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Spatial multi-LRU: Distributed Caching for
Wireless Networks with Coverage Overlaps

Anastasios Giovanidis, Apostolos Avranas

Abstract—This article introduces a novel family of decen-
tralised caching policies, applicable to wireless networks with
finite storage at the edge-nodes (stations). These policies, that
are based on the Least-Recently-Used replacement principle,
are here referred to as spatial multi-LRU. They update cache
inventories in a way that provides content diversity to users
who are covered by, and thus have access to, more than one
station. Two variations are proposed, the multi-LRU-One and
-All, which differ in the number of replicas inserted in the
involved caches. We analyse their performance under two types
of traffic demand, the Independent Reference Model (IRM) and
a model that exhibits temporal locality. For IRM, we propose
a Che-like approximation to predict the hit probability, which
gives very accurate results. Numerical evaluations show that
the performance of multi-LRU increases the more the multi-
coverage areas increase, and it is close to the performance of
centralised policies, when multi-coverage is sufficient. For IRM
traffic, multi-LRU-One is preferable to multi-LRU-All, whereas
when the traffic exhibits temporal locality the -All variation
can perform better. Both variations outperform the simple LRU.
When popularity knowledge is not accurate, the new policies can
perform better than centralised ones.

Index Terms—Wireless, Cache, LRU, Information Centric
Networking, Hit Probability, Popularity, IRM, Temporal locality.

I. INTRODUCTION

THE design of today’s and future networks is characterised
by a paradigm shift, from a host-centric communica-

tion architecture, towards an Information Centric Networking
(ICN) one [39]. Following this novel concept, network nodes
are equipped with storage capacity where data objects can be
temporarily cached and retrieved [32]. In this way information
can be made available closer to the user, it can be accessed
reliably [36] with minimum delay, and possibly with a quality
adaptable to the users’ preferences, as envisioned in the case
of multimedia files. The principal benefits are the partial
elimination of redundant traffic flows at the core network by
serving demands from intermediate nodes, as well as reduced
latency of service [35]. The edge-nodes constitute a very
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Télécom ParisTech, Paris, France. He is currently with the Mathematical
and Algorithmic Sciences Lab, France Research Center, Huawei Technologies
Co. Ltd., Arcs de Seine Bat. A, 20 quai du Point du Jour 92100 Boulogne
Billancourt, France.

Preliminary versions of this material have been presented at ACM SIG-
METRICS ’16 / IFIP Performance [20] and IEEE ISTC ’16 [3].

important part of the ICN architecture, since it is where the
wireless users directly have access to. When these nodes are
equipped with storage capability, download path length is
minimised [15].

In this work, we consider the wireless edge of a content
centric network, which consists of a set of transmitting nodes
taking fixed positions on a planar area, and a set of users
dynamically arriving at this area and asking for service. The
set of transmitters can refer to base stations (BSs) of a
cellular network, small stations of heterogeneous networks,
WIFI hotspots, or any other type of wireless nodes that can
provide access to users. A user can be covered by multiple of
these nodes, but she/he will be served by only one. Each node
is equipped with memory of some given size.

An important question is how to best manage the available
edge-memories, in order to maximise the hit probability of
user-demands. We define the hit probability as the probability
that a user finds her/his demand cached in the memory of
one of the covering cells. By managing, we mean to choose a
policy that decides which objects to install in each cache and
how each cache inventory is updated over time.

Given the possibility for multi-coverage, cache management
should target two, somewhat conflicting, goals: On the one
hand make popular objects, which attract the large bulk of
demands, generously available at many geographic locations.
On the other hand, make good use of multi-coverage, by
filling the memory caches in a way that provides large object
variety to each user, so that also less popular objects can be
found in the caches. Additionally, since wireless nodes (BSs)
are scattered over a very large area and are of considerable
number, related operations should be distributed as in [29],
[9], [26], and centralised solutions should be avoided.

A. Related research

Single Cache: There exists a variety of cache placement
policies that apply to single caches, when no coverage overlap
is considered. These include the Least Frequently Used (LFU),
the Least Recently Used (LRU), and their variations. Specifi-
cally LRU has been extensively studied and approximations to
the hit probability have been proposed, like the one from Dan
and Towsley [13]. Che et al proposed in 2002 [11] a simple
approximation for the (single-)LRU under the Independent
Reference Model (IRM) [12], which results in an analytic
formula for the hit probability with excellent fit to simulations.
This fitness is theoretically explained by Fricker et al in [18].
Application of the Che approximation under more general
traffic conditions, to variations of the LRU for single caches
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as well as networks of caches, is provided by Martina et al
[28]. In that work, and further in Elayoubi and Roberts [15], it
is shown that for mobile networks, application of pre-filtering
improves the performance of LRU.

Multiple Caches: The problem of optimal content place-
ment, when network areas are covered by more than one
station has also been recently studied. A number of pro-active
caching policies have been proposed, where the cache inven-
tories are pre-filled by content, based on knowledge of the
content popularity distribution and additional network-related
information. Golrezaei et al [19] find the optimal content
placement that maximises hit probability, when full network
information (popularity, node and user positions) is available.
They formulate a binary optimisation problem and propose
approximation and greedy algorithms for its solution. Using
reduced information (content popularity, coverage probability),
Błaszczyszyn and Giovanidis [7] provide a randomised strat-
egy that maximises the hit probability. Poularakis et al. [33]
formulate and solve the joint content placement and user asso-
ciation problem that maximises the fraction of content served
by the caches of the edge-nodes. Araldo et al. [2] propose
joint cache sizing/object placement/path selection policies that
consider also the cost of content retrieval. Recently, Naveen et
al. [29] have formulated the problem in a way to include the
bandwidth costs, and have proposed an online algorithm for
its solution. Further distributed replication strategies that use
different system information are proposed by Borst et al [9],
and also by Leconte et al [26]. The problem of optimal request
routing and content caching for minimum average content
access delay in heterogeneous networks is studied by Dehghan
et al in [14].

Traffic: There can be strong dependencies between content
demands, objects can have a finite lifespan, and new ones
can appear anytime. These phenomena constitute the temporal
locality (not captured from the standard IRM traffic model).
Such type of traffic was studied for (single-)LRU initially
by Jelenković and Radovanović [23], and recently using also
statistics from user measurements, by Traverso et al [38] and
Olmos et al [31].

Point Processes: The cache management problem for cel-
lular networks has also been approached using point process
modelling of the network node positions. Bastug et al. [6]
find the outage probability and content delivery rate for a
given cache placement. Furthermore, Tamoor-il-Hassan et al
[37] find the optimal station density to achieve a given hit
probability, using uniform replication. The policy in [7] can
also be applied for point process BS placement.

B. Contributions

This work has the following contributions to the subject of
caching at the network edge.

- Main contribution: It introduces (Sec. II) a new family of
decentralised caching policies, which exploit multi-coverage,
called spatial multi-LRU. Specifically, two variations of this
family are studied, namely multi-LRU-One and -All. These
policies constitute an extension of the classic (single-)LRU, to
cases where objects can be retrieved by more than one cache.

The work investigates how to best adapt the actions of update,
insertion and eviction of content for multiple caches.

- The modelling takes geometry and time explicitly into
consideration for the analysis of caching policies. Specifically,
it investigates a three-dimensional model (two-dimensional
space and time). In this, stations have a certain spatial dis-
tribution (modelled by Point Processes) and coverage areas
may overlap, allowing for multi-coverage. Furthermore, it is
a dynamic model, where users with demands arrive over time
at different geographic locations (Sec. III).

- The hit probability performance of the new policies is
evaluated for two types of traffic: (a) IRM (Sec. IV), and (b)
traffic with temporal locality (Sec. V). Specifically for the case
of IRM, we initiate from the Che approximation to derive new
analytic solutions (Sec. IV-B). Two additional approximations
are made here, namely the Cache Independence Approxima-
tion (CIA) for multi-LRU-One, and the Cache Similarity Ap-
proximation (CSA) for multi-LRU-All, that allow for simple
but accurate analytic formulas.

