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Abstract. Recurrence structures in univariate time series are challeng-
ing to detect. We propose a combination of symbolic and recurrence anal-
ysis in order to identify recurrence domains in the signal. This method
allows to obtain a symbolic representation of the data. Recurrence analy-
sis produces valid results for multidimensional data, however, in the case
of univariate time series one should perform phase space reconstruction
first. In this chapter, we propose a new method of phase space recon-
struction based on signal’s time-frequency representation and compare
it to the delay embedding method. We argue that the proposed method
outperforms the delay embedding reconstruction in the case of oscillatory
signals. We also propose to use recurrence complexity as a quantitative
feature of a signal. We evaluate our method on synthetic data and show
its application to experimental EEG signals.

Keywords: recurrence analysis, symbolic dynamics, time-frequency rep-
resentation, Lempel-Ziv complexity, EEG

1 Introduction

Recurrent temporal dynamics is a phenomenon frequently observed in time series
measured in biological systems. For instance, bird songs exhibit certain tempo-
ral structures, that recur in time [28]. Other examples are returning epileptic
seizures [2], recurrent brain microstates in language processing [3] and in early
auditory neural processing [14]. All these latter phenomena are observed in elec-
troencephalographic data (EEG). To detect such temporal recurrent structures,
typically one applies recurrence analysis [5, 21] based on Poincaré’s theorem [24].
This approach allows the detection of recurrence structures in multivariate time
series. To retrieve recurrence structures from univariate time, several methods
have been suggested, such as delay embedding techniques.



However, most existing methods do not take into account specifically the
oscillatory nature of the signals as observed in biological systems. To this end,
we propose a technique to embed the univariate time series in a multidimen-
sional space to better consider oscillatory activity. The approach is based on the
signals time-frequency representation. In a previous work we have sketched this
approach [27] already but without discussing its performance subject to different
time-frequency representations. The present work shows this detailed discussion
and suggests a new method to classify signals according to their recurrence
complexity. Applications to artificial data permits to evaluate the method and
compare it to results gained from the conventional delay embedding technique.
Final applications to experimental EEG data indicates the method’s future ap-
plication.

2 Analysis Methods and Data

2.1 Symbolic Recurrence Structure Analysis

Recurrence is a fundamental property of nonlinear dynamical systems, which was
first formulated by Poincaré in [24]. It was further illustrated in recurrence plot
(RP) technique proposed by Eckmann et al. [5]. This relatively simple method
allows to visualize multidimensional trajectories on a two-dimensional graphical
representation. The RP can be obtained by plotting the recurrence matrix:

Rij = Θ (ε− ||xi − xj ||) , i, j = 1, 2, . . . , N , (1)

where xi ∈ IRd is the state of the complex system in the phase space of dimension
d at a time instance i; || · || denotes a metric, Θ is the Heaviside step function,
and ε is a threshold distance.

It can be seen from (1), that if two points in the phase space are relatively
close, the corresponding element of the recurrence matrix Rij = 1, which would
be represented by a black dot on the RP.

Instead of analyzing RPs point-wise we concentrate our attention on recur-
rence domains, labeling each domain with a symbol, thus obtaining recurrence
plots of symbolic dynamics. The RP from symbols were successfully used in
several studies (see, for instance, [6, 17, 4]). Here, we use symbolic recurrence
structure analysis (SRSA) proposed in [11], this technique allows to obtain sym-
bolic representations of the signal from the RP, the latter being interpreted as a
set of rewriting rules. According to these rules, large time indices are substituted
with smaller ones when two states, occurring at these times, are recurrent. The
process starts by initializing a symbolic sequence with discrete time at which the
signal is computed, i.e., si = i. Next, this sequence is recursively rewritten based
on the elements in the RP, namely, si → sj if i > j and Rij = 1. Afterwards,
the sequences is scanned for monotonically increasing indices and each of them
is mapped to one symbol si = 0, which labels transient states. This is done
to differentiate between metastable states from transitions between them. More
detailed description of the method and examples can be found in [11, 12].



By examining (1) one can see that the resulting recurrence matrix and, thus,
symbolic sequence strongly depend on distance threshold parameter ε. Several
techniques for optimal ε estimation exist [22], most of which are heuristic. SRSA
aims to obtain an optimal value of ε from the data.

