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Integrals of spherical harmonics with Fourier exponents in multidimensions

We consider integrals of spherical harmonics with Fourier exponents on the sphere S n , n ≥ 1. Such transforms arise in the framework of the theory of weighted Radon transforms and vector diffraction in electromagnetic fields theory. We give analytic formulas for these integrals, which are exact up to multiplicative constants. These constants depend on choice of basis on the sphere. In addition, we find these constants explicitly for the class of harmonics arising in the framework of the theory of weighted Radon transforms. We also suggest formulas for finding these constants for the general case.

Introduction

We consider the integrals

I m k (p, ρ) def = S n Y m k (θ)e iρ(p,θ) dθ, p ∈ S n , ρ ≥ 0, n ≥ 1, (1) 
where

{Y m k | k ∈ N ∪ {0}, m = 1, a k,n+1
} is orthonormal basis of spherical harmonics on S n ⊂ R n+1 (see e.g. [START_REF] Morimoto | Analytic functionals on the sphere[END_REF], [START_REF] Stein | Introduction to Fourier analysis on Euclidean spaces[END_REF]), a k,n is defined as follows:

a k,n+1 = n + k k + n + k -2 k -2 , a0,n = 1, a1,n = n, (2) 
where

n k = n! k!(n -k!)
, n, k ∈ N ∪ {0}.

(3)

We recall that spherical harmonics {Y m k } are eigenfunctions of the spherical Laplacian ∆ S n and the following identity holds (see e.g. [START_REF] Morimoto | Analytic functionals on the sphere[END_REF], [START_REF] Stein | Introduction to Fourier analysis on Euclidean spaces[END_REF]):

∆ S n Y m k = -k(n + k -1)Y m k , m = 1, a k,n+1 , (4) 
where a k,n is defined in (2). Integrals I m k arise, in particular, in connection with iterative inversions of the weighted Radon transforms in dimension d = n + 1 = 2; see [START_REF] Kunyansky | Generalized and attenuated Radon transforms: restorative approach to the numerical inversion[END_REF]. In addition, an exact (up to multiplicative coefficient depending on k) analytic formula for (1) was given in [START_REF] Kunyansky | Generalized and attenuated Radon transforms: restorative approach to the numerical inversion[END_REF] 

for d = n + 1 = 2, k = 2j, j ∈ N ∪ {0}.
We recall that weighted Radon transform operator RW is defined (in dimension d = n + 1) as follows (see e.g. [START_REF] Goncharov | An analog of Chang inversion formula for weighted Radon transforms in multidimensions[END_REF], [START_REF] Kunyansky | Generalized and attenuated Radon transforms: restorative approach to the numerical inversion[END_REF]):

RW f (s, θ) def = xθ=s W (x, θ)f (x) dx, s ∈ R, θ ∈ S n , ( 5 
)
where W is the weight function on R n+1 × S n , f is a test-function. The present work is strongly motivated by the fact that integrals I m k also arise in the theory of weighted Radon transforms defined by (5) for higher dimensions d = n + 1 ≥ 3. This issue will be presented in detail in the subsequent work [START_REF] Goncharov | Iterative inversion of weighted Radon transforms in 3D[END_REF].

On the other hand, in [NPF + 06] integrals I m k were considered for the case of n = 2 in connection with vector diffraction in electromagnetic theory and exact analytic formulas were given for this case.

In addition, for the case of dimension n = 2 more general forms of integrals I m k were considered in the recent work [A13]. In particular, the results of [A13] coincide with the results of the present work for the case of dimension n = 2.

In the present work we prove that

I m k (p, ρ) = c(m, k, n)Y m k (p)ρ (1-n)/2 J k+ n-1 2 (ρ), (6) 
where Jr(•) is the r-th Bessel function of the first kind, c(m, k, n) is a constant which depends on indexes m, k of spherical harmonic Y m k and on dimension n; see Theorem 1 in Section 2. This result is new for the case of d = n + 1 = 2 for odd k and for d = n + 1 > 3 in general. In the framework of applications to the theory of weighted Radon transforms, integrals I m k arise for the case of even k = 2j, j ∈ N ∪ {0}; see formula (7) of [START_REF] Kunyansky | Generalized and attenuated Radon transforms: restorative approach to the numerical inversion[END_REF] for n = 1 and subsequent work [START_REF] Goncharov | Iterative inversion of weighted Radon transforms in 3D[END_REF] for n ≥ 2. For k = 2j we find explicitly the constants c(m, 2j, n) arising in (6); see Theorem 1 in Section 2.

It is interesting to note that the constants c(m, 2j, n) are expressed via the eigenvalues of the Minkowski-Funk transform M on S n , where operator M is defined as follows (see e.g. [START_REF] Funk | Über Flächen mit lauter geschlossenen geodätischen Linien[END_REF], [START_REF] Gel'fand | Selected topics in integral geometry[END_REF]):

M[f ](p) = S n , (θp)=0 f (θ) dθ, p ∈ S n , ( 7 
)
where f is an even test-function on S n ; see Section 2 for details.

In Section 3 we give proofs of Theorem 1 and Remark 1.

Main results

Theorem 1. Let I i k (p, ρ) be defined by (1). Then: (i) The following formulas hold:

I m k (p, ρ) = c(m, k, n)Y m k (p)ρ (1-n)/2 J k+ n-1 2 (ρ), (8) 
I m k (p, -ρ) = (-1) k I m k (p, ρ), (9) 
p ∈ S n , ρ ∈ R+ = [0, +∞),
where Jr(ρ) is the standard r-th Bessel function of the first kind, c(m, k, n) depends only on integers m, k, n for fixed orthonormal basis {Y m k }. (ii) In addition, for k = 2j, j ∈ N ∪ {0}, the following formulas hold:

c(m, 2j, n) = 2 (n-1)/2 πΓ j + n 2 λj,n Γ j + 1 2 , ( 10 
)
λj,n = 2(-1) j √ π Γ(j + 1 2 ) Γ(j + 1) n-1 , ( 11 
)
where c(m, k, n) are the constants arising in (8), Γ(•) is the Gamma function, λj,n are the eigenvalues of the Minkowski-Funk operator M defined in (7).