- The performance of the policies is numerically evaluated.
Verification for the Che-like approximations (IRM), as well as
further comparison of the multi-LRU policies with other poli-
cies from the literature, under both traffic inputs, are provided
in Sec. VI. For comparison we consider distributed as well as
centralised policies that use various network information.

Important conclusions: For IRM, the multi-LRU-One al-
ways performs better than the -All variation. For traffic with
temporal locality, the multi-LRU-All can perform better than
-One in cases where sufficient memory is available. Both
policies outperform the (single-)LRU and perform close to
centralised policies for IRM traffic with significant multi-
coverage. In the case of temporal locality it is shown that
multi-LRU can better adapt to popularity changes compared
to policies which depend on popularity estimates and content
prefetching.

II. CACHING AND ITS MANAGEMENT

Caching policies can profit from various system information
related e.g. to user traffic, node positions and coverage ar-
eas, or caching decisions of neighbouring nodes. Specifically,
based on the available knowledge on content popularity, cache
management policies can be grouped into two categories:

(i) Policies with per-reQuest updates (POQ). For these, file
popularity information is not available. Updates of the cache
content are done locally and are triggered by the users on a
per-request basis. The Least Frequently Used (LFU), as well
as the Least Recently Used (LRU and q-LRU) policies for
single cache fall in this category.

How LRU works: Given an isolated cache of size K, the
policy keeps the K most recently demanded objects. The first
position of the cache is called Most Recently Used (MRU)
and the last one Least Recently Used (LRU). When a new
demand arrives, there are two options. (a. Update) The object
demanded is already in the cache and the policy updates the
object order by moving it to the MRU position. (b. Insertion)
the object is not in the cache and it is inserted as new in the
MRU position, while the object in the LRU position is evicted.
In this work we call this policy, single-LRU.
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(ii) Policies with Popularity updates (POP), where exact
or estimated information over content popularities is avail-
able, and is used to infrequently update cache inventories by
prefetching. This category covers the Most Popular Content
(MPC) caching strategy, as well as policies that result from
solutions of optimisation problems with a-priori knowledge of
additional system information, e.g. the Greedy Full Informa-
tion (GFI) [19], and the Probabilistic Block Placement (PBP)
[7]. Due to the extra information, POP are expected to have
higher hit-probability than POQ (but this is not always true).

A. Spatial multi-LRU
This work introduces a novel family of distributed cache

management POQ policies that profit from multi-coverage.
These are the spatial multi-LRU policies and are based on
the single-LRU. The main idea is that, since a user can check
all the caches of covering BSs for the demanded object and
download it from any one that has it in its inventory, cache
updates and object insertions can be done more efficiently
than by just applying single-LRU independently to all caches.
The fact that the user triggers a cache’s update/insertion
action, allows each cache to be indirectly informed about the
inventory content of its neighbours. Variations of the multi-
LRU family differ in the number of inserted contents in the
network, after a missed content demand. Differences can also
appear in the update phase.
• multi-LRU-One: Action is taken in only one cache out

of the covering m ≥ 1. (a. Update) If the content is found
in a non-empty subset of the m caches, only one cache from
the subset is used for download and, for this, the content can
be moved to the MRU position. (b. Insertion) If the object is
not found in any cache, it is inserted only in one, while its
least-recently-used object is evicted. This one cache can be
chosen as the closest to the user, a random one, or from some
other criterion. (Here, we choose the closest node).
• multi-LRU-All: Insertion action is taken in all m caches.

(a. Update) If the content is found in a non-empty subset of
the m caches, all caches from this subset are updated. (b.
Insertion) If the object is not found in any cache, it is inserted
in all m. A variation based on q-LRU can be proposed, where
the object is inserted in each cache with probability q > 0.

The motivation behind the different versions of the multi-
LRU policies is the following. When a user has more than
one opportunity to be served due to multi-coverage, she/he can
benefit from a larger cache memory (the sum of memory sizes
from covering nodes.). In this setting, the optimal insertion of
new content and update actions are not yet clear. If multi-LRU-
One is applied, a single replica of the missed content is left
down in one of the m > 1 caches, thus favouring diversity
among neighbouring caches. If multi-LRU-All is used, m
replicas are left down, one in each cache, thus spreading faster
the new content over a larger geographic area (the union of
m covering cells), at the cost of diversity. q-multi-LRU-All is
in-between the two, leaving down a smaller than m number of
replicas. A-priori, it is unclear which one will perform better
with respect to hit probability.

The performance largely depends on the type of incom-
ing traffic. For fixed object catalogue and stationary traffic,

diversity in the cache inventories can be beneficial, whereas
for time-dependent traffic with varying catalogue, performance
can be improved when many replicas of the same object are
available, before its popularity perishes.

III. NETWORK MODEL

Wireless multi-coverage: For the analysis, the positions of
transmitters coincide with the atoms from the realisation of
a 2-dimensional stationary Point Process (PP), Φb = {xi},
indexed by i ∈ N+ = {1, 2, . . .}, with intensity λb > 0 in
[m−2]. In this setting, the type of PP can be general, however
we consider here:

- A homogeneous Poisson PP (PPP) Φb,P with intensity
measure E [Φb,P (A)] = λb|A|, for some area A ⊂ R2, where
|A| is the surface of A.

- A square lattice Φb,L = ηZ2 + uL, Z =
{. . . ,−1, 0, 1, . . .}, whose nodes constitute a square grid with
edge length η > 0, randomly translated by a vector uL that is
uniformly distributed in [0, η]

2 (to make Φb,L stationary). Its
intensity is equal to λb = η−2.

There are two different planar areas (cells) associated with
each atom (BS) xi. The first one is the Voronoi cell V(xi) ⊂
R2. Given a PP, the Voronoi tessellation divides the plane
into non-overlapping planar subsets, each one associated with
a single atom. A planar point z belongs to V(xi), if atom
xi is the closest atom of the process to z. In other words,
V(xi) =

{
z ∈ R2 : |z − xi| ≤ |z − xj | , ∀xj ∈ Φ

}
.

The second one is the coverage cell Ci. Each transmitter
node xi ∈ Φb has a possibly random area Ci of wireless
coverage associated with it. When users arrive inside the
coverage cell of xi they can be served by it, by downlink
transmission. In general Ci is different from V(xi). Coverage
cells can overlap, so that a user at a random location may be
covered by multiple BSs, or may not be covered at all. The
total coverage area from all BSs with their coverage cells is
Ψ =

⋃
i∈N+
{xi + Ci} (see [4, Ch.3]).

Due to stationarity of the PP Φb, any planar location y ∈ R2

can be chosen as reference for the performance evaluation of
the wireless model. This reference is called the typical location
o, and for convenience we use the Cartesian origin (0, 0).

Because of the random realisation of the BS positions and
the random choice of the reference location o, the number of
BS cells covering o is also random. This coverage number
random variable (r.v.) N (see [7], [25]) depends on the PP Φb
and the downlink transmission scheme, with mass function

pm := P [N = m] , m = 0, 1, . . . ,M, (1)

where M ∈ N+ ∪ {∞}. It holds,
∑M
m=1 pm = 1.

The choice of the coverage model determines the shape of
the coverage cells and consequently the values of the coverage
probabilities pm. In this work the choice of Ci is left to be
general (for the evaluation, specific models are considered).
Special cases include: (1) the SINR Model and (2) the SNR
or Boolean Model. Both models consider the coverage cell
Ci of xi, as the set of planar points for which the received
signal quality from xi exceeds some threshold value T . The
motivation is that T is a predefined signal quality, above which
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the user gets satisfactory Quality-of-Service. The difference
between these two is that the SINR model refers to networks
with interference (e.g. when BSs serve on the same OFDMA
frequency sub-slot), whereas the SNR model, to networks
that are noise-limited (e.g. when neighbouring BSs operate
on different bandwidth, by frequency reuse). For the Boolean
model the Ci is a ball B(xi, Rb) of fixed radius Rb centred at
xi. It coincides with the SNR model, when no randomness of
signal fading over the wireless channel is considered. A more
detailed presentation of the different coverage models can be
found in [4], [8] and [5].