Here, we propose two approaches to estimate ε optimally, based on (i) the
principle of maximal entropy and (ii) Markov chain model of the system. The
former implies that the system spends an equal amount of time in each recurrence
domain [11], while the latter takes into account the probabilities of the system’s
transition from one recurrence state to another [12]. Each of these approaches
assumes a certain model for the system’s dynamics, hence for each ε value we
can calculate a value of a utility function, which describes how well an obtained
symbolic sequence fits to the proposed model. The optimal value of the threshold
distance ε∗ will then be the one to maximize the value of the utility u(ε) function:

ε∗ = arg max
ε

u(ε) . (2)

The utility function is different for both models. In the first case, the utility
function is presented with the normalized symbolic entropy:

u(ε) = −
∑n−1
k=0 pk(ε) log pk(ε)

n(ε)
, (3)

where pk(ε) is the relative frequency of the symbol k, n(ε) is the cardinality of
the alphabet (number of states). Here, we divide the entropy by the cardinality
of the alphabet in order to compensate for the influence of the alphabet size.

The second model rests upon the following assumptions about the ideal sys-
tem’s dynamics. (i) The system’s states exhibit mainly self-transitions, i.e., tran-
sition probabilities pii are larger than the probabilities of other transitions. (ii)
There are no direct transitions from one metastable state to another without
passing through transient state, i.e., pij = 0 when i 6= j for i, j > 0. (iii) Prob-
abilities of transitions from and to transient states, p0i and pi0, respectively,
are distributed according to the principle of maximum entropy. We can now
construct a transition matrix corresponding to the desired dynamics:

P =


1− (n− 1)q r r · · · r

q 1− r 0 · · · 0
q 0 1− r · · · 0
...

...
...

. . .
...

q 0 0 · · · 1− r

 , (4)

here, the total number of states is n and the number of recurrence states is n−1,
diagonal elements correspond to the probabilities of self transitions, q = pi0 and
r = p0i for i, j > 0 are transition probabilities to and from transient state s0 = 0.

Keeping in mind the three criteria of the optimal dynamics, we can achieve
the desired utility function by: (i) maximizing the trace of the transition matrix
trP = 1+(n−1)(1−q−r); (ii) maximizing the normalized entropy of transition



probabilities of the first row and the first column of P after neglecting p00,
i.e., p′0i = p0i/

∑n−1
i=1 p0i for the first row and p′i0 = pi0/

∑n−1
i=1 pi0 for the first

column. (iii) suppressing transitions between recurrence states by simultaneously
maximizing the trace and the entropies of the first row and column of P , due to
normalization condition

∑n−1
i=0 pij = 1. Then the utility function is given by:

u(ε) =
1

n− 2

(
tr P (ε) + hr(ε) + hc(ε)

)
, (5)

where hr and hc are the entropies of the first row and column of P (see [12] for
more details).

2.2 Phase Space Reconstruction

A dynamical system is defined by an evolution law in a phase space. This space
is d-dimensional, where each dimension correspond to a certain property of a
system (for instance, position, and velocity). Each point of the phase space refers
to a possible state of the system. An evolution law, which is normally given by
a set of differential equations, defines system’s dynamics, shown as a trajectory
in a phase space.

In certain cases only discrete measurements of a single observable are avail-
able, in this situation a phase space should be reconstructed according to Tak-
ens’s theorem [26], which states that phase space presented with a d-dimensional
manifold can be mapped into 2d+1-dimensional Euclidean space preserving dy-
namics of the system. Several method of phase space reconstruction exist: delay
embedding [26], numerical derivatives [23] and others (see for instance [16]).

In this work we propose a new method of phase space reconstruction based on
the time-frequency representation of a signal. A time-frequency representation
(TFR) is a distribution of the power of the signal over time and frequency. Here,
the power in each frequency band contributes to a dimension of the reconstructed
phase space. This approach is well-adapted for non-stationary and, especially, for
oscillatory data, allowing better detection of oscillatory components rather than
creating RPs point-wise from the signal. In this article we compare performance
of the SRSA with different reconstruction methods, delay embedding and two
different TFRs: spectrogram and scalogram.

