
HAL Id: hal-01415996
https://hal.science/hal-01415996v2

Preprint submitted on 29 Dec 2016 (v2), last revised 15 May 2017 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

flan: An R Package for Inference on Mutation Models
Adrien Mazoyer, Rémy Drouilhet, Stéphane Despréaux, Bernard Ycart

To cite this version:
Adrien Mazoyer, Rémy Drouilhet, Stéphane Despréaux, Bernard Ycart. flan: An R Package for
Inference on Mutation Models. 2016. �hal-01415996v2�

https://hal.science/hal-01415996v2
https://hal.archives-ouvertes.fr


flan: An R Package for Inference on Mutation Models.

by Adrien Mazoyer, Rémy Drouilhet, Stéphane Despréaux, and Bernard Ycart

Abstract

This paper describes flan, a package providing tools for fluctuation analysis of mutant cell counts.
It includes functions dedicated to the distribution of final numbers of mutant cells. Parametric
estimation and hypothesis testing are also implemented, enabling inference on different sorts of data
with several possible methods. An overview of the subject is proposed. The general form of mutation
models is described, including the classical models as particular cases. Estimating from a model,
when the data have been generated by another, induces different possible biases, which are identified
and discussed. The three estimation methods available in the package are described, and their mean
squared errors are compared. Finally, implementation is discussed, and a few examples of usage on
real data sets are given.

1 Introduction

Mutation models are probabilistic descriptions of the growth of a population of cells, where mutations
occur randomly during the process. Data are samples of integers, interpreted as final numbers of
mutant cells. These numbers may be coupled with final numbers of cells (mutant and non mutant).
The frequent appearance in the data of very large mutant counts, usually called “jackpots”, evidences
heavy-tailed probability distributions. The parameter of interest is the mutation probability for a
mutant cell to appear upon any given cell division, denoted by π. In practice, π is typically of order
10−9–10−11. Computing robust estimates for π is of crucial importance in medical applications, like
cancer tumor relapse or multidrug resistance of Mycobacterium Tuberculosis for instance.

Any mutation model can be interpreted as the result of the three following ingredients:

• a random number of mutations occurring with small probability among a large number of cell
divisions. Due to the law of small numbers, the number of mutations approximately follows a
Poisson distribution. The expectation of that distribution, denoted by α, is the product of the
mutation probability π with the total number of divisions.

• from each mutation, a clone of mutant cells growing for a random time. Due to exponential
growth, most mutations occur close to the end of the experiment, and the developing time of a
random clone has exponential distribution. The rate of that distribution, denoted by ρ, is the
relative fitness, i.e. the ratio of the growth rate of normal cells to that of mutants.

• the number of mutant cells that any clone developing for a given time will produce. The
distribution of this number depends on the distribution of division times of mutants.

Using the theory of continous time branching processes [Bellman and Harris, 1952, Athreya and Ney,
1972], and under specific modeling assumptions, it can be proved that the asymptotic distribution of
the final number of mutants has an explicit form. A first mutation model with explicit distribution is
the well known Luria-Delbrück model [Luria and Delbrück, 1943]. Other mathematical models were
introduced by Lea and Coulson [1949], followed by Armitage [1952] and Bartlett [1978]. In these
models, division times of mutant cells were supposed to be exponentially distributed. Thus a clone
develops according to a Yule process, and its size at a given time follows a geometric distribution. The
distribution of final mutant counts is also explicit when division times are supposed to be constant.
This latter model is called Haldane model by Sarkar [1991]; an explicit form of the asymptotic
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distribution is given in Ycart [2013]. General division times have been studied by Ycart [2013], but
no explicit distribution is available appart from the exponential and constant division times.

