 

users to capture the cartographic elements. Last, the Map of France was produced in an 

interesting period for the study of the forest evolution. The extent of French forests was 

lowest around 1830 and then expanded continuously until today (Mather et al., 1999). 

Thus, if an existing forest appears on the old map, it might be unchanged for several 

decades.   

Fig. 1. Excerpt of the Historical 'Map of France' used in this study with examples of forest features. 

The GCPs were selected from an existing database of aerial photographs: the 

BDOrtho® produced by the French National Mapping Agency (IGN). The image has a 

spatial resolution of 0.50 m.

2.2. Methodology  

An experimental protocol was defined (Fig. 2) to compare the registration methods. 

The protocol comprises four main steps: (1) acquisition of a high number of two categories 

of control points  in the old and reference maps according to two spatial distributions 

(random and regular), (2) creation of GCP subsets of various sizes, (3) computation of 

several transformation models, (4) validation and comparison of the results.



Fig. 2. Experimental protocol applied to evaluate the effects of the nature, the number and the spatial 

distribution of GCPs on the registration accuracy. 

In the first step (1), we identified landmarks and crossroads to assess the impact of 

the categories of GCP on the accuracy of the geometric transformations. We assumed that 

the landmarks are more accurate than the crossroads. Indeed, these points (chapels, 

churches, mills, etc.) were used as reference points when topographical surveys were being 

conducted before the map was drawn. For this reason, their absolute planimetric accuracy 

might be higher than other points on the map, particularly the crossroads. 

A total of 75 randomly distributed landmarks were found on the old map. For the 

crossroads, we selected 150 GCPs according to two spatial sampling processes: random and 

regular. The regular distribution was obtained from a regular grid covering practically the 

entire map and divided into 12 x 20 squares. For the landmarks; we only used random 

distribution because the small number of points prevented regular sampling. 

In the next step (2), we created GCP subsets with the aim of assessing the impact of 

the number of points on the accuracy of the transformation models. The number of points in 

these sets ranged from 25 to 150 for the crossroads and from 25 to 75 for the landmarks. 

In step (3), we compared the performance of several geometric transformation 

models for each configuration of the GCPs. Global and local methods were tested and 

compared to the alternative kernel regression approach. The methods tested are listed in 

Table no. 1. 

  
Table no. 1. The geometric transformation models compared.

Global Method locally non sensitive Global Method locally sensitive Local Method

Affine

Second order polynomial

Third order polynomial

Linear Kernel

Second order polynomial kernel

Third polynomial kernel

Gaussian kernel

Delaunay



• Conventional global and local registration methods

As mentioned above, previous works on the registration of historical maps have 

showed the advantage of local methods (like the triangle-based method) over global 

methods (polynomial mapping functions) because of the existence of local geometric 

distortions (White and Griffin, 1985; Fuse et al., 1998). 

A global transformation simply means that all the control points are used to derive a 

single mathematical model of the geometric distortions. First order, quadratic or cubic 

models are the most widely used to register an image or a map. The general expression of 

the 2D polynomial model is defined as follows: 
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where aij and bij are the coefficients of the equations ! = "(#, $) and % = &(#, $), the 

reference coordinates being (#, $).

The degree of the polynomial model is defined by '. For ' = 2, the polynomial 

function can be expressed as follows:
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A minimum of three points (6 parameters) or six points (12 parameters) are needed 

to estimate the coefficients of the first order model (linear transformation) and second order 

model (nonlinear transformation) respectively. However, the number of equations is usually 

higher than the number of unknowns (i.e. there are more GCPs than the minimum number 

required). The coefficients of the mapping functions are then computed using least square 

fit, which provides residuals for each point.  

In the case of the local transformation approach, after dividing the map into a set of 

regions, several local mapping functions are computed (Goshtasby, 1986, 1987). In general, 

the regions are created from a Delaunay triangulation and one first order polynomial 

function is computed per triangle. Each triangle is based on three GCPs and define a 

mapping function that is only valid within this region. According to (Balletti, 2006), the 

smaller the triangular areas of the mesh, the better the results. Thus, for this approach, it is 

important to collect a large number of control points to reduce the extent of the triangle. 