Storage: We consider the case where a cache memory of
size K ≥ 1 is installed and available on each transmitter node
xi of Φb. (All content files are considered of equal size, see
below). The memory inventory of node xi at time t is denoted
by Ξi(t) and is a (possibly varying over time) subset of the
content catalogue F(t), with number of elements |Ξi(t)| ≤ K.

Traffic Models: Each user arrives at some point in space
and time, with a request for a specific data object. The
arrivals are assumed spatially independent. We model the
users by a marked space-time Point Process in R2 × R × N,
Φu = {(ψi, ti, zi)}, where ψi takes values on the Euclidean
plane, and the time ti of arrival occurs at some point on the
infinite time axis. The mark zi takes as values the indices of
the files/objects j : cj ∈ F(t). Service time is considered
fixed and equal to unity but it will not play any role in the
analysis. In this work, we evaluate the caching policies under
the following two traffic models:

- A spatially homogeneous version of the Independent
Reference Model (IRM) [16] (Sec. IV).

- Traffic that exhibits temporal locality, like the Shot Noise
Model (SNM) [27] (Sec. V).

Typical user: The network performance is evaluated at the
typical user uo, who - due to stationarity of the PPP - will be
representative of any user of the process. We suppose that this
user appears at the Cartesian origin (0, 0), at time to = 0. In
this way, the typical user coincides with the typical location
o of the process Φb at time t = 0.

The model described so far is illustrated in Fig.1(a) for the
case of Poisson placement of transmitters Φb,P with Poisson
arrivals Φu, and in Fig.1(b) for the case of a square lattice
Φb,L with Poisson arrivals Φu. We also provide the reader
with a list of symbols in Table I.

IV. MULTI-LRU UNDER SPATIAL IRM TRAFFIC

The new policies are first evaluated under spatial IRM traffic
[16], which has the following properties:

(i) The Φu is a homogeneous Poisson Point Process (PPP)
in both space and time, with intensity λu > 0 in [m−2sec−1].
Given a planar area A, the arrival rate of users in this area,
with any request, is equal to λu|A| in [sec−1]. All users within
the area take their positions independently and uniformly.

(ii) The catalogue of available files/objects is fixed over time
F(t) := F , and has finite size F . The elements of F are
{c1, . . . , cF }. We additionally consider that all objects have
the same size, normalised to 1. Cases of unequal size will not
be treated in this work, but we can always assume that each

TABLE I
SYMBOLS

Φb Point Process of transmission nodes {xi}
Φb,P , Φb,L Poisson and Lattice position of {xi}

Φu Point Process of users marked by object {(ψi, ti, zi)}
λb intensity of transmission nodes [m−2]
λu intensity of users [m−2sec−1]
A planar area
V(xi) Voronoi cell of node xi
Ci coverage cell of node xi
Rb radius of coverage
pm probability of coverage by m nodes
F object catalogue of size F
aj popularity of object cj ∈ F
o, uo Typical location and typical user
K size of cache memory

Ξi(t) inventory of cache on BS xi at time t
Φc Point Process of new content arrivals
λc intensity of new content arrivals [obj day−1]
τn lifespan of content n
vn volume (total demands) of content n
gn popularity shape of content n

file can be divided into chunks of equal size, so the same
analysis can still be applied.

(iii) The probability aj that a user requests object cj ∈
F (i.e. the object popularity) is constant over time, (can be)
known, and independent of all past requests. Objects in F are
ordered by popularity: c1 is the most popular, c2 the second
most popular and so on. The popularity of cj is aj > 0, and
to be consistent with the ordering, we also have a1 ≥ a2 ≥
. . . ≥ aF . For every popularity distribution it obviously holds,∑F
j=1 aj = 1. Then the marks zi are i.i.d. random variables

distributed as Z with mass function {aj}. A consequence is
that the users that request object cj ∈ F form a homogeneous
space-time PPP with intensity ajλu [m−2sec−1] (independent
thinning of Φu).

Without loss of generality, we will consider (especially in
the simulations) that the distribution has a Zipf probability
mass function, although the analysis holds for general {aj}.
This is motivated by traffic measurements showing that data-
object popularity in the WWW follows a power law [22],
[30]. In such case, the probability that a user asks for cj is
equal to aj = D−1j−γ , j = 1, . . . , F . Here, γ is the Zipf
exponent, often satisfying γ < 1, so that a1/a2 = 2γ < 2.
The normalisation factor is equal to D :=

∑F
j=1 j

−γ .

Hit performance upper bound: As mentioned already, the
performance measure of the caching policies is the hit prob-
ability. We can already provide an upper bound for any POP
policy under IRM traffic. The bound requires knowledge over
the content popularity and coverage number, like the PBP [7].
The main idea is that the hit probability of a user covered
by m cells is maximised if these m inventories have distinct
entries, so that the user has the maximum choice. Hence if the
mK most popular objects from the set F are installed,

Phit ≤
M∑
m=1

pm

F∑
j=1

aj1{1≤j≤mK} =

M∑
m=1

pm

mK∑
j=1

aj . (2)
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(a) Poisson Transmitters/Boolean Coverage
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(b) Lattice Transmitters/Boolean Coverage

Fig. 1. A realisation of the introduced model for t = 0 and a window of size 10 × 10 [m2]. In both subfigures, user arrivals are modelled by a PPP with
λu = 0.6 [m−2sec−1]. The users choose between two objects that have popularities a1 = 0.65 (users with ”o”), a2 = 0.35 (users with ”x”). The typical
user is shown at the Cartesian origin (0, 0) (thicker ”o”). (a) The transmitters (squares) are modelled by a PPP with λb = 0.1 [m−2]. (b) The transmitters
(squares) are modelled by a Square Lattice PP with η = λ

−1/2
b = 1/

√
0.1 [m]. In both figures, we assume the Boolean model for coverage, with Rb = 2η/3

[m]. In this realisation, the typical user is covered by two cells in the PPP case and by a single one in the Lattice case.

A. Che approximation for IRM traffic: Single Cache

The mathematical analysis of LRU policies is complicated,
due to the different inter-arrival times for different content
and the update/insertion policy. However, Che et al provided
in 2002 [11] an analysis and a simple approximation for the
single-LRU cache, which results in an analytic formula for
the hit probability Phit with excellent fit to simulations. In
the following, we explain in short the idea and, after, apply it
to the multi-LRU policies.

The approximation is based on the so-called characteristic
time TC . Given a cache of size K under single-LRU replace-
ment, if at time t = 0 an arrival of object cj occurs, then this
will be positioned at the MRU place, either due to a. Update,
or due to b. Insertion. This object is removed from the cache
if at least K different objects arrive, before a new demand for
object cj at time sj > 0. The reason is that, each arrival of
a new object moves cj one position away from the MRU and
closer to the LRU. Che et al approximate the eviction time of
an object by a deterministic quantity, equal for all objects to
the characteristic time TC . This is found by solving

F∑
i=1

P (si < TC) = K (Che approximation), (3)

using a fixed point procedure, where si is the first arrival time
of object ci, i 6= j, after t = 0. The summation in (3) is taken
over the entire F , which is also part of the approximation.
It works well for a large number F of objects, each one of
which having a small portion of the popularity. For IRM traffic,
the inter-arrival times are exponentially distributed, hence for
an area A covered by a single cache, P (si < TC) = 1 −
e−λu|A|aiTC . The time-average probability that an object cj is
in the cache is P (cj ∈ Ξ) = P (sj < TC), hence

P (cj ∈ Ξ)
IRM
= 1− e−λu|A|ajTC PASTA

= Phit(j). (4)

The fact that, for IRM traffic P (cj ∈ Ξ) = Phit(j), is
due to the PASTA property of Poisson arrivals. Finally, the

approximation for the total hit probability is,

Phit =

F∑
j=1

ajPhit(j). (5)

B. Che-like approximation for multi-LRU

We will use the approach of Che for the single-LRU, to
derive here similar approximations of the multi-LRU cache
management policies, for the network model described in the
previous section. (To provide more intuition on this general
approach, a similar analysis for a network with only two
caches is given in the Appendix).

