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Abstract

When a robot is at a singular configuration, i.e. when the
Jacobian matrix of the system is not invertible, the classi-
cal control laws using the inverse or pseudo-inverse matrix
of the Jacobian cannot be used. Nevertheless some tra-
jectories can be followed with a finite input even along the
degenerate direction. These trajectories, namely the fea-
sible trajectories, are described and studied using the Sin-
gular Value Decomposition of the Jacobian matrix. This
decomposition allows also to describe and to design the
open loop control law which permits to leave the singular
position. In a similar way a closed loop control law is
given.

1 Introduction

The task of a robot is naturally described in the Carte-
sian space. The control is applied in the joint space.
The relation between the Cartesian and the joint coor-
dinates is given by the relation x(t) = f(q(t)), where
x = [x1 x2 . . . xn ] , q = [ q1 q2 . . . qn ] are respec-
tively the Cartesian coordinate of the end effector and
the joint coordinate. The study is limited to the non-
redundant robot. To define the joint velocity which is the
control, we use the velocity model: ẋ = J(q)q̇, where J(q)
is the Jacobian matrix of the function f . The functions ẋ
and q̇ take values in Rn.
The joint velocity q̇(t) may be obtained from the desired
velocity ẋ(t) using the relation:

q̇ = J+(q)ẋ, (1)

where J+(q) is the pseudo-inverse of the Jacobian matrix.
At a regular configuration J+(q) = J−1(q). A singular
configuration, or more simply a singularity, is a config-
uration q0 where the matrix J(q0) looses rank. In the
corresponding position in the Cartesian space some direc-
tions, namely the directions which lies outside the image
space of J , can not be followed using relation (1). The
directions which are orthogonal to Im J are called degen-
erate directions.
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Hence, relation (1) yields zero if the desired velocity is
along a degenerate direction. As a result, the robot stops
at the singularity. Nevertheless, as it has been shown by
many authors [1, 4, 5, 7], some motions of the robot effec-
tor are possible from the singularity along the degenerate
direction. Those motions are feasible trajectories (Carte-
sian path together with a timing law), i. e. trajectories
which may be generated by finite joint velocities. Our pur-
pose is to use the Singular Value Decomposition (SVD) of
the matrix J to describe the degenerate direction, to char-
acterize the feasible trajectories and to define the control
law at the singularity. This control law is calculated in
such a way that no discontinuity occurs.
In the first part of this paper we present an example
where, in a particular case, it is shown how to leave the
singularity along a feasible trajectory with a suitable con-
trol law. Then we give a presentation of the SVD. This
decomposition permits an analysis of feasible trajectories.
The last sections will be devoted to the calculation of the
control law using the singular values. In Section 4 the
main result is given: the open loop control law is ex-
pressed using the SVD in such a way that the control is
continuous at and near the singular position. The Section
5 is concerned with the closed loop control law: an ade-
quate gain is given. In the last section some simulation
results are discussed.
We consider a singular position with one degenerate di-
rection, the rank of J(q) at the singularity is n− 1.

2 Preliminaries

First we consider an example. It permits to see how the
method works in a particular case.

Example

Our example is taken from [2]. We consider a two ro-
tative joint planar robot with link lengths L1 = 1 and
L2 = r. The control inputs are the joint velocities w1 and
w2. The direct geometric relation between the Cartesian
coordinates and the joint coordinates is given by:{

x1 = cos q1 + r cos (q1 + q2)
x2 = sin q1 + r sin (q1 + q2).

(2)
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As q̇i = wi, differentiating (2) we get the velocity model:{
ẋ1 = −w1 sin q1 − r(w1 + w2) sin (q1 + q2).
ẋ2 = w1 cos q1 + r(w1 + w2) cos (q1 + q2).

(3)

When q1 = q2 = 0 we have a singularity. In this singular
configuration one has{

ẋ1 = 0
ẋ2 = (1 + r)w1 + rw2.