• Kernel-based method

In this paper, we compare the performances of several global and local methods with 

kernel-based methods (Table no. 1). These models belong to the category of global 

methods but are able to take local distortions into account by combining local models 

computed in a bandwidth (locally weighted regression smoother, Fig. 3).

Fig. 3. Local models successive (red lines) and the global kernel regression (blue line).

(from (Takeda et al., 2007)) 

The previous conventional methods were compared with the kernel regression 

(Shawe-Taylor and Cristanini, 2004). Kernel regression is a non-parametric statistical 

technique that belongs to the category of global methods but which is locally sensitive since 

it enables local distortions to be taken into account by combining local models computed in 

a given bandwidth (locally weighted regression smoother). This method is efficient for the 

estimation of nonlinear relationships between variables with minimal assumptions about the 

model. The general expression of the model is given by the decision function (given here 

for the 1-D case for the sake of simplicity): 
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where ,(. . , . . ) is the kernel, *+ the amplitude coefficients, - the bias, !+ the learning 

samples and z, the predictive sample. The *+ and - are the parameters to optimize. They are 

determined by minimizing the mean square error (MSE), i.e.:
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where the 9 parameter is a regularization parameter that is used to prevent from overfitting. 

After straightforward computations, the solution is given by (in matrix form):

;*<-=> = %(?@ + 9A.B0)C0

  

where (%)+ = %+ , (?@)+,D = ,(!+ , !D),(?@).B0,D = (?@)+,.B0 = 1, (?@).B0,.B0 = 0 and 

A.B0is the identity matrix of size n+1.



The kernel is a positive semi-definite function. It is used to map the sample 

implicitly in a feature space where the relation between X and Y is easier to estimate. 

In this paper, two kernels were investigated: 

- Polynomial kernel:  ?E = FG!+ , !DH + 1IE

- Gaussian kernel:  ?J(!, %) = exp K7 LMCNLO
8JO P

In the final step of the protocol (step 4), the results were validated and compared to 

identify the best registration approach. We used cross validation to assess the accuracy of 

each transformation process and in particular, the leave-one-out method. Cross validation is 

commonly used to estimate the accuracy of a predictive model. It involves dividing the 

observations into two subsets: one subset is used to train the predictive model and the other 

to validate it. This process is repeated several times to increase the reliability of the 

validation. 

In the leave-one-out cross-validation, only a single observation is selected for 

validation and all the remaining observations are used as training data. This process is 

repeated such that each observation in the sample is used once as the validation data. The 

validation results are then averaged to compute an average error. In our case, the error 

index used for assessing the quality of the registration was the root mean square error 

(RMSE). Thus, after the cross-validation process, we obtained an average value of the 

RMSE (called RMSEm). 

3. RESULTS AND DISCUSSION

We successively analyzed each parameter of the registration process in order to 

identify the best strategy for georeferencing the historical ‘Map of France’.

• Impact of the number of GCPs

This parameter was only assessed for the crossroads, of which there were many 

examples. Table no. 2 summarizes the results of different geometric transformation models 

using the five GCP subsets composed of 25, 50, 75, 100 and 150 points. The influence of 

the number of points was analyzed for the two spatial distributions available: random and 

regular. 

Overall, the results showed that the number of errors decreased with an increase in 

the number of points regardless of the spatial distribution. For instance, we observed that, 

for the affine transformation, the RMSEm decreased by approximately 27 m from the GCP 

subset of 25 points to the subset of 150 points. The same was true for the kernel 

transformation. Using the Gaussian kernel, the average error decreased by 26 m (in the case 

of regular distribution) and by 37 m (in the case of random distribution) using a number of 

GCPs that ranged from 25 to 150. The Delaunay-based transformation was more sensitive 

to the number of points. The RMSEm followed the same negative trend but the initial 

number of errors was much higher than with the other transformation models. When the 

number of the GCPs is small, the size of the triangles is very large. Consequently, the local 

first order polynomial models are less accurate.  