Delay embedding. Assume, we have a time series which represents scalar
measurements of a system’s observable in discrete time:

xn = x(n∆t), n = 1, . . . , N , (6)

where ∆t is measurement sampling time. Then reconstructed phase space is
given by:

sn =
[
xn, xn+τ , xn+2τ , . . . , xn+(m−1)τ

]
, n = 1, . . . , N − (m− 1)τ , (7)

where m is the embedding dimension and τ is the time delay.



These parameters play an important role in correct reconstruction and should
be estimated appropriately. Optimal time delay τ should be chosen such that de-
lay vectors from (7) are sufficiently independent. The most common technique to
correctly estimate the τ parameter is based on average mutual information [8, 19].
Moreover, the main attribute of appropriately chosen dimension m is that the
original d-dimensional manifold will be embedded into an m-dimensional space
without ambiguity, i.e., self-crossing and intersections. We apply the method of
false nearest neighbors [15], which permits the estimation of the minimal em-
bedding dimension.

Time-Frequency Representation. Time-frequency representation of a signal
shows the signal’s energy distribution in time and frequency. In this work we
analyze two different types of TFR: the spectrogram and the scalogram (based
on continuous wavelet transform).

The spectrogram Sh(t, ω) of a signal x(t) is the square magnitude of its
short-time Fourier transform (STFT):

Xh(t, ω) =

+∞∫
−∞

x(τ)h∗(t− τ)e−iωτ dτ , (8)

where h(t) is a smoothing window and ∗ denotes the complex conjugate, i.e.,

Sh(t, ω) = |Xh(t, ω)|2.
The continuous wavelet transform (CWT) [1] is obtained by convolving the

signal with a set of functions ψab(t) obtained by translation and dilation of a
mother wavelet function ψ0(t):

Tψ(b, a) =
1√
a

+∞∫
−∞

x(t)ψ∗0

(
t− b
a

)
dt , (9)

then, by analogy with the spectrogram, the squared magnitude of the CWT is
called scalogram:Wψ(b, a) = |Tψ(b, a)|2. In practice, the scale a can be mapped
to a pseudo-frequency f and the dilation b represents a time instance and hence
the time-frequency distribution is given by Wψ(t, f).

The scalogram was computed using analytical Morlet wavelet, and a Ham-
ming window with 80% overlap was chosen for the spectrogram. In all the meth-
ods the window length and scale locations were chosen such as to achieve a
frequency resolution of 0.2Hz for synthetic data and 1Hz for experimental data.

2.3 Complexity Measure

To quantitatively assess the obtained symbolic sequences we propose to mea-
sure its complexity. We present here three different complexity measures. These
are the cardinality of the sequence’s alphabet and the number of distinct words
obtained from the sequence [13], where a word is a unique group of the same



symbols. In addition, we compute the well-known Lempel-Ziv (LZ) complex-
ity [18], which is related to the number of distinct substrings and the rate of
their occurrence along the symbolic sequence. All of the complexity measures
have in common the notion of complexity, that is the number of distinct ele-
ments required to encode the symbolic string. The more complex the sequence
is, the more of such elements are needed to present it without redundancy.

To demonstrate these measures we generated 100 artificial signals of two
kinds (see below) with random initial conditions and random noise.

2.4 Synthetic Data

Transient Oscillations. The signal is a linear superposition of three signals,
which exhibit sequences of noisy transient oscillations at a specific frequency [27].
These frequencies are 1.0 Hz, 2.25 Hz and 6.3 Hz, cf. Fig. 1a. The sampling
frequency is 50 Hz and the signal has a duration of 70 s. Figure 1 shows the three
different transient oscillations whose sum represents the signal under study.

Lorenz System. The solution of the chaotic Lorenz system [20, 11] exhibits two
wings which are approached in a unpredictable sequence. These wings represent
metastable signal states. Figure 1b shows the time series of the z-component of
the model.
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Fig. 1. Example signals of the synthetic data. (a) Three signals, whose sum represents
the transient oscillation signal under study. (b) Solution of the Lorenz system along a
single dimension.

2.5 Experimental Data

We examine electroencephalographic data (EEG) obtained during surgery under
general anesthesia [25]. The EEG data under investigation has been captured at
frontal electrodes 2 minutes before (pre-incision phase) and 2 minutes after (post-
incision phase) skin incision and last 30 seconds. The raw signal was digitized
at a rate of 128 Hz and digitally band-pass filtered between 1 Hz and 41 Hz
using a 9th order Butterworth filter. The question in the corresponding previous
study [25] was whether it is possible to distinguish the pre-incision from post-
incision phase just on the basis of the captured EEG time series.