In the case of n = 1, k = 2j formulas (8)-( 9) arise in formula (7) of [START_REF] Kunyansky | Generalized and attenuated Radon transforms: restorative approach to the numerical inversion[END_REF]. In the case of n = 2 formulas (8)-( 9) and constants c(m, k, n) for general k were given in formula (1) of [NPF + 06].

We didn't success to find in literature the explicit values for the eigenvalues λj,n of operator M defined in (15) for n > 2.

In particular, formulas (8)-( 11) are very essential for inversion of weighted Radon transforms; see [START_REF] Kunyansky | Generalized and attenuated Radon transforms: restorative approach to the numerical inversion[END_REF] for n = 1 and the subsequent work [START_REF] Goncharov | Iterative inversion of weighted Radon transforms in 3D[END_REF] for n ≥ 2.

Remark 1. Let c(m, k, n) be the constant arising in (8) and function Φ(k, n) be defined as follows:

Φ(k, n) def = a k,n+1 m=1 c(m, k, n), ( 12 
)
where a k,n+1 is defined in (2). Then function Φ(k, n) does not depend on the particular basis of spherical harmonics {Y m k } for fixed k, n.

Proofs

Proof of formula (8)

From the Funk-Hecke Theorem (see e.g. [START_REF] Morimoto | Analytic functionals on the sphere[END_REF], Chapter 2, Theorem 2.39) it follows that:

S n Y m k (θ)e iρ(pθ) dθ = Y m k (p)c m k (ρ), m = 1, a k,n+1 . (13) 
Formula (8) follows from (13), the following differential equation:

1 ρ n d dρ ρ n dc m k dρ + 1 - µ k,n ρ 2 c m k = 0, c m k (0) = 0 for k ≥ 1, (14) 
µ k,n = k(n + k -1), (15) 
where function c m k (ρ) arises in the right hand-side of (13), and from the fact that the solution of equation ( 14) with indicated boundary condition is given by the formula:

c k m (ρ) = c(m, k, n)ρ (1-n)/2 J k+ n-1 2 (ρ), (16) 
where c(m, k, n) is some constant depending on integers m, k, n; Jr(ρ) is the r-th Bessel function of the first kind (see e.g. [START_REF] Temme | Special functions: An introduction to the classical functions of mathematical physics[END_REF]). Formulas (13), (16) imply formula (8).

It remains to prove that formulas ( 14)-( 16) hold. First, we prove that formulas ( 14), (15) hold.

We recall that Laplacian ∆ in R n+1 in spherical coordinates is given by the formula:

∆u = 1 ρ n ρ n d dρ u + 1 ρ 2 ∆ S n u, ρ ∈ (0, +∞), ( 17 
)
where u is a test function.

From formulas (1), (4), ( 13), ( 17) it follows that

∆I m k (p, ρ) = Y m k (p) 1 ρ n d dρ ρ n dc m k dρ - µ k,n c m k ρ 2 , ( 18 
)
where µ k,n is defined in (15). On the other hand,

∆I m k (p, ρ) = S n Y m k (θ)∆e iρ(pθ) dθ = - S n Y m k (θ) |θ| 2 e iρ(pθ) dθ = -I m k (p, ρ), p ∈ S n , ρ ≥ 0. (19) 
Formulas ( 14), (15) follow from (1), ( 18), (19). In particular, the boundary condition in (14) follows from orthogonality of {Y m k } on S n and the following formulas:

I m k (0, p) = S n Y m k (θ) dθ = 0, k ≥ 1, vol(S n )c, k = 0 , (20) 
Y 1 0 (p) = c = 0, p ∈ S n , (21) 
where I m k is defined in (1), vol(S n ) denotes the standard Euclidean volume of S n . Next, formula (16) is proved as follows. We use the following notation for fixed k, m:

y(t) = c m k (ρ), t = ρ ≥ 0. ( 22 
)
Using differential equation ( 14) and the notations from ( 22) we obtain:

ty ′′ (t) + ny ′ (t) + t - µ k,n t y(t) = 0, y(0) = 0, for k ≥ 1. ( 23 
)
In order to solve (23) we make the following change of variables:

y(t) = t (1-n)/2 Z(t), t ≥ 0. ( 24 
)
Formula (24) implies the following expressions for y ′ (t), y ′′ (t) arising in (23):

y ′ (t) = 1 -n 2 t -(1+n)/2 Z(t) + t (1-n)/2 Z ′ (t), (25) 
y ′′ (t) = (n 2 -1) 4 t -(1+n)/2 Z(t) t + (1 -n)t -(1+n)/2 Z ′ (t) + t (1-n)/2 Z ′′ (t), t ≥ 0, (26) 
where Z(t) is defined in (24). Using formulas (23), ( 25), (26) we obtain:

tZ ′′ (t) + Z ′ (t) + t - k + n-1 2 2 t Z(t) = 0, t ≥ 0. ( 27 
)
Differential equation ( 27) for unknown function Z(t) is known as Bessel differential equation of the first kind with parameter k + (n -1)/2 ∈ R (see e.g. [START_REF] Temme | Special functions: An introduction to the classical functions of mathematical physics[END_REF]). The complete solution of ( 27) is given by the following formula:

Z(t) = C1J k+ n-1 2 (t) + C2Y k+ n-1 2 (t), t ≥ 0, (28) 
where Jr(t), Yr(t