The first estimation method was given by Luria and Delbrück [1943]. It is based on the simple
relation between the probability of null counts in the sample, and the mutation probability, and it
is called P0 method. Of course, if the sample does not contain null counts, the method cannot be
applied. Appart from the P0 method, all other methods couple the estimation of π or α, with the
estimation of ρ. When the distribution of final numbers has an explicit form, the Maximum Likelihood
(ML) is an obvious optimal choice [Ma et al., 1992, Zheng, 2005]. However, because of the jackpots,
likelihood computation can be numerically unstable. There are several ways to reduce tail effects
[Wilcox, 2012, Sec. 2.2], among which “Winsorization” consists in truncating the sample beyond
some maximal value. Another estimation method uses the probability generating function (GF)
[Rémillard and Theodorescu, 2000, Hamon and Ycart, 2012]. The estimators of α and ρ obtained
with the GF method proved to be close to optimal efficiency, with a broad range of calculability,
a good numerical stability, and a negligible computing time. For the three methods, P0, ML, and
GF, the estimators of α and ρ are asymptotically normal. Thus confidence intervals and p-values for
hypothesis testing can be computed, for one sample and two sample tests.

The problem with classical mutation models, is that they are based on quite unrealistic assump-
tions: constant final number of cells [Angerer, 2001, Komarova et al., 2007, Ycart and Veziris, 2014],
no cell deaths (Angerer [2001, Sec. 3.1]; Dewanji et al. [2005], Komarova et al. [2007], Ycart [2014],
or, as mentioned above, exponential distribution of division times. Using a model for estimation,
when the data have been generated by another one, necessarily induces a bias on estimates. For
instance, if cell deaths are neglected, mutation probability will be underestimated.

The package flan described here, is dedicated to mutation models, and parameter estimation with
the three methods P0, ML, and GF. It includes a set of functions for the distribution of mutant cell
counts (dflan, pflan, qflan, rflan) and a graphic function (draw.clone). They treat general models,
with fluctuating final numbers, cell deaths, and other division time distributions than exponential
and contant. The general estimation function is mutestim. It returns estimates for the parameters α,
π and ρ, with the three estimation methods, constant or exponential division times, and cell deaths.
As a wrapper, a hypothesis testing function (flan.test) is provided. In order to make the package
user-friendly, the functions have been designed to resemble classical R functions, like t.test or rnorm.

The paper is organized as follows. Section 2 is devoted to the probabilistic setting: the hypotheses
of the different models are described, and the asymptotic results are explained. In section 3, the
three estimation methods are exposed, and the biases described above are discussed. A comparison
of the three methods in terms of mean squared errors is provided. The user interface and the Rcpp
implementation is treated in section 4; examples of execution are shown in section 5.

2 Mutation models

In this section, probabilistic mutation models are described. The basic modeling hypotheses are the
following:

• at time 0 a homogeneous culture of n0 normal cells is given;

• the lifetime of any normal cell is a random variable with distribution function F ;

• upon completion of the generation time of a normal cell:

– with probability π one normal and one mutant cell are produced;

– with probability 1− π two normal cells are produced;

• the lifetime of any mutant cell is a random variable with distribution function G;

• upon completion of the lifetime of a mutant cell:

– with probability δ the cell dies out;

– with probability 1− δ two mutant cells are produced;

• all random variables and events (division times, mutations, and deaths) are mutually indepen-
dent.
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Consider that the initial number n0 tends to infinity, the mutation probability π = πn0 tends to 0,
and the time t = tn0 at which mutants are counted tends to infinity. The scale of time is supposed
to be adjusted so that the exponential growth rate of mutants is 1; thus the exponential growth rate
of normal cells is ρ. See Athreya and Ney [1972, Chap. IV Sec. 4] or Hamon and Ycart [2012]
for the definition of the growth rate (also called “Malthusian parameter”). The expected number of
mutations before tn0 is proportional to n0πn0eρtn0 , and the asymptotics are assumed to be such that
this number converges as n0 tends to infinity to α, positive and finite.

Under the above hypotheses, as n0 tends to +∞, the final number of mutants converges in law to
the distribution with PGF:

g(z) = exp (−α(1− h(z))) , (1)

with

h(z) =

∫ ∞
0

ψ(z, t)ρe−ρtdt , (2)

where ψ(z, t) is the PGF of the number of cells at time t in a mutant clone, starting from a single cell
at time 0. Observe that it depends on the lifetime distribution of normal cells F only through ρ. The
above result is deduced from the theory of continous time branching processes [Hamon and Ycart,
2012]). The expressions (1) and (2) translate the three ingredients described in the introduction:

1. the Poisson distribution with intensity α models the total number of mutations which occur
during the process;

2. the exponential distribution with rate ρ is that of the time during which a random clone develops;

3. the distribution with PGF ψ(·, t) is that of the number of cells in a random clone developing
during a time interval of length t. It is the solution of a Bellman-Harris equation [Bellman and
Harris, 1952] in terms of δ and G.