Consider an arrival of user uo at the Cartesian origin
ψo = (0, 0) at time to = 0, who requests for object cj . This
is the typical user, who is covered by a number mo ≥ 0 of
BSs, a realisation of the r.v. No with mass function {pm}.
A common characteristic time TC is assumed for all caches
of the network, due to stationarity of all processes. We focus
on the cache of a specific xi among the mo covering BSs,
for which definitely o ∈ Ci. The probability that user uo
finds the requested content in the cache of xi, is calculated
using the following arguments: There is a previous user u−1

requesting for the same object cj , who arrived in an area
S−1 (that varies depending on the type of multi-LRU policy).
The u−1 is covered by xi definitely (otherwise the user will
not influence Ξi) and possibly some other stations, the total
number of which is m̃ (the realisation of another r.v. N−1).
Since we know that u−1 is at least covered by one station (the
xi), the distribution of N−1 has mass function

p̃m̃ = pm̃(1− p0)−1, m̃ = 1, . . . ,M. (6)

Suppose this user arrived at t−−1 ∈ [to − TC , to], i.e. within
the characteristic time (t− is the time right before t). Then the
object is found in Ξi(t

−
o ) at t−o , if (i) either the object was in

Ξi(t
−
−1) and an update was triggered by u−1, or (ii) the object

was not cached in any of the m̃ stations and an insertion in
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the inventory Ξi was triggered. If mo > 0 (otherwise, the user
is not covered), we write for i ∈ {1, . . . ,mo}

Phit,i(uo) = P (u−1 ∈ (S−1, |to − t−1| < TC , j)) ·

·

[
P(cj ∈ Ξi(t

−
−1)) + P(

m̃⋂
`=1

{
cj /∈ Ξ`(t

−
−1)
}

)

]
.

For IRM traffic with PASTA, P(cj ∈ Ξi(t
−
−1)) = Phit,i(u−1),

and is also independent of the time t and user position ψ,
hence we can simply write Phit,i(j). Substitution in the above
equation gives,

Phit,i(j) = P (u−1 ∈ (S−1, |to − t−1| < TC , j)) ·

·

[
Phit,i(j) +

M∑
m̃=1

pm̃
1− po

P(

m̃⋂
`=1

{cj /∈ Ξ`})

]
.

(7)

Solving the above over Phit,i(j) provides an expression for
the hit probability of object cj at the cache of node xi. To
find the characteristic time TC we solve the equation,

F∑
j=1

Phit,i(j) = K, i ∈ {1, . . . ,mo} . (8)

Finally, the total hit probability is equal to,

Phit =

F∑
j=1

aj

M∑
mo=0

pmo

(
1− P(

mo⋂
`=1

{cj /∈ Ξ`})

)
. (9)

We note that P(
⋂0
`=1 {cj /∈ Ξ`}) = 1, for mo = 0, in which

case, the user surely misses the content.
The main difficulty when dealing with the general case,

is that the hit probability of one cache depends on the
hit probability of its neighbours and the neighbours of its
neighbours. This is because the coverage area of each node
has many sub-areas of multi-coverage by different BS subsets,
which makes analysis neither easy, nor exact.
• multi-LRU-One (Che with CIA) Only the users falling

in the Voronoi cell of a node can trigger an action of a. Update
or b. Insertion at the cache of that node as long as they are
covered. (Here we analyse this version for the Update phase,
but other policy variations are possible without significant
performance change). Then So = S−1 = V(xi) in (7). The
coverage cell can be smaller than the Voronoi cell, in which
case only the users falling in the intersection of the two trigger
cache actions. To avoid dealing with these special cases, we
consider coverage cells which fully cover the related Voronoi
cells, that is |Ci| > |Vi|, ∀i.

There are the unknown probabilities P(
⋂m̃
`=1 {cj /∈ Ξ`})

and P(
⋂mo
`=1 {cj /∈ Ξ`}) that need to be calculated. Instead of

directly trying to find a solution, we use a Cache Independence
Approximation (CIA). Based on this, each cache performs
single-LRU for the users that arrive within its Voronoi cell.
The idea is that, since only the users in the Voronoi cell
change the inventory of the related cache, the influence of the
neighbouring stations’ traffic on the inventory of xi should be

small. Then in (7) we forget the rest m̃ − 1 nodes and we
replace

P(

m̃⋂
`=1

{cj /∈ Ξ`}) ≈ P(cj /∈ Ξi), (CIA1). (10)

Furthermore, the independence due to the CIA, has the result
that, when the user is covered by mo stations, her/his hit
probability is simply the product of hit probabilities of all these
stations. The fact that the Voronoi cells of different stations do
not overlap is further in favour of the approximation. Then, in
(9)

P(

mo⋂
`=1

{cj /∈ Ξ`}) ≈ (P(cj /∈ Ξi))
mo , (CIA2). (11)

From the above, the hit probability of each object in Ξi is,

Phit,i(j) = P (u−1 ∈ (S−1 ∈ V(xi), |to − t−1| < TC , j)) ·
· [Phit,i(j) + P(cj /∈ Ξi)]

IRM
= 1− e−ajλu|V|TC , i ∈ {1, . . . ,mo} . (12)

We used the fact that for IRM Phit,i(j) = 1 − P(cj /∈ Ξi).
The characteristic time is found by solving the equation

F∑
j=1

(1− e−ajλu|V|TC ) = K. (13)

The total hit probability, based on CIA, is,

Phit =

F∑
j=1

aj

M∑
mo=0

pmo (1− P(cj /∈ Ξi)
mo)

(12)
=

F∑
j=1

aj

M∑
mo=0

pmo

(
1− e−ajλumo|V|TC

)
. (14)

Special case: For the PPP model of node positions, the Voronoi
cell size is a random variable. We can use for simplicity of
the expression the average size of a Voronoi cell, equal to
|V| = λ−1

b , [4]. In the Boolean coverage model, |C| = πR2
b .

• multi-LRU-All (Che with CSA) In this case, users
falling on any point inside the coverage cell of xi can trigger
an action of update and insertion at its cache inventory Ξi. This
means that So = S−1 = Ci, for the hit probability expression
in (7).

Again, the unknown probabilities P(
⋂m̃
`=1 {cj /∈ Ξ`}) and

P(
⋂mo
`=1 {cj /∈ Ξ`}) need to be calculated. In this case, we use

a different approximation, the Cache Similarity Approximation
(CSA), which states that inventories of neighbouring caches
have the same content. This is motivated by the fact that
new content is simultaneously installed in all caches of nodes
covering a user, when the user triggers insertion. The approxi-
mation is better, the larger the cache size K, because for large
memories it takes more time for an object to be evicted after
its insertion and similar content stays in all inventories. Then
in (7),

P(

m̃⋂
`=1

{cj /∈ Ξ`}) ≈ P({cj /∈ Ξi}), (CSA1). (15)
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Interestingly, CSA1 and CIA1 give the same expression.
However, in multi-LRU-All, we do not assume independence,
but rather similarity. Then, since neighbouring caches have
the same content, the total miss probability when a set of
mo stations cover user uo is equal to the probability that
no user with the same demand arrives within the total area
of coverage during the characteristic time TC (otherwise the
content is definitely in all caches, either because of a. Update
or b. Insertion. Then, for IRM traffic,

P(

mo⋂
`=1

{cj /∈ Ξ`}) ≈ e−ajλu|Amo |TC , (CSA2). (16)

In the above, the total area of coverage from the mo stations
is denoted by Amo and its surface is equal to,

|Amo | =

∣∣∣∣∣
mo⋃
`=1

Ci

∣∣∣∣∣ , mo = 0, . . . ,M. (17)

It holds |A0| = 0, for mo = 0. For the Boolean model |A1| =
|C1| = πR2

b , while the surface of Amo is a superposition of
mo overlapping discs with equal radius Rb.