(4)

In the direction x1, at the singularity, no velocity can be
created. But the acceleration may be created using the
control w1 and w2:{

ẍ1 = −w2
1 − r(w1 + w2)2

ẋ2 = (1 + r)w1 + rw2.
(5)

If we assume a perfect tracking of a given trajectory ξ =
(ξ1, ξ2), then from (2) and (3) a simple calculation yields
to:

w1 =
rξ̇1 cos (q1 + q2) + (ξ2 − sin q1)ξ̇2

ξ2 cos q1 − ξ1 sin q1
,

w2 =
−ξ1ξ̇1 − ξ2ξ̇2

ξ2 cos q1 − ξ1 sin q1

(6)

out of the singularity.
At the singularity, the expression of w1 and w2 are inde-
terminated because sin q1 = 0 and (2) gives ξ2 = 0.
To leave the singularity we can choose a trajectory such
that the desired first Cartesian coordinate ξ1 satisfies the
following conditions:

ξ1(0) = 1 + r, ξ̇1(0) = 0, ξ̈1(0) = γ0 < 0.

Then one can take ξ1(t) = 1 + r + t2α(t), where α(t) is
a differentiable function which may be chosen such that
α(0) < 0 and according to the desired final condition at a
fixed time T . The initial time is t = 0.
From equation (2) we see that the second desired coor-
dinate may be written as: ξ2(t) = tβ(t) with a desired
continuous function β(t).
Taking into account the given desired trajectory (ξ1, ξ2)
and after some simplifications we get finite values for w1

and w2 at the singularity. Moreover the expression are
obtained by continuity. Indeed the functions sin q1, cos q1
and cos (q1 + q2) may be calculated from (2) via the de-
sired trajectory. The function sin q1 may be expressed
by sin q1 = ts(t) with a smooth function s(t) such that
s(0) 6= 0. Then from (6) and after a simplification of the
common factor t in the numerator and in the denomina-
tor, we get:

w1(t) =

r(2α(t) + tα̇(t)) cos (q1 + q2) + (tβ(t)− ts(t))β(t)

β(t) cos q1 − (1 + r + t2α(t))s(t)
,

w2(t) =

−(1 + r + t2α(t))(2α(t) + tα̇(t))− β(t)(β(t) + tβ̇(t))

β(t) cos q1 − (1 + r + t2α(t))s(t)
.

We can see that no more indetermination occurs at t = 0.
Hence, the control is well-defined at the singularity:

w1 =
2rα(0)

β(0) + (1 + r)s(0)
,

w2 =
−2α(0)(1 + r)− β2(0)

β(0) + (1 + r)s(0)
.

In other words, for the given feasible trajectory, it is pos-
sible to calculate the corresponding control law.

The simplifications made here are very particular.
What is the situation in a more general case, this will
be the main subject of this paper. In order to see how the
control law may be calculated in a more general case, we
use the SVD.

The Singular Value Decomposition

The SVD is a powerful tool in several domains (cf. [6, 10]).
Our purpose is to use this decomposition for the matrix
J(q) in order to describe degenerate direction and to com-
pute the needed control law in a singular configuration
along a degenerate direction. The matrix J may be de-
composed as follows:

J = UΣV ∗, Σ = diag [σ1, . . . , σn ] ,

the matrices U = [u1 u2 . . . un ] and V =
[ v1 v2 . . . vn ] are unitary, σi are taken in decreasing
order, σn being the smallest singular value. The vectors
ui and vi, i = 1, . . . , n are the eigenvectors of matrices
JJ∗ and J∗J respectively. The matrices U, V and Σ de-
pend on q(t). At the studied singularity, t = 0, we have
σn = 0, σi > 0 for i < n according to our assumption that
rank deficiency of J is 1. At the singularity we denote
the corresponding values of U and V by U(0) and V (0),
instead of U(q(0)) and V (q(0)) since no confusion occurs.
The corresponding column vectors are ui(0) and vi(0).
The degenerate direction is given by the vector un(0).

3 Feasible Trajectories

Here we give an analysis of the feasible trajectories using
the SVD. Let us make a change of variables. Let us put
ẏ = U∗(0)ẋ. Then ẏ = U∗(0)Jw, where w = q̇ is the con-
trol. Hence, ẏn = u∗n(0)Jw. At the singularity, ẏn(0) = 0.
Let L(q) be the row vector u∗n(0)J(q). That is ẏn = Lw.
By differentiating, we get

ÿn = L̇w + Lẇ = w∗∂Lw + Lẇ,

where

∂L =
∂L

∂q
=
[ ∂lj
∂qi

]n
i,j=1

,

lj being the components of L. At the singularity L = 0
and then ÿn(0) = w∗(0)∂L(0)w(0).
From the velocity model and using the SVD, at the sin-
gularity, w may be expressed as

w(0) = J+(0)ẋ(0) + zvn(0),

where z is an arbitrary scalar and J+(0) = J+(q(0)). This
yields to

ÿn(0) = az2 + ẋ∗(0)Bz + ẋ∗(0)Cẋ(0), (7)
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with well-defined constants a,B and C:

a = v∗n∂Lvn, B = J+∗(∂L+ ∂L∗)vn, C = J+∗∂LJ+,

calculated at t = 0. The feasible trajectories in the de-
generate direction may be calculated from (7).