Hence the expressions of h as an exponential mixture, and of g as a Poisson compound.
The PGF (1) defines a parameterized family of distributions, denoted herafter by MM(α, ρ, δ,G)

(Mutation Model). This is a family of heavy-tailed distributions, with tail exponent ρ: the higher
the fitness, the heavier the tail. This directly influences the number and the amount of jackpots.

At this point, the PGF ψ can be given as an explicit expression only for two particular lifetime
distributions G: exponential, and Dirac (constant lifetimes). The corresponding mutation models will
be denoted respectively by LD(α, ρ, δ) (Luria-Delbrück), and H(α, ρ, δ) (Haldane). The functions
dflan, pflan, and qflan compute densities, probabilities, quantiles of LD and H distributions.

Assuming that a consistent estimator of α has been defined, the problem in practice is to compute
reliable estimates of the mutation probability π. The simplest approach assumes that the final number
of cells, denoted by N , is constant. An estimate of π is then obtained by dividing the estimate of
α by N . However, even under close experimental monitoring, assuming that the final number of
cells is a constant is quite unrealistic. Thus, N must be viewed as a random variable with a certain
probability distribution function K on [0,+∞). By analogy with (1), the conditional PGF of the
number of mutants given N = n, can be given by the following expression:

g (z |N = n) = exp (−πn(1− h(z))) .

Or else, the conditional distribution of the number of mutants given N = n is the distribution
MM(πn, ρ, δ,G). The distribution function K is supposed to be known and its Laplace transform is
denoted by L:

L(z) = E
[

e−zN
]

=

∫ ∞
0

e−zndK(n) ,

Thus the PGF of the final number of mutants is given by:

g(z) =

∫ ∞
0

g (z |N = n) dK(n) = L (π(1− h(z))) . (3)

Remark that if N is constant, (3) reduces to (1) with α = πN . In general, the PGF (3) defines a new
parametrized family of mutation distributions, denoted herafter by MMFN(π, ρ, δ,G,K) (Mutation
Models with Fluctuating Numbers of cells).
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The two particular cases for the distribution G previously mentioned above (exponential and
Dirac) will be denoted by LDFN(α, ρ, δ,K) (Luria-Delbrück with Fluctuating Nmbers of cells) and
HFN(α, ρ, δ,K) (Haldane with Fluctuating Numbers of cells). As will be shown in section 3, esti-
mating π by the ratio of an estimate of α by the expectation of N induces a negative bias.

The function rflan outputs samples of pairs (mutant counts–final counts) following MMFN
distributions where G is an exponential, Dirac, log-normal or gamma distribution, and K is a log-
normal or Dirac distribution.

3 Statistical inference

Here the three estimation methods P0, ML and GF are described. The main features and the
limitations of each method are discussed. The three methods compute estimates of α and ρ, under
the LD and H models. When couples (mutant counts–final numbers) are given, estimates of π and
ρ are calculated under the LDFN or HFN models.

Even if the probabilities and their derivatives with respect to δ for LD and H distributions can
be computed, the variations of the whole distribution as a function of δ are too small to enable
estimation in practice (see Ycart [2014] for more details). Thus, the parameter δ is supposed to be
known for the three methods.

In the rest of this section, the three estimators are described, their performances compared in
terms of MSE, and the possible sources of biases discussed.

3.1 Estimators

P0 estimator: The first method was introduced by Luria and Delbrück [1943] when δ = 0. In
that case, the probability of null counts in the sample is e−α. Hence α can be estimated taking the
negative logarithm of the relative frequency of zeros among mutant counts. Hence the method cannot
be applied if the sample does not contain null counts.

If δ > 0, the probability of null counts in the sample depends also on δ. Assuming δ < 1/2, a
fixed point of the PGF ψ(·, t) is the extinction probability of a mutant clone [Athreya and Ney, 1972,
Theorem 1, Chap.I]:

δ∗ =
δ

1− δ .