The hit probability of each object in Ξi is found by using
CSA in (7), and we get

Phit,i(j) = P (u−1 ∈ (S−1 ∈ Ci, |to − t−1| < TC , j)) ·
· [Phit,i(j) + P({cj /∈ Ξi})]

IRM
= 1− e−ajλu|C|TC . (18)

We used the fact that for IRM Phit,i(j) = 1 − P(cj /∈ Ξi).
For the characteristic time, we solve the equation

F∑
j=1

(1− e−ajλu|C|TC ) = K. (19)

The total hit probability, based on CSA, is

Phit
(16)
=

F∑
j=1

aj

M∑
mo=0

pmo

(
1− e−ajλu|Amo |TC

)
. (20)

The difficulty in calculating the approximate hit probability
for multi-LRU-All with the above formulas, is to obtain exact
values for the total surface |Amo |. For the PPP special case,
this surface is also a random variable, that we can approximate
by its mean value for simplicity of the expressions. A method
to approximate these quantities is given in V.A. (We refer,
again, the reader to the Appendix for the two-cache network
example.)

V. MULTI-LRU UNDER TEMPORAL LOCALITY TRAFFIC

Although the IRM offers tractability, it is not enough to
describe real traffic aspects. In real networks new objects
(never requested before) appear, while older ones become
obsolete after some time. Furthermore, the popularity of a
content does not remain constant but varies over time, and
there is dependence between requests of the same object within
some time window. All these characteristics are described by
the term temporal locality [24], [38], [31] (see also [10] for
space-locality). Generators of such traffic have been proposed
in the literature [1]. A so-called Shot Noise Model (SNM) is

presented in [38], [27], which we make use here as a basis of
our own traffic model. Under SNM the demand process is a
superposition of independent point processes (not necessarily
homogeneous), one for each content.

A detailed description of the SNM variation in this work
follows. F(t) is the catalogue (set) of active objects at time t,
with cardinality F (t) := |F(t)|. The evolution of the catalogue
size is a random process. We assume that the arrival of a new
object cn coincides with the time of its first request tn. The
time instants of these first requests (arrivals) are modelled as a
homogeneous PPP Φc on R with intensity λc > 0 [ objects

unit−time ].
Unit-time can be e.g. 1 day.

A pair of r.v.’s is related to each content as an independent
mark on the arrival process: (a) The first r.v. denoted by
Tn is the n’th content’s lifespan, which gives the length of
time period during which it is requested by users, and after
the period’s end it becomes obsolete. We could allow for
the realisation τn to take infinite values but in such option
the size of the catalogue would grow indefinitely, unless the
popularity of different objects tends to zero fast enough. We
let here τn < ∞ so that the catalogue size F (t) fluctuates
over time and remains finite. The time interval of an object
is ∆tn := [tn, tn + τn). (b) The second r.v. attached to the
object cn is the volume Vn (with realisation vn) i.e. the total
number of requests during its life. The pair of values (τn, vn)
per object is chosen independently of other objects and in
the general case should be drawn from a joint probability
distribution with a given density f(T,V )(τ, v), where T and
V are the generic variables. In general the two variables are
dependent.

To simplify the traffic model it is assumed here that T and V
are independent of each other, i.e. f(T,V )(τ, v) = fT (τ)fV (v).
This simplification has no obvious impact on the performance
of the caching policies. Both lifespan and volume follow a
Power-law, i.e both T and V are Pareto distributed [30]. The
Pareto distribution in both cases has parameter β > 1 (for the
expected value to be finite), and its p.d.f. is given by (here
for V ) fV (v) =

βV βmin

vβ+1 . Its expected value depends on the
values of β and Vmin through the expression E[V ] = βVmin

β−1 .
To guarantee V ∈ N+ for the samples, we choose Vmin = 0.5
and we round to get discrete values. Sampling from a Pareto
distribution, generates Zipf-like distributed sizes of objects due
to the Power-law behaviour.

Having sampled (τn, vn) for a specific object arriving at tn,
it remains to determine how these vn requests are positioned
within ∆tn. To include additional attributes of temporal local-
ity in the traffic model, we let requests be distributed according
to a finite point process (given V <∞) and more specifically
a (non-homogeneous) binomial point process (BPP) Ψn on
Rvn−1 with density function gn(t, tn, τn) over t,

Ψn ∼ Binomial(∆tn, vn − 1, gn(t, tn, τn)). (21)

We randomly position only vn − 1 requests, because the
first request always coincides with the time of content arrival
tn. The choice of the Binomial distribution further implies
that requests take position independently of each other. Since
gn(t, tn, τn) describes how each of the vn − 1 requests is
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distributed within ∆tn according to the function’s shape, the
higher the value of gn for some t, the more probable it is that
a request will appear at that point. The popularity shape is an
important aspect of the model. For some cn it holds

gn(t, tn, τn) = 0 for t /∈ ∆tn, (22)

and ∫ tn+τn

tn

gn(t, tn, τn)dt = 1. (23)

When the requests follow a homogeneous BPP for some
cn with a given ∆tn, the shape function is uniform and takes
the expression gn(t, tn, τn) = τ−1

n 1{t∈∆tn}. For further shape
options we refer the reader to [34]. In this reference work, for
finite volume per object three shapes are proposed, namely (i)
the logistic, (ii) the Gompertz, and (iii) the negative exponen-
tial1. Applying this to our traffic generator, when a new object
arrives it is assigned a shape of index k with probability ak,
the exact value of which is a tuneable parameter.

The spatial (geographic) aspect of traffic plays an important
role in influencing the performance of the policies studied
here. In our work requests are uniformly positioned on a finite
2D plane. However, the traffic model can be easily extended
to incorporate spatial locality.

Based on the above description, characteristic quantities of
the generated traffic can be derived.

- Mean Catalogue Size E[F(t)]. Because of the stationarity
of the arrival PPP the expected number of active contents
(hence catalogue size) does not depend on time t ∈ R+,

E[F(t)] = λcP(V > 1)E[T ]. (24)

- Mean Total Number of Requests within [0, t] [days],

Nreq([0, t]) = tλcE[V ]. (25)

- Memory-to-Mean-Catalogue-Size-Ratio (MMCSR) where
we omit P(V > 1), which is just a scaling constant,

ρ :=
K

λcE[T ]
. (26)

Hit Upper Bound: Similarly to the IRM traffic, we can
derive a (numerical) upper bound for the POP policies under
traffic with temporal locality. We consider a scenario where
popularities are estimated periodically. Specifically, at time
instants tn = n∆tup, n ∈ Z, the caches are updated by some
POP policy, using the estimated popularities during the time
interval [tn−∆tes, tn), i.e. ∆tes is the window of observation.
Let FmK(tn) be the set of the mK most requested objects in
[tn−∆tes, tn). Then the upper bound within the time interval
[tn, tn + ∆tup) is equal to,

P
(POP )
hit [tn, tn + ∆tup) ≤

∞∑
m=1

pmP(c ∈ FmK(tn)). (27)

The more often the algorithm updates the caches the better
performance it achieves. But, considering that a cache update

1By assuming that the lifespan of every content ends when it reaches its
1 − ε of its total views vi, τi can be mapped to the curve parameter λ in
[34], which parametrises the speed of change of a content’s popularity. In this
paper we chose ε = 0.02.

will use backhaul and computational resources by the con-
troller, ∆tup cannot be too small. We fix ∆tup = 1 day, i.e.
the caching policy runs every night when the request load is
low [19]. As far as ∆tes is concerned there is a ”crisp” optimal
choice. If it is too big, FmK(tn) will possibly include outdated
objects. On the other hand, small ∆tes can result in excluding
even the most popular objects from FmK(tn) because they
have not been sufficiently requested. The bound in (27) can
be evaluated by Monte Carlo simulations. The optimum ∆tes
[days] can be numerically determined.