3 Results

3.1 Synthetic data

Time-Frequency Embedding. To illustrate the method, Fig. 2 (see also [7])
shows two different time-frequency representations of the transient oscillations
signal. Spectrogram yields time-frequency intervals of high power at very good
accordance with the underlying dynamics, cf. Sect. 2.4. In contrast, wavelet
analysis smears out upper frequencies as a consequence of their intrinsic nor-
malization of power. The symbolic sequences and the corresponding recurrence
plots (middle and right-hand side of the panel) derived from the spectrogram
fits perfectly to the underlying dynamics and are the same for both utility func-
tions. They exhibit three different symbols in the symbolic sequence color-coded
in blue, red and orange separated be transient states (color-coded in beige) in
Fig. 2a and alternate in very good accordance to the three different transient
oscillations. They are also visible as three rectangles of different size in the sym-
bolic recurrence plot. Conversely, the scalogram yield only two recurrent signal
features (entropy) and few recurrent states of brief duration (Markov), which do
not reflecting the underlying dynamics.
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Fig. 2. Results for the transient oscillation signal. (a) Spectrogram; (b) scalogram. On
each subfigure, left: time-frequency representation, middle: RPs with corresponding
symbolic sequences above them (entropy utility function), right: the same but with
Markov utility function. In each symbolic sequence colors denote metastable states
and transient states show in beige.

Typically experimental neurophysiological signals exhibit a less regular tem-
poral structure than given in the transient oscillations example. Solutions of
the Lorenz system exhibit chaotic behavior, that is rather irregular and exhibits
metastable oscillatory states. Since experimental EEG may exhibit chaotic be-
havior [10, 9], the Lorenz signal is tentatively closer to neurophysiological data.
Figure 3 shows the TFR of the Lorenz signal. For both TFRs, one can well



identify visually the four signal states I to IV marked in Fig.1b. The color-coded
symbolic sequences extracted from the spectrogram (seen in Fig.3a) identify cor-
rectly the time windows of the signal states I to IV and are identical for both
utility functions. The states I, II and IV are well captured, whereas the short
state III is not well identified. The scalogram results are much worse in case of
entropy utility function only states I and IV are identified, while Markov utility
function captures all four states but no recurrence is present.
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Fig. 3. Results for the Lorenz system. (a) Spectrogram; (b) scalogram. On each sub-
figure, left: time-frequency representation, middle: RPs with corresponding symbolic
sequences above them (entropy utility function), right: the same but with Markov util-
ity function. In each symbolic sequence colors denote metastable states and transient
states show in beige.

Delay Embedding. To illustrate the power of the method proposed, we com-
pare our results to recurrence analysis results utilizing delay embedding, cf.
Sect. 2.2. We consider the transient oscillations and the Lorenz signal, com-
pute the optimal delay embedding parameters and apply the recurrence analysis
technique to gain the symbolic sequences and the recurrence plots. Figure 4 (see
also [7]) reveals that the delay embedding essentially fails in detecting the re-
currence domains in the transient oscillations compared to the time-frequency
embedding (in case of both utility functions). In the Lorenz signal all states
I-IV are captured in the symbolic sequence and visible in the recurrence plot,
however the detection is much worse than with time-frequency embedding, cf.
Fig. 3. Also entropy utility function tends to produce few recurrent states with
no transient states, whilst the usage of the Markov utility entails larger numbers
of metastable and transient states.



(a)

Time, s
0 10 20 30 40 50 60 70

A
m

p
lit

u
d

e

-2

-1

0

1

2

Time, s
0 20 40 60

T
im

e
, 

s

0

20

40

60

Time, s
0 20 40 60

T
im

e
, 

s

0

20

40

60

(b)

Time, s
0 10 20 30 40 50 60 70

A
m

p
lit

u
d
e

-30

-20

-10

0

10

20

30

I

II

III

IV

I II III IV

Time, s
0 20 40 60

T
im

e
, 
s

0

20

40

60

I II III IV

Time, s
0 20 40 60

T
im

e
, 
s

0

20

40

60

Fig. 4. Results obtained with delay embedding. (a) The transient oscillations, recon-
struction parameters: m = 5, τ = 0.1 s; (b) the Lorenz system, reconstruction param-
eters: m = 3 and τ = 0.16 s.