By definition, δ∗ is also a fixed point of the PGF (2). Then the probability of null counts in the
sample is e−α(1−δ∗). A consistent and asymptotically normal estimator of α is given by:

α̂0 =
− log (ĝ(δ∗))

1− δ∗
,

where ĝ denotes the empirical PGF of the final number of mutants. Remark that the P0 method
does not directly yield an estimator of ρ. If an estimate is desired, the ML method can be used for ρ
only, setting α = α̂0.

ML estimators: Since algorithms [Zheng, 2005, Hamon and Ycart, 2012, Ycart and Veziris, 2014]
enable to compute the probabilities of the LD, and H models, the ML method seems to be an obvious
choice. It can be used on two kinds of samples:

1. sample of mutant counts: In that case, the likelihood is computed with the probabilities of the
model LD or H. The parameter of interest is α.

2. sample of pairs of (mutant counts–final numbers): In that case, the likelihood is computed with
the probabilities of the model LDFN or HFN . The parameter of interest is π.

In both cases, ρ can also be estimated.
However, when the sample maximum is large, sums of products of small terms have to been

computed [Hamon and Ycart, 2012]. The procedure can be very long and numerically unstable.
Thus, the ML estimators can fail for large α and small ρ. In practice, this instability problem is
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avoided using Winsorization [Wilcox, 2012, Sec. 2.2], which consists in replacing any value of the
sample that pass a certain bound by the bound itself. The bound is 512 by default, and it could be
necessary to increase it. All information above the bound is lost, and in an extreme case where the
sample minimum is greater than the bound, irrelevant results will be returned.

GF estimators: The GF method uses the PGF to estimate the parameter of a compound Poisson
distribution [Rémillard and Theodorescu, 2000, Hamon and Ycart, 2012]. Let 0 < z1 < z2 < 1 and
z3 in (0 ; 1). The estimators of α and ρ are the following:

α̂GF (z3) =
log (ĝ(z3))

ĥ(z3)− 1
and ρ̂GF (z1, z2) = f−1

z1,z2(ŷ) ,

where ĝ denotes the empirical PGF of the final number of mutants, ĥ is the PGF (2) with ρ =
ρ̂GF (z1, z2), and:

fz1,z2(ρ) =
h(z1)− 1

h(z2)− 1
and ŷ =

log (ĝ(z1))

log (ĝ(z2))
.

From Rémillard and Theodorescu [2000], it can be proved that the couple of estimators (α̂GF , ρ̂GF ) is
strongly consistent and asymptotically normal, with explicit asymptotic variance [Hamon and Ycart,
2012].

The GF estimators depend on the three arbitrary values of z1, z2, z3. Those tuning parameters
are set to z1 = 0.1, z2 = 0.9, and z3 = 0.8. For more details about the choice of those values, see
Hamon and Ycart [2012].

In practice, the GF estimators are quite comparable in precision to ML estimators, with a much
broader range of calculability, a better numerical stability, and a negligible computing time, even in
case where the ML method fails. For that reason, we have chosen to initialize the ML optimization
by GF estimates, to improve both numerical stability and computing time.

The only practical limitation of this method is the following. A zero of the monotonous function
fz1,z2(ρ) − ŷ must be computed. An upper bound for the domain of research must be given, which
can be a problem if the sample does not contain jackpots. However in that case, a mutation model
is not adapted.

The function mutestim computes estimates and their respective standard deviations for α, π and
ρ according to the type of input. Moreover, the estimators mentioned here are asymptotically normal.
Thus, one and two sample tests can be performed, using the function flan.test. The null hypothesis
will be either fixed theoretical values of α, π, ρ in the one sample case, or a difference of the same in
the two sample case.

3.2 Comparison of the three estimators

The Figure 1 (drawn using ggplot2) shows a “map of usage” of the estimation methods. They are
compared in terms of the relative MSE of (α̂, ρ̂) defined as:√(

1− α̂

α

)2

+

(
1− ρ̂

ρ

)2

. (4)

The RGB code is used: red for GF, green for P0, blue for ML. Twenty values of α between 0.5 and
10, and as many values of ρ from 0.2 to 5, were chosen. Thus 400 couples were considered. For each
of them, the following procedure was applied:

1. draw 104 samples of size 100 of the LD(α, ρ, 0);

2. for each sample, compute ML, GF and P0 estimates of (α , ρ);

3. from the 104 estimates, compute the relative MSEs of each method;

4. assign a RGB color according to the MSEs. For each method:

• if the MSE is less than 0.05, assign 1 to the corresponding RGB component;

5



• if the MSE is greater than 1, assign 0 to the corresponding RGB component;

• else, assign 1 minus the MSE to the corresponding RGB component.