VI. SIMULATION AND COMPARISON

For the simulations, BSs are placed within a rectangular
window of size A × B = 12 × 12 [km2]. After choosing
the BS intensity λb = 0.5 [km−2], their positions are chosen
based on the type of network we want to analyse (PPP or
Lattice). For PPP, a Poisson number of stations is simulated
in each realisation and their positions are set uniformly inside
the window. In the case of a Lattice network, the stations are
put on a square grid with distance η = 1/

√
λb = 1.4142

[km] from each other. In both types of networks, the average
Voronoi size |V| = λ−1

b (see [4]).
We evaluate a Boolean coverage model so that every station

covers a disc of radius Rb ∈ [0.5, 3] [km] with surface
|C| = πR2

b . The larger the radius the stronger the multi-
coverage effects. The magnitude of coverage overlap can be
described by the expected number of BSs covering a planar

point, NBS = E[Number of covering stations] =
∞∑
m=1

mpm,

where the pm are the coverage number probabilities for m
stations, whose values depend on the node placement and
coverage model. For the Boolean PPP case, the probabilities
{pm} correspond to a Poisson r.v. with parameter ν := λbπR

2
b

(see [4]). For the Boolean Lattice case, these are found by
Monte Carlo simulations. Given the intensity, λb = 0.5, there
is a mapping from the Boolean radius Rb to the number NBS ,
some values of which are given in Table II.

TABLE II
Rb TO NBS MAPPING: BOOLEAN PPP AND LATTICE (λb = 0.5 km−2).

Radius (Rb) [km] PPP (NBS ) Lattice (NBS )
0.8 1 1.06
1.13 2 2.12
1.38 3 3.22
1.60 4 4.21
1.78 5 5.32
1.95 6 6.42
2.11 7 7.43
2.26 8 8.44

A. IRM traffic

Following the spatial IRM traffic model for the request
arrivals, we consider a homogeneous space-time PPP with
intensity λu = 0.023 [m−2sec−1], which is approximately
equal to 80 [m−2/hour−1] requests - a reasonable value for
a busy corner in a city.

The content mark for each request is independently chosen
from a catalogue of size F = 10, 000 objects. The popularities
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Fig. 2. Verification of the approximations for the two multi-LRU policies.

of these objects follow a Zipf distribution with parameter
γ = 0.78 (unless otherwise stated). A cache memory of
capacity K objects is considered available on each BS. The
size K is defined as a proportion of the catalogue size, i.e.
K/F = ρ, where α is called the Memory-to-Catalogue-Size
Ratio (MCSR). (We use different notation than the MMCSR
ρ for temporal locality in (26)).

When a user is covered by a station with the requested
content in memory, the demand is considered a hit. At the end
of the simulation of a large number of realisations for the BS
and request point processes (this number chosen over 10,000)
the total hit probability is approximated by the frequency
of hits (number of hits over number of requests). In the
simulations we take considerations over issues related to edge
effects that arise from the finite window size.

1) Verification of the approximations: To verify the validity
of the proposed approximations, we compare the analytic
formulas derived in Section IV-B with the hit probability from
simulations, for the Boolean PPP coverage model. For the
memory size K, we consider two cases, (a) α = 0.05, hence
K = 500 objects, and (b) α = 0.2, hence K = 2000 objects.
• multi-LRU-One: The total hit probability is evaluated

numerically using (14). The characteristic time per cache is
found by solving (13) by a fixed point method, where the
individual hit probability of each object is given in (12). To
guarantee that |C| > |V|, we need that πR2

b > λ−1
b ⇒

Rb > (πλb)
−1/2 = 0.4. Since Rb > 0.6 in the evaluation,

the condition should be satisfied. The comparison between
approximate hit probability and simulations are shown in Fig.

2(a). The curves exhibit a very good match. The evaluation
shows that the independence approximation (CIA) works very
well in this general model with PPs.
• multi-LRU-All: The total hit probability is evaluated

numerically using (20). The characteristic time per cache is
found by solving (19) using a fixed point method, where the
individual hit probability of each object is given in (18).

We provide a method to estimate the surfaces |Amo |, mo =
1, . . . ,M for the Boolean/PPP case: A user uo has a distance
Rd,i from each one of the mo nodes xi that cover her/him.
These distances are realisations of a random variable, whose
expected value can be found equal to E[Rd] = 2Rb/3, i.e. the
user lies in expectation at 2Rb/3 away from the center of each
covering disc. Then we have:

i) The coverage cell size (for the Boolean model) is the disc
surface, equal to |A1| = |C| = πR2

b .
ii) When M → ∞, a disc having center the user uo and

radius RM = Rb +E[Rd] = 5Rb/3 is (due to randomness of
node positions) fully covered. So |AM | = |C|(5/3)2.

iii) For intermediate cases 1 < mo < M , the surface should
be somewhere between the two extremes, and obviously the
surface |Amo | should be monotone increasing with mo. We
also expect that for low mo, the total area |AM | will be filling
fast, whereas for larger ones, the change in surface should be
small. For this we can use a function with exponential decrease
for large mo, such as

|Amo | = |AM |(1− e−moδ), δ = − ln(1− |A1|
|AM | ). (28)

The comparison between approximate hit probability and
simulations are shown in Fig. 2(b). The approximation and
simulation curves seem to closely follow one another. For large
values of the radius, the approximation curves seem to diverge
from the simulations. This should be less a failure of the CSA
approximation (which is shown to be accurate for the two-
cache network in the Appendix), but more possibly a failure
of the above method to approximate well the surfaces |Amo |.
More accurate values of |Amo | should exhibit a better fit.

2) Comparison of policies: Hit versus Coverage Number.
In Fig. 3(a), 3(b) and 3(c) we evaluate the hit probabilities

of the proposed multi-LRU policies over the expected number
of covering stations. In the simulations the radius of the
Boolean model is increased from Rb = 0.6 to 2.25. The
radius is mapped to the expected coverage number, as in
Table II. In Fig. 3(a) transmission nodes are positioned as
a PPP, while in Fig. 3(b), 3(c) on a Lattice. We compare
the multi-LRU-One/All performance with different existing
policies mentioned in this paper, like LFU, single-LRU, PBP
[7] and GFI [19], as well as the upper bound given in (2). The
parameter α is chosen equal to 1% in Fig. 3(a), 3(b) and 5%
in Fig. 3(c). In both F = 10000, γ = 0.78.

As a reminder, the single-LRU policy is not influenced by
multi-coverage. Each user can contact a single station, the one
closest to the user. If the user request is cached in this memory,
then there is a hit, otherwise the object is fetched from the core
network and inserted to the station’s cache.

From the three figures very interesting conclusions about
the policies can be derived:
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Fig. 3. IRM traffic. Hit Probability evaluation of the two multi-LRU policies and comparison with existing POP and POQ policies.

(i) Even for small values of coverage overlap (expected
coverage number) a considerable increase in hit probability
is achieved by using the multi-LRU policies, compared to the
single-LRU. For α = 1%, when NBS = 2, the multi-LRU-
One is 42% (relative gain) above the single-LRU for Lattice
placement and 35% for PPP placement. A further increase of
NBS makes the gain even more apparent. For NBS = 3 the
relative gains are 70% and 60%, respectively.

(ii) For every value of NBS the multi-LRU-One policy
performs better that the multi-LRU-All, in all three figures.
This is because, for stationary traffic, when the same object is
inserted in all stations covering a user (case -All), a request
falling in areas of overlap profits less by the diversity of
content from the multiple covering stations.

(iii) From both figures, the difference in performance be-
tween POP {LFU, PBP, GFI} and POQ {multi-LRU-One/All,
simple LRU} policies is evident. For IRM traffic, POP poli-
cies have greater performance by exploiting the ”expensive”
information of known object popularity, which is assumed
constant over time. In a realistic environment however, where
traffic patterns change with time, such policies will demand
regular updates and are approximative, because they depend
on estimations over the popularity values. On the other hand,
the multi-LRU policies introduced here do not depend on
such information. A related interesting remark is that, as the
MCSR α increases, the difference between the two groups’

performance decreases. This can be observed by comparing
Fig. 3(c) to Fig. 3(b) (Lattice).

(iv) For NBS close to 1, a user can connect to approximately
one station, and the performance of multi-LRU-One/All, and
single-LRU coincide. The same applies for the group LFU,
PBP and GFI. For NBS ≈ 1 these last three policies tend
to cache the K most popular objects in each station. Hence,
when a user connects to a single station then she/he gets the
maximum hit probability and the upper bound also coincides.