Table no. 2. RMSE(m) obtained by the different transformation models tested for 25 to 150 

GCPs and for a regular or a random distribution of these GCPs.

  

• Impact of the spatial distribution of GCPs

Concerning spatial distribution, Table no. 1 shows that the regular distribution is 

generally more efficient than the random one up to a set comprising 75 GCPs. While the 

error for the affine transformation varied between 131 and 88 ms for a random sampling, 

the average error ranged from 106 to 6 meters when the spatial distribution was regular. 

This is also true for the first and second order polynomial kernels. However, with over 75 

GCPs, the trend was reversed in favor of random distribution (Fig. 4). The most accurate 

models are computed from a random sampling when large GCP datasets are used. In the 

case of the Gaussian kernel, the random distribution is always better.

Fig. 4. Comparison of the performance of registration methods for 150 GCPs and for a random or a 

regular distribution of these GCPs. 



• Impact of the geometric transformation models

The performances of the geometric transformation models were only compared for 

the random distribution (Fig. 5).  

Generally speaking, our results show that the differences in accuracy between the 

models are greater with small sets of control points than with large sets. When only 25 

points were used, the best model was given by the Gaussian kernel (RMSEm equals 75 m). 

The least efficient model was the Delaunay-based transformation (RMSEm equals 195 m). 

As mentioned above, this local approach appears to be very sensitive to the number of 

points. 

The results of the Gaussian kernel model were always better than the results of the 

other methods (except for the set of 75 GCPs). The Gaussian kernel model appears to be 

very efficient when the number of GCP is high (RMSEm equals 42 m for 150 GCPs). The 

third order polynomial kernel also gave good results with large datasets with an average 

error equal to 52 meters for 150 GCPs, up to 10 meters more than the Gaussian kernel 

transformation. Kernel-based methods are generally more efficient than conventional global 

models for equivalent transformation (see Fig. 5). This was the case for almost all the GCP 

sets (except for the set of 100 GCPs). 

Fig. 5. Comparison of the performance of registration methods for 25 to 150 GCPs and for only one 

random distribution of these GCPs - Focus on the comparison between 

conventional and kernel registration methods. 

• Impact of the GCP categories

Finally, we assumed that landmarks (or remarkable points) are more accurate and 

provide better results.

Globally, this assumption was confirmed. In the majority of the cases, the RMSEm 

is lower when landmarks are used in geometric transformation models. 



With the affine transformation the difference in errors between landmarks and 

crossroads ranged from 33 to 16 meters. The same relation was found for second order 

polynomial transformation and for kernel based transformations in general. For example, 

while Gaussian kernel transformation presents an average error of 64.12 meters with 

crossing roads (set of 75 GCPs), the mean of positional error was about 59 meters with 

landmarks for the same number of GCPs. 

The trend was different with the second order polynomial and with the Delaunay-

based transformation.

With the second order polynomial model, there was a slight difference in the number 

of errors using landmarks and crossroads, but overall, crossroads produced better results. 

The difference ranged from 2 to 4 meters. This opposing trend can be explained by the 

random sampling process. This step was performed using a GCP with 200 crossroads but 

only 75 landmarks. Furthermore, the standard error of the order three polynomial model 

using crossroads was much higher than that using landmarks so the variability of the results 

was not the same, hence explaining these contradictions.

Table no. 3. RMSE(m) obtained by the different transformation models tested for 25 to 75 GCPs 

with remarkable points (landmarks) or crossroads.

Fig. 6. Comparison of the performance of registration methods for 75 GCPs

according the nature of these GCPs.



As regards the Delaunay-based transformation, as we mentioned above, this model 

is very sensitive to the number of points. This time, the random sampling process using the 

crossroads category led to better spatial distribution. The probable explanation is that the 

size of the triangle was more regular  in a few samplings, thus avoiding abrupt bias faults in 

some parts of the map. 

Fig. 6 compares the transformations between the crossroads and the landmarks for 

75 GCPs. Except for the Delaunay transformation and the third order polynomial, the 

landmark sets gave better results. 