Proposition 3.1 If a 6= 0, a trajectory is feasible along
the degenerate direction. The desired acceleration may be
chosen according to the sign of a.

Proof. For a desired trajectory along the degenerate
direction, ẋ(0) is orthogonal to Im J and then J+ẋ(0) = 0.
This implies that ÿn(0) = az2. Hence, there exists z which
allows to choose ÿn(0) if this value has the same sign as
a. So, there exists a control giving this acceleration.

An analogous result may be obtained for the projection
of the acceleration on the degenerate direction. A simple
calculation shows that the feasible trajectories are such
that:

ÿn(0) ≥ − (ẋ∗(0)B)2 + 4aẋ∗(0)Cẋ(0)

4a
if a > 0,

ÿn(0) ≤ − (ẋ∗(0)B)2 + 4aẋ∗(0)Cẋ(0)

4a
if a < 0.

Proposition 3.2 If a = 0 a trajectory along the degen-
erate direction is not feasible with a non-zero initial ac-
celeration.

Proof. If a = 0 one can choose ÿn(0) only if ẋ∗(0)B 6= 0.
This implies ẋ∗J+∗(0) 6= 0 and then the tangent of the
feasible trajectories are not along the degenerate direc-
tion.

If a = 0 and ẋ∗(0)B = 0 the acceleration cannot be cho-
sen. For C 6= 0, it is imposed by the desired trajectory.
If C = 0 the acceleration is zero along the degenerate di-
rection for all possible trajectories. In this special case,
we have to calculate the third derivative along the degen-
erate direction and to study the possibility of a choice of
a jerk along the degenerate direction. The approach de-
veloped here may be extended in an analogous way. For
more details see [1].

4 Open Loop Control Law

Several methods were proposed to design a control law in
a singular configuration. In [4] and [8], a motion in the
kernel of J is proposed, however, if a 6= 0 those solutions
are not very satisfying. Other authors define the control
law near the singularity [3, 9] or only on the singularity
[12].
Our method gives the control law on and near the singu-
larity without discontinuity.
We consider the case a 6= 0. The other cases may be con-
sidered also in an analogous way.
Suppose that a desired sufficiently smooth feasible trajec-
tory is given: x(t) = ξ(t). Let us put η̇n(t) = u∗n(0)ξ̇(t).
As the initial velocity along the degenerate direction is
zero, η̇n(0) = 0, one can take η̇n(t) = tα(t). The function
α(t) is defined by

α(t) =
η̇n(t)

t
, t > 0;

α(0) = lim
t→+0

α(t) = η̈n(0).

By construction α(t) is continuous. Under a smoothness
condition, the same considerations may be used to write
the smallest singular value σn and the corresponding vec-
tor un. We have σn(t) = tβ(t), where β is defined by:

β(t) =
σn(t)

t
, t > 0;

β(0) = lim
t→+0

β(t) = σ̇n(0),

and un(t) = un(0) + tun(t), where un(t) is defined by:

un(t) =
un(q(t))− un(0)

t
, un(0) = u̇n(t).

Let us denote by ω the vector V ∗w. Then we have the
following result.

Theorem 4.1 Assume that σ̇n(0) 6= 0. Then the fol-
lowing control law permits to leave the singularity along
the degenerate direction with the desired trajectory ξ(t):
w = V ω, with

ωi(t) =
u∗i (q(t))ξ̇(t)

σi(t)
, i < n, t ≥ 0, (8)

ωn(t) =
u∗n(q(t))ξ̇(t)

σn(t)
, t > 0,

ωn(0) =
α(0) + u∗n(0)ξ̇(0)

β(0)
.