(v) It is obvious that the two standard policies single-LRU
and LFU exhibit constant performance as the multi coverage
event increases, because the memory of each station is updated
independently of the others and a user is served by at most
one station.

(vi) GFI performs best among all policies, and its per-
formance is very close to the upper bound. The latter is
an indication that the upper bound is fairly tight. The good
performance of the GFI comes at the cost of very high com-
putational complexity for the memory allocations, as well as
centralised implementation that requests considerable amount
of information availability.

3) q-LRU: Fig. 3(d) plots the hit probability of q-multi-
LRU-All policies for various values of q ∈ (0, 1]. As in the
previous figures, γ = 0.78, F = 10, 000, λb = 0.5 and stations
are modelled by PPP and have memory K = 100.

When q = 1 = 100%, q-multi-LRU-All reduces to the
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multi-LRU-All policy. As q decreases, the performance of q-
multi-LRU-All improves, but new content is inserted more
rarely. In this sense, the good performance of q-multi-LRU-
All with small q exploits the IRM characteristic of stationary
traffic, and will converge to good performance after a long
transient period. This is often not realistic for traffic that
exhibits faster variations in popularity and catalogue content.

4) Zipf parameter γ: We provide plots for the hit prob-
ability versus this parameter in Fig. 3(e). Letting γ increase
results in a popularity distribution where a small number of
objects is considerably more popular than the rest of the
catalogue. Eventually, hit probability will increase for both
multi-LRU policies, because due to the Update phase, popular
objects tend to be kept cached in memory once inserted
and get hit more often. Furthermore, the relative difference
Phit(multi−LRU−One)−Phit(multi−LRU−All)

Phit(multi−LRU−All) decreases as γ in-
creases. This happens because for increasing γ unpopular
objects have less influence on the hit probability.

5) Memory-to-Catalogue-Size Ratio MCSR α: Fig. 3(f)
illustrates the behaviour of the three policies {multi-LRU-
One, multi-LRU-All, PBP} when varying α (here a larger
size catalogue of F = 20, 000 is used, in order to evaluate
for very small values of the α = K/F ratio). The hit
probability increases when the ratio α increases, and tends
to 100% as the ratio tends to 1. Furthermore, the need for
smart memory allocations is less important for large values of
the ratio α = K/F because the sum popularity of files left
outside the caches is not considerable. Thus, we reasonably
see in the figure, that different policies tend to have the same
performance for larger values of the ratio α.

B. Traffic with temporal locality

The evaluation up to this point has been restricted to IRM
user (request) traffic, and it was observed in the simulation
figures that the multi-LRU-One performs better than the multi-
LRU-All. This is because IRM is stationary, so, by letting the
simulations run for a long time period the performance of the
multi-LRU-One can converge to high hit probabilities. This
however is generally not true for traffic that exhibits temporal
locality, like the model we introduce in Section V of our work
(see also [38], [31]).

For the performance evaluation we consider Nst = 20
stations placed on a square lattice in a rectangular window,
and the Boolean coverage model. If not mentioned otherwise,
λc = 2400 [objects/day], with expected request volume
per content E[V ] = 2.1. The distribution lifespan p.d.f. is
truncated Pareto, with T ∈ [τmin, τmax] = [0.1, 96] [days],
and E[T ] = 35. The overall duration of the simulations is 15
[months]. The popularity shape gi of content ci is chosen with
probability a1 = 0.06 as Logistic, a2 = 0.38 as Gompertz and
with a3 = 0.56 as Exponential. Later we include the Uniform
shape.

In each simulation, we keep some variables fixed and let
others vary, to evaluate the policy performance and understand
their influence. The variables to be varied are categorised
into (1) network variables (mean coverage number Nbs, cache
size K), and (2) traffic variables (average request volume per

content E[V ], mean lifespan E[T ], probability vector for the
shape (a1, a2, a3)).

1) Network influence: To increase the hit probability, data-
objects should both: stay long-enough in each cache, and be
inserted in as many caches as possible. But since storage space
per station is limited, a trade-off arises, which is captured
by the two variations of the multi-LRU policy (-One and -
All). This trade-off is depicted in Fig. 4(a) for different values
of the memory size. The larger the storage space, the longer
it takes for an object to be evicted. So, for large memory
the geographical expansion of an object is beneficial. This is
shown for K = 5000 in which case multi-LRU-All surpasses
multi-LRU-One. But for each K, there is a critical value of
Nbs after which the performance of the -All is less than -One,
because after this value further increase of content diversity is
at the cost of content variety. The smaller the cache size, the
more valuable storage space becomes because an object stays
less time in the cache before eviction. Hence, for smaller K
-One shows better performance and exceeds the -All variation
even for small values of multi-coverage Nbs.

In Fig. 4(b) the performance of multi-LRU policies versus
the CCSR ratio ρ (26) is illustrated. This ratio is equal to
the mean number of memory slots per active content and is a
measure of the system’s storage capability, because the smaller
it is than one, the less storage resources are available. Keeping
the denominator of ρ constant, Fig. 4(b) shows the impact of
the memory size on the policy performance. Obviously, hit
probability increases with K, but for smaller K, the -One
variation is preferable to the -All, as explained also previously.
There is again a critical point in K after which the -All
variation is preferable (for large storage). If the ratio ρ is
further increased, the performance gains are diminishing for
both variations, and saturation occurs.

2) Traffic influence: The qualitative impact of the mean
lifespan value on the hit probability can be understood by
reading Fig. 4(b) in the opposite direction of the x-axis, from
right to left. Keeping the numerator constant, as ρ decreases
E[T ] increases. This means that the same storage capacity
serves a larger active catalogue size E[F ]. Consequently the
overall performance drops. Moreover, Fig. 4(b) illustrates that
the hit probability improves as the average number of requests
per content E[V ] increases. The reason is that for higher E[V ]
a content put in storage is requested and hit more times.

In Fig. 4(c) each curve corresponds to a scenario where
contents are assumed to follow only one particular popularity
shape. Specifically, either the logistic, or the negative exponen-
tial, or the uniform shape is used. In the negative exponential
shape popularity takes big values in a short time period and
then drops abruptly. A steep popularity shape implies that
consecutive requests of the same content appear close to each
other in time. This makes more probable the event that the
content is not evicted before its next request happens. With
this in mind, it can be understood that the negative exponential
can lead to higher hit probabilities than the uniform shape.
Interestingly, for isolated caches the authors in [38], [31] state
that the shape does not affect significantly the hit probability of
LRU. In our model, this can be observed when Nbs takes small
values so every user can connect to at most one station, and
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Fig. 4. Evaluation of the hit probability of multi-LRU policies for different system variables. Parameter values in (b) Nbs = 2.4. In (c) K = 1500.

this observation is confirmed in Fig 4(c). But as Nbs increases
and multi-coverage effects appear, the multi-LRU performance
depends considerably on the correlation between requests of
the same content, and thus the shape of the popularity curves.

3) Comparison with the single-LRU: Under single-LRU a
user can access only one (the closest in this work) station’s
memory even when covered by more than one. As a result
hit performance is independent of Nbs (provided coverage is
enough so that a user is always covered by at least one station).
Depriving the user of the ability to retrieve its content from all
covering stations, strongly reduces the overall hit probability.
In Fig. 4(b), where Nbs = 2.4, both multi-LRU policies show
relative gains compared to the single-LRU, for all values of ρ.
The maximum gains reach 30% when E[V ] = 2.1 and 20%
when E[V ] = 3.8.

4) Comparison with centralised Policies with periodic Pop-
ularity updates and prefetching (POP): Fig. 4(a) shows that
even the upper bound in (27) for POP policies with estimated
popularity input does not surpass the appropriate multi-LRU
policy in performance, except maybe for a small range of Nbs.
For static IRM traffic, we saw in Fig.3(a)-3(c) that multi-LRU
performed lower than the centralised policies POP. But, under
a temporal traffic model (which is also more realistic), the
ability of multi-LRU policies to update at each request the
caches, without the need to estimate the content popularities,
results in a considerable performance boost.