The map has been drawn with a log5-scale for ρ (y-axis). The map can be roughly divided into four

0.2

0.453

0.958

2.474

5

0.5 1.0 2.0 5.0 10.0
α

ρ

Comparison of the three estimation methods for alpha and rho

Figure 1: Map of usage of the estimation methods. The map compares the three methods according
to their relative MSE (4). For each of 400 couples of parameters α = 0.5 . . . 10 (x-axis) and ρ = 0.2 . . . 5
(y-axis, log5-scale), 104 samples of size 100 of the LD(α, ρ, 0) distribution were simulated. The estimates
of (α , ρ) were calculated with the three methods GF (red), P0 (green) and ML (blue).

distinct parts:

• For (α , ρ) ∈ (0.5 ; 3) × (0.2 ; 2.5), the color is essentially grey: the three methods are more or
less equivalent.

• For (α , ρ) ∈ (3 ; 10)× (0.2 ; 3.5), the color is magenta: the ML and GF methods are equivalent.
The P0 method provides estimates with large MSEs or cannot be used because of the absence
of null counts.

• For small values of ρ, the color is mainly red: The GF method is the only method with an
acceptable MSE. Small values of ρ induce large jackpots. Moreover, the number of jackpots
increases with α. Because of the winsorization, the ML and P0 method (which uses ML to
estimate ρ) provide estimates with very large MSEs.

• For ρ large, the color is darker and tends to black: the three methods provide estimates with
large MSEs, specially for ρ ∈ (3.5 ; 5), where jackpots are very small or absent. In those
cases, estimating ρ with the GF method is not possible in practice (see previous sub-section).
Consequently, the GF method will provide a biased estimate for α. The ML method, which
uses the GF estimates to initialize the optimization of the log-likelihood, also provides biased
estimates. The P0 method can provide good estimates of α whatever the value of ρ, which
explains the presence of green areas at the top of the map. In a case where no jackpots are
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present in the sample it should be considered that a (heavy tailed) mutation model is not
adapted.

The three methods should also be compared in terms of computational time. An illustration on
real data will be given in section 5. The slowest method is ML, for the reasons discussed in the
previous section. It is even slower when the estimates are calculated under Haldane models H or
HFN , when δ is positive, or if the initialization of ρ with the method GF fails. The method GF
computes estimates of α and ρ (when possible) in negligible time. The method P0 outputs estimates
of α in negligible time, but estimates of ρ are as slow as with ML.

3.3 Bias evidence

If the model used for the estimation does not correspond to the theoretical model, the estimates can
be biased. Three different sources of bias are considered:

1. the final counts are random in the data, constant for the estimation model;

2. cell deaths occur in the data, not in the estimation model;

3. the lifetime distribution is different in the data and the estimation model.

In each case, simulation experiments have been made along the following lines:

1. draw 10000 samples of size 100, under one model;

2. for each sample, compute ML estimates of α and ρ, using another model;

3. observe the empirical distribution of θ̂/θ, where θ̂ is the estimator and θ the true value.

Fluctuation of final counts: When N is constant, the estimate of π is derived by dividing
the estimate of α by N . As mentioned in previous section, if N is a random variable, the relation
between α and π can be explicit if the distribution K is known. However, this is not the case in
practice: estimates of the expectation and variance of N are usually available at best. Assume that
only the first two moments µ and σ2 of N are known. Then a first order approximation of the Laplace
transform L can be used to reduce the bias. This method is explained in Ycart and Veziris [2014] for
the P0 method. It has been adapted to ML and GF estimates. Figure 2 shows the influence of the
coefficient of variation C = σ/µ on the ML estimate of π. The estimates were calculated with three
different approaches:

• divide ML estimates of α by the empirical mean of N and ignore fluctuations of N (left boxplots);

• directly compute ML with the sample of pairs (mutant counts–final counts) (center boxplots);

• derive from ML estimates of α, taking into account of the empirical fluctuations of N (right
boxplots).