Proof. For t > 0, one has ξ̇ = UΣV ∗w = UΣω, and
then ω = Σ−1U∗ξ̇, which gives

ωi(t) =
u∗i (q(t))ξ̇(t)

σi(t)
, i = 1, . . . , n, t > 0.

At t = 0 the control is defined by continuity. For i <
n, one has σi(0) 6= 0 and then we obtain (8). In order
to define ωn(0), we use the special form of σn and ηn
introduced at the beginning of this section. This gives

ωn(t) =
tα(t) + tu∗n(t)ξ̇(t)

tβ(t)
=
α(t) + u∗n(t)ξ̇(t)

β(t)
.

Hence, as t→ 0, we obtain

ωn(0) =
α(0) + u∗n(0)ξ̇(0)

β(0)
.

The control is then given by w = V ω.

If the smoothness assumptions are satisfied, which is the
case for a large class of systems, the given open loop con-
trol permits to leave the singularity and no discontinuity
occurs. Note that this assumption may be checked via
the calculation of ∂σ

∂q
. The condition σ̇n(0) 6= 0 is sat-

isfied if the trajectory is feasible with a non zero initial
acceleration. In fact we need that σn(t) is not identically
zero in a neighborhood of 0, this means that the desired
feasible Cartesian trajectory is at a regular position for
t > 0. If the desired trajectory is at a singular position
for all t ≥ 0, then one can use the pseudo-inverse to track
this trajectory because this one belong to the image of J
(see [11]).
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5 Closed Loop Control Law

The open loop permits a perfect tracking of a trajectory
but needs an exact knowledge of the model and of the
current configuration and joint velocity. In fact some er-
rors may occur. In this situation we can use a closed loop
control law. This control law, at regular position, may
be derived by: w = J−1 (ξ −K(ξ − x)) , where ξ is the
desired trajectory, x is the real trajectory and the gain K
is defined as follows:

K(t) = U(0) diag [ k1, k2, . . . , kn ] U∗(0),

with constant ki, i < n and kn(t) given by:

kn(t) =

{
ct 0 ≤ t < T
cT t ≥ T.

This expression of the scalar gain kn is chosen such that
at a singular configuration kn(0) = 0. The assumption
that the desired velocity along the degenerate direction
vanishes at t = 0 is necessary to define the control law.
In the same way we have to assume that the projection
of K(ξ − x) along the degenerate direction also vanishes
and the design of kn is made in order to satisfy this as-
sumption.
A simple calculation yields to an explicit expression of
the control law near and at the singularity. Recall that
w = V ω and ω is expressed, for all 0 ≤ t ≤ T , as follows:

ωi(t) =
u∗i (q(t))

(
ξ̇(t) +K(t)(ξ(t)− x(t))

)
σi(t)

, i < n,

ωn(t) =
α(t) + u∗n(t)ξ̇(t)

β(t)
+

cu∗n(0) (ξ(t)− x(t)) + u∗n(t)K(t) (ξ(t)− x(t))

β(t)
.

For t > T , as the configuration is not singular, the classi-
cal closed loop control law can be used.

6 Simulation

The proposed control has been tested in simulation for
the two link robot of our example above. The parameters
are L1 = L2 = 1. Its initial (singular) position is in full
extension: q1 = q2 = 0. The desired motion is along the
degenerate direction. At t = 0 the velocity is zero and the
acceleration is not zero. Setting in our example α(t) = −1
and β(t) = 0 for all t ≥ 0 we can calculate the needed
control law for this desired trajectory: ξ1(t) = 2− t2 and
ξ2(t) = 0. Without initial error the open loop control law
gives a very good tracking of the desired trajectory. The
Cartesian errors are near zero.
If some error occurs in the initial joint position, say q1 = 0
and q2 = 10−3 radians, a Cartesian error exists if we use
the open loop control law. Using the closed loop control
law, we can reduce the Cartesian errors and we obtain a
very good tracking of the desired trajectory.

7 Conclusion

Using the Singular Value Decomposition, we gave a gen-
eral framework for the analysis of the feasible trajectories
and the design of the open loop control law in a singular
configuration. This method can also be developed in order
to reach a singularity by a feasible trajectory which ends
at a singular configuration. Moreover the given method is
also used to define a closed loop control law with a time-
varying gain. This control law is usefull because some
errors may occur in the initial joint position for example.
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