VII. CONCLUSIONS

In this work we have introduced a novel family of spatial
multi-LRU policies, which exploit multi-coverage events of
wireless networks to increase the hit probability. Two main
variations are investigated, the multi-LRU-One and the -
All. Che-like approximations give results close to simulation
values. The multi-LRU-One provides higher object diversity
in neighbouring caches and performs better under IRM traffic.
The multi-LRU-All instead, lets objects quickly spread geo-
graphically and makes them immediately available to many
users. This variation is profitable for traffic with temporal

locality. Hence, depending on the incoming traffic either policy
can be recommended. Future work should explain more clearly
how the performance of these policies is affected by the spatial
and temporal locality characteristics of traffic.
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APPENDIX

To understand how the Che-like approximations work for
the multi-LRU policies, we analyse the simple network of two
nodes xi, i ∈ {1, 2}, each one equipped with a cache of size
K. Each node covers an entire area A ⊂ R2, so that all planar
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Fig. 5. Che approximations for (a) multi-LRU-One with CIA and (b) multi-
LRU-All with CSA, in the two-cache network. Hit probability versus MCSR
a = K/F , F = 10, 000 objects, for different Zipf parameter γ.

points are covered by both nodes. The total area is divided
in two Voronoi cells V(xi). To simplify further, we assume
equal-sized Voronoi cells |V(x1)| = |V(x2)| = |V|.

We apply the analysis of Section IV-B to this network
model. Specifically, the formula for the hit probability of
an object cj at cache Ξi in (7), takes the expression (for
i = {1, 2}),

Phit,i (j)
IRM
= P (u−1 ∈ (S−1, |to − t−1| < TC , j)) ·

· [Phit,i (j) + P (cj /∈ Ξ1 ∩ cj /∈ Ξ2)] .(29)

Solving the above over Phit,i (j) gives an expression for the
hit probability of object cj at cache Ξi. The characteristic time
TC is found by solving the equation (8),

F∑
j=1

Phit,i (j) = K, i = {1, 2}. (30)

Finally, the total hit probability (9) takes both caches into
account, and is equal to

Phit =

F∑
j=1

aj (1− P (cj /∈ Ξ1 ∩ cj /∈ Ξ2)) . (31)

• multi-LRU-One: In this case, So = S−1 = V(xi), in
(29). Table III gives all pairs of inventory states that a user uo
arriving at t−o sees, when the previous user u−1 asking for the
same content arrived in cell (say) ψ−1 ∈ V(x1) at some time
t−−1, such that |to − t−1| ≤ TC . We denote by logical 1 the
fact that the object is in the cache and by 0 otherwise. From
the table it is clear that user u−1 does not take any action on
cache Ξ2, this is why, when 1

[
cj ∈ Ξ2(t−−1)

]
= 1, we cannot

know whether the content will remain in the cache till t−o , so
we write 1 [cj ∈ Ξ2(t−o )] ∈ {0, 1}.

TABLE III
MULTI-LRU-ONE: STATES AT t−−1 AND t−o

Ξ1(t−−1) Ξ2(t−−1) Ξ1(t−o ) Ξ2(t−o )

0 0 → 1 0 insert 1
0 1 → 0 {0, 1} no update
1 0 → 1 0 update 1
1 1 → 1 {0, 1} update 1

There is the unknown probability P (cj 6= Ξ1 ∩ cj 6= Ξ2) =
1 − P (cj ∈ Ξ1 ∪ cj ∈ Ξ2). For multi-LRU-One, we observe
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that an insertion of an object is triggered when its request
arrives but does not find the object inside any of the two
caches. However, the insertion is done only in the closest cache
and stays there for time TC . During this time, the same object
cannot be inserted in the other cache, hence, {cj ∈ Ξ1} and
{cj ∈ Ξ2} are mutually exclusive events. Then,

P (cj /∈ Ξ1, cj /∈ Ξ2) = 1− P (cj ∈ Ξ1 ∪ cj ∈ Ξ2)

= 1− 2Phit,1(j), (32)

where the last equality is due to the symmetry of our model
and the IRM traffic. However, in more general cases of
node placement and coverage, content exclusivity is not true,
because only a small area of the coverage cell will overlap with
one neighbour. Users in other areas of the cell will be covered
by other neighbours that can trigger the insertion of the same
object, anyway. Hence, this result is not of much use for the
PP coverage models. For this reason we want to evaluate how
the CIA approximation applies here. For the two-cache model,
this means for Ξ1 (or Ξ2),

P (cj /∈ Ξ1 ∩ cj /∈ Ξ2) = 1− Phit,1(j), (CIA1).(33)

We can then replace in (29) and (30) to get (for i ∈ {1, 2})

Phit,i(j) = 1− e−ajλu|V|TC , (34)
F∑
j=1

Phit,i(j) =

F∑
j=1

(
1− e−ajλu|V|TC

)
= K. (35)

For the total Phit probability, we should appropriately adapt
the form in (31) to the CIA2 approximation,

Phit =

F∑
j=1

aj
(
1− (P (cj /∈ Ξ1))2

)
=

F∑
j=1

aj(1− e−ajλu2|V|TC ), (36)

and the area 2|V| = |A| is equal to the total coverage cell.
• multi-LRU-All: In this case, S−1 = So = A in (29) , for

the hit probability of node i.
To calculate the unknown probability P (cj /∈ Ξ1 ∩ cj /∈ Ξ2)

we argue as follows. In the case of multi-LRU-All, an object
cannot be inserted in cache 1 if not inserted also in cache 2
and the other way round. Based on the Che approximation,
once the object is inserted it stays TC amount of time, before
removed from each cache. Hence, the existence of an object
in one cache implies the existence of the same object in the
other. So, due to the model’s symmetry

P (cj /∈ Ξ1 ∩ cj /∈ Ξ2) = 1− P (cj ∈ Ξ1 ∪ cj ∈ Ξ2)

= 1− Phit,1(j). (37)

This is simply the Cache Similarity Approximation (CSA),
which for the two-cache network is exact! Then (29) gives,

Phit,i(j) = 1− e−ajλu|A|TC . (38)

To find the characteristic time, we need to solve (30),
F∑
j=1

Phit,i(j) =
F∑
j=1

(
1− e−ajλu|A|TC

)
= K. (39)

The total hit probability is equal to,

Phit =

F∑
j=1

aj (1− P (cj /∈ Ξ1, cj /∈ Ξ2))

(38)
=

F∑
j=1

aj(1− e−ajλu|A|TC ). (40)

An alternative way to calculate P (cj /∈ Ξ1(to), cj /∈ Ξ2(to))
is the following. A user uo finds the two caches without object
cj , if the previous user u−1 (at say S−1 = V(x1)) with the
same demand, arrived either (i) at t−−1 : |to − t−1| > TC , so
that whatever the state of the two caches Ξ1(t−−1), Ξ2(t−−1), the
object cj is eventually removed, since more than TC elapsed
till to, or (ii) at |to − t−1| ≤ TC . In the second case all possible
change of states for the two caches is shown in Table IV. From
this, we note that, the object will always be found in at least
one of the two caches at to, so that the time difference can
not be smaller than TC . Hence,

P (cj /∈ Ξ1(to), cj /∈ Ξ2(to))
IRM
= e−ajλu|A|TC . (41)

The expressions in (41) and (38) are the same.

TABLE IV
MULTI-LRU-ALL: STATES AT t−−1 AND t−o

Ξ1(t−−1) Ξ2(t−−1) Ξ1(t−o ) Ξ2(t−o )

0 0 → 1 1 insert both
0 1 → 0 1 update 2
1 0 → 1 0 update 1
1 1 → 1 1 update both

The accuracy of the approximations in the two-cache net-
work is shown in Fig.5. The Che-CIA approximation for multi-
LRU-One - although not accurate - performs reasonably well
in the two-cache network. The Che-CSA approximation for
the multi-LRU-All, is exact.