Complexity Measures. To quantify the intrinsic temporal structure, in addi-
tion we compute three complexity measures for each of the signals. To demon-
strate the ability of complexity measures to distinguish temporal structures,
Fig. 5 gives the distribution of complexity measures for both artificial datasets.
We show results obtained with spectrogram, however the results for other em-
beddings are similar (not shown here for the sake of brevity). We observe that
all complexity measures show significantly different distributions. Qualitatively,
the largest difference between both signals is reflected in the LZ complexity mea-
sure. We also observe that in general complexities of Lorenz system are larger
than the ones of transient oscillations when obtained with Markov utility, it is
the opposite for entropy utility function.

(a) (b)

Fig. 5. Boxplots of three complexity measures for transient oscillations (blue) and
Lorenz system (red) obtained with the spectrogram. (a) Entropy utility function; (b)
Markov utility function. For each complexity measure, both distributions are signifi-
cantly different (Kolmogorov-Smirnov test with p < 0.001).



3.2 EEG data

Finally, we study experimental EEG data. Figure 6 shows time-frequency plots
(spectrogram) with corresponding symbolic sequences for two patients before
and after incision during surgery. We observe activity in two frequency bands,
namely strong power in the δ-band (1 − 5 Hz) and lower power in the α-range
(8 − 12 Hz). This finding is in good accordance to previous findings in this
EEG dataset [25]. The corresponding spectral power is transient in time in both
frequency bands, whose temporal structure is well captured by the recurrence
analysis with entropy utility function as seen in the symbolic sequences. The
symbolic analysis with Markov utility function captures underlying dynamics
well in case of patient #1099 (post-incision). In general Markov-based recurrence
analysis tends to extract less recurrence domains separated by long transitions.
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Fig. 6. Results for EEG signals obtained with spectrogram. Two colorbars below rep-
resent symbolic sequences obtained with entropy utility function (top) and Markov
utility function (bottom). In each symbolic sequence colors denote metastable states
and transient states show in beige.(a) Patient #1065 (pre-incision); (b) Patient #1065
(post-incision); (c) Patient #1099 (pre-incision); (d) Patient #1099 (post-incision).

In order to characterize the temporal structure, we compute the symbolic
sequences’ recurrence complexity, which are shown in Table 1. We observe that
the values of the various complexity measures are very similar in pre- and post-
incision data and close between patients. However complexities obtained with
entropy utility function reveal larger differences between experimental condi-
tions than between patients, whilst Markov utility function demonstrates larger
variation between patients than between the conditions. Since the time periods
of pre- and post-incision data are captured several minutes apart and hence
the corresponding data are uncorrelated, their similarity of complexity measures
is remarkable pointing out to a constant degree of complexity in each patient.
This is in line with the different complexity measures in both patients indicating
different complexity measures.



Complexity measure Entropy Markov

Pre-incision Post-incision Pre-incision Post-incision

Patient #1065

Alphabet size 7 12 8 9
Nr. of words 19 25 15 12
Lempel-Ziv 22 27 13 13

Patient #1099

Alphabet size 5 13 3 8
Nr. of words 15 28 5 20
Lempel-Ziv 16 40 6 20

Table 1. Complexity measures of EEG signals (spectrogram).

4 Discussion

The present work shows that recurrence analysis can be employed on univari-
ate time series if, at first, the data is transformed into its time-frequency rep-
resentation. This transform provides a multivariate time series whose number
of dimensions is equal to the number of frequency bins considered. We show
that the best time-frequency representation for the synthetic time series is the
spectrogram. We compare two approaches for estimation of optimal threshold
distance required in SRSA. We demonstrate that a model of system’s dynamics
can be easily incorporated in the method through a utility function. However, if
the model is not accurate the performance is worse. The recurrence structures
extracted can be represented by a symbolic sequence whose symbolic complexity
may serve as an indicator of the time series complexity. The EEG data analysis
performed in this study indicates that the symbolic complexity may serve as a
classifier to distinguish temporal structures in univariate time series.
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