According to the visual observations, the efficiency of bias reduction decreases as α and C increase.
It could be improved with a better appproximation of L, that implies knowing or estimating higher
moments of N . Another solution is to improve the estimation of C. Here C was estimated by the
ratio of the empirical standard deviation of the empirical mean, which is known to be a bad method
in terms of MSE [Breunig, 2001].

Cell deaths: The PGFs (1), (3) and (2) depend on δ. Ignoring cell deaths involves a bias on the
estimate of α. Assuming the exact value is known, this bias is removed. Figure 3 shows the influence
of the death parameter δ on the ML estimate of α. The estimates are calculated with two different
approaches:

1. computing ML estimates of α with δ = 0 (left boxplots);

2. computing ML estimates of α with theoretical value of δ (right boxplots).
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Figure 2: Boxplots of ML estimates of π ignoring fluctuations of final numbers or not. For
each of the 9 sets of parameters π = (0.5/µ , 2/µ , 4/µ) (columns), and C = (0.2 , 0.4 , 0.6) (rows),
10000 samples of size 100 of the LDFN(π, ρ, 0,K) distribution were simulated, K being the Log-normal
distribution adjusted to mean µ = 109 and coefficient of variation C. The estimates of π were calculated
with the model LD. Each boxplot represents the distribution of the 10000 ratio π̂/π obtained with C = 0
(left), LDFN model (center), LD model with bias reduction (right).

The visual results show that the negative bias induced by ignoring cells death increases with
the value of δ. From the theory of branching processes, the growth process of a mutant clone is
supercritical and δ has to be smaller than 0.5. In practice δ is smaller than 0.3. According to the
boxplots, the relative bias induced by ignoring cell deaths can reach 0.80. These experiments illustrate
also the difficulty to estimate δ. For example, the boxplots at the top right of the figure seems to
show that the value of the likelihood for α = 4 and δ = 0 is very close to its value for α = 4 and
δ = 0.05.

Lifetime distribution: As mentioned earlier, the PGF h is explicit only for the LD and H
distributions, i.e. when lifetimes are either exponential or constant. This is not the case in practice.
If another lifetime distribution is used to simulate the data, and either LD or H are used to estimate
the parameters, a bias will be induced on α and ρ. Figure 4 illustrates these observations. It shows
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Figure 3: Boxplots of α ML estimates taking account or not of cell deaths. For each of the
9 sets of parameters α = (0.5 , 2 , 4) (columns), and δ = (0.05 , 0.1 , 0.2) (rows), 10000 samples of size
100 of the LD(α, 1, δ) distribution were simulated. The estimates of α were calculated under LD model.
Each boxplot represents the distribution of the 10000 ratio α̂/α of the estimates obtained without taking
account of cells death (left) and with the theoretical value of δ (right).

the influence of the lifetime distribution on the ML estimates of α and ρ. The samples are drawn
assuming the lifetimes are log-normally distributed. The estimates of α and ρ are calculated under
LD (left boxplots) and H models (right boxplots).

From the visual observations, the LD and H models can be seen as extreme values for the lifetime
distribution:

• the LD model correctly estimates α;

• the H model overestimates α. The bias seems to decrease as α increases;

• the LD model overestimates ρ and has a rather large dispersion of estimated values. The bias
seems to increase as α increases;

• the H model correctly estimates ρ.
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Figure 4: Boxplots of α and ρ ML estimates under LD and H models. Red horizontal lines
mark unit. For each of the 9 sets of parameters α = (0.5 , 2 , 4) (rows), and ρ = (0.8 , 1 , 1.2) (columns),
10000 samples of size 100 of the MM(α, ρ, 0, G) distribution were simulated, G being the Log-normal
distribution adjusted on Kelly and Rahn’s data [Kelly and Rahn, 1932]. The estimates of α and ρ were
calculated with the two distributions LD(α, ρ, 0) and H(α, ρ, 0). Each boxplot represents the distribution
of the 10000 ratio α̂/α and ρ̂/ρ obtained by the LD model (left) and the H model (right).