• Comparative analysis

The comparison of different geometric transformation models and the evaluation of 

some parameters in the selection of GCPs led to various teachings in order to find the best 

strategy.

First, the higher the number of GCPs, the lower the average number of errors. This 

is to be expected when predictive models are used for image registration: the higher the 

number of points used, the more local distortions are taken into account, and the more 

efficient the transformation will be. Moreover, the larger the sample, the lower the 

approximation so the model predictions are better and provide a good estimation of the 

transformation. Concerning this parameter, Delaunay triangulation appears to be a special 

case. Indeed, an increase in the number of GCPs leads to a spectacular decrease in the 

RMSE(m). This can be explained by the reduction in the size of the triangle that 

consequently takes local distortions better into account. With the other transformation 

models, the decrease in the number of errors between each GCP set was lower because the 

map registration is homogeneous and accomplished using all the GCPs.

The evaluation of spatial distribution revealed two major trends. When the number 

of GCPs is small, regular distribution is required. The explanation may be that regular 

distribution ensures global coverage of the region of interest. Even if the number is small, 

each part of the map is taken into account by the models, thus avoiding abrupt bias fault. A 

random distribution could lead to parts in the map being neglected and for that reason, not 

provide an accuracy transformation in all cases.

However, when the number of GCPs is high, random distribution is more efficient. 

Planimetric accuracy is not homogeneous in historical maps. Thus, local distortions can be 

solved by random distribution because the GCPs are not spatially constrained. Based on 

random sampling, random distribution appears to be more efficient for the registration of 

historical maps.

Next, we compared some global and local models and tested the potential of kernel 

based methods. 

Overall, kernel based methods proved to be more efficient than conventional 

methods. When we focused on transformations with GCP sets numbering 150, the results of 

polynomial kernels were better than those of conventional polynomial methods, except for 

second order polynomials, whose results were very close. 

The results of the Gaussian kernel method were the best. With 150 crossroads and 

random distribution, the average positional error was about 42 meters. This error is clearly 

lower than other transformations meaning that this method is a very accurate registration 

model and a very good alternative to methods currently employed in georeferencing of 

historical maps.



Finally, we analyzed categories of points. Distinguishing between landmarks and 

crossroads, we assumed that some points on the early map are reliable and others 

unreliable. 

The results indicated that models using landmarks provided better transformations 

than the others. This result confirms that survey points are recommended in the creation of 

a GCP set. Nevertheless, their limited number (only 77 in this excerpt) meant we could not 

only use this category. Combining landmarks with crossroads was required to create GCP 

sets and to improve the transformations.

4. CONCLUSION

From this study, it appears that georeferencing of old maps depends not only on the 

transformation model used but also on the spatial distribution, the number, and the category 

of ground control points.

Kernel based methods proved to be more efficient than conventional methods. The 

comparison with currently used methods showed that kernel models enable early maps to 

be georeferenced most accurately. In particularly, the Gaussian kernel provided the best 

transformation.

Analysis of the spatial distribution of GCP, their number and their category, 

highlighted an optimal configuration for georeferencing. Indeed, random distribution is 

required to better account for local distortions in the historical map. In addition, the models 

are more efficient with a large number of points for two major reasons: the region of 

interest is more comprehensively covered and error estimation by the prediction models is 

better. Finally, the analysis of the categories of GCPs showed that landmarks are more 

accurate than crossroads, but that their number is not sufficient for optimal transformation. 

This research could be extended to cover the following points:

First, the evaluation of Delaunay transformation showed that it was very sensitive to 

the number of GCPs. With 150 GCPs, it was less efficient than kernel based methods. 

However, with a large number of GCPs, it was more accurate than the other models tested . 

Combining landmarks and crossroads could thus greatly improve the results. Also, other 

categories of points could be analyzed to find the best combination of GCPs. Finally, we 

believe it is important to work on visualization of the error of transformation. This 

information could advance our understanding of local distortions to improve the local 

calibration of transformation models.
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