4 Implementation details

The available functions are described here; more details are given in the manual. The behavior of
inference functions for inputs which are out of practical limitations is described. Some details about
the Rcpp implementation are also provided.
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4.1 User interface

flan can be split into two distinct parts: the distribution of the final number of mutants, and statistical
inference. The functions dflan, pflan, qflan compute densities, probabilities and quantiles of LD
and H distributions. The function rflan outputs samples of pairs (mutant counts–final counts)
following LDFN , HFN , or MMFN where G is log-normal or gamma distribution and K is log-
normal or Dirac distribution. K is adjusted to the mean and coefficient of variation provided by the
user. Those functions have been designed on the principle of the classical distribution functions of
R. A graphic function draw.clone is also provided. It represents with a binary tree the growth of a
clone starting from a single normal cell with mutation occurrences until a finite time. The function
mutestim computes estimates of α or π and ρ, using LD or H models. The three estimation methods
are available. Fluctuations of final numbers and cells death are included. It returns estimate(s) of
the parameter(s) of interest and the standard deviations. The function flan.test uses asymptotic
normality to perform one or two sample hypothesis testing. It has been designed on the principle of
the classical hypothesis testing functions of R, such as t.test.

As mentioned in section 3, there are practical limitations for each estimation method. If the inputs
of the mutestim function do not respect those limitations, it will output errors or warning messages:

• If δ = 0, the P0 method can not be used if the sample does not contain any null counts. In that
case, the mutestim function will return an error message.

• Issues of the Winzorization parameter w of ML method:

1. If the minimum of the sample is larger than w, then the sample of mutant counts will be
constant.

2. If w is too large, then the optimization process can be very long.

3. In the mutestim function w is set at 512 by default.

• The GF method does not have limitations of usage, even for extreme cases where the ML
estimators fail, i.e. samples with theoretical large α and small ρ. However, estimating ρ requires
to solve the zero equation discussed in section 3, which is theoretically solvable on R+. In practice
the interval of research is bounded. Thus, if the sample does not contain any jackpots, which
means ρ is very large, the zero equation may not have solution on the interval. In that case,
the function will return a warning message, and set the estimate of ρ at 1, and the estimate of
the standard deviation at 0. In the mutestim function, the domain of research is [0.01 ; 100].

• Moreover, the initialization of the ML method is done with GF method. Then the domain of
optimization is [0.1× θ̂GF ; 10× θ̂GF ], where θ̂GF is the GF estimate(s) of the parameter(s) of
interest. Then, if the GF method does not success to estimate ρ, there is no chance to estimate
it with ML. A warning message is returned if the initialization of the estimate of ρ with GF
fails.

The function flan.test is a wrapper function of mutestim. It will ouput the same errors or warning
messages if its inputs do not respect the practical limitations.

4.2 Implementation

Since most functions involve loops that are more expensive in R than in C, flan has been implemented
with the package Rcpp [D.Eddelbuettel, 2013]. Rcpp modules are used. This paradigm provides
an easy way to expose C++ functions and classes to R. There are four main classes in the C++
implementation:

• FLAN Sim: random generation for MM and MMFN distributions. One of its members is a
variable of following type;

• FLAN SimClone: random generation for clone size distribution according to the lifetimes distri-
bution;

• FLAN MutationModel: computation of the descriptive functions (probabilities, PGF,...) for LD
and H distributions. One of its members is a variable of following type;
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• FLAN Clone: computation of the descriptive functions for clone size distribution according to
the lifetimes distribution.

The Rcpp interface enables also to import into the C++ code any R function. In particular, it is
interesting to import the R functions which are already implemented in C. Thus no external C/C++
library is required. The installation remains basic, and the size of the installed package is reduced.
For example, the computations of LD distributions involve numeric integrations. The C libraries
integration and alglib compute integrals with an accuracy close to machine precision. We could use
those libraries but the R function integrate is actually implemented in C. Then instead of importing
the C libraries, the R function is directly called into the C++ code. Computing the probabilities for
the H distribution with δ > 0 involves squaring high degree polynomials. Such polynomials are easily
treated by the package polynomial. However its implementation raises memory issues, because of
the degree of the polynomials involved. A more efficient way is to use the Fast Fourier Transform. It
is provided by the C library fftw3, which can raise some installation issues. Instead of importing it,
the R function fft is directly called into the C++ code.

Finally, likelihood optimizations in the ML and P0 methods are done with a bounded BFGS
optimizer. The package lbfgsb3 provides the eponymous function which is implemented in Fortran.
It is much faster than the basic R function optim.

5 Examples of usage

Some examples on the real data included in flan are provided. Practical limitations, influence of bias
sources and comparison of the estimation methods in terms of computational time are illustrated.

Consider first the eleventh sample of mutant counts of the werhoff data [Werngren and Hoffner,
2003]:

werhoff$samples$W11$mc

[1] 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 4 4 4 4 5 5

Denote it by W11. This sample does not contain any jackpot, then the theoretical fitness in a mutation
model, should be very large. If the GF method is used, it will output a warning message and set the
fitness at ρ = 1, as customarily done in the litterature [Foster, 2006]. It is possible to find a numeric
value for ρ, by enlarging the domain of research. The solution to the equation discussed in section 3 is
ρ′ = 833.4272. This value is quite unrealistic, indicating that the LD model is not adapted. However
the estimate of α cannot be the same for ρ = 1 and ρ = ρ′. Using mutestim function setting the value
of the input fitness enables to observe this difference. The GF estimate of α is α̂GF = 0.8792917
if ρ = 1, and α̂′GF = 2.207935 if ρ = ρ′. Using the P0 method is another way to realize that setting
ρ = 1 by default can be misleading. Since this method does not depend on the lifetime distribution,
the estimate of α will not depend on the value of ρ. The P0 estimate of α for W11 is α̂0 = 2.525729,
which is closer to α̂′GF than α̂GF .

Consider now the only sample which includes final counts, the eleventh of the david data [David,
1970]:

david$D11

$mc

[1] 4 0 1 0 1 0 0 0 0 0

$fn

[1] 1.3e+09 9.2e+08 1.3e+09 2.5e+09 1.3e+09

[6] 1.6e+09 1.3e+09 2.5e+09 2.5e+09 2.0e+09

Remark firstly that the 4 value can be seen as a jackpot, and the GF method can be used to estimate
α and ρ. Now let us compute the ML estimates of π and ρ taking into account or not of the final
counts, under the LD model. The sample of final counts is denoted by D

(FN)
11 . The empirical mean

of the final counts is denoted by µ, the empirical coefficient of variation by C. Table 1 displays these
estimates, in the same way as for Figure 2. Comparing the first row to the third, one can see that
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neglecting final number fluctuations induces a bias of order 5% on π, 10% on ρ. From the second
row, it turns out that the correction taking into account C, has not improved the estimate of π.

Using: π̂ML ρ̂ML

µ = µ, C = 0 2.067641 · 10−10 2.214676

µ = µ, C = C 2.094837 · 10−10 2.214676

D
(FN)
11 1.977135 · 10−10 2.048984

Table 1: Influence of fluctuations of final numbers on real data. Each row shows the estimates of
π and ρ, deducing from LD model with C = 0 (first row), C = C (second row), and directly with LDFN
model (third row).

Consider finally the data boeal [Boe et al., 1994]. Here the 23 samples are concatenated as
one (unlist(boeal)), and used to compare the three estimation methods in terms of computational
time. The package microbenchmark is used, evaluating 104 times each method on the sample. The
estimates of α and ρ are computed under the model LD with δ = 0. The results are shown on Figure
5, as boxplots of timing distributions. Times are in milliseconds and plotted on log-scale.
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Figure 5: Computational time of the three methods on real data. Data consist in the 23 samples
of boeal concatenated as one. For each method, the estimates of α and ρ have been computed under
model LD. The timings have been returned with microbenchmark, evaluating 104 times each method.
Times are in milliseconds and plotted on log-scale.

As mentioned earlier, the method ML is the slowest. The methods GF and P0 seem to be
equivalent in terms of computational time. However, the estimates of ρ of the P0 method is calculated
using the ML method. If only α has to be estimated, the P0 method is faster than the GF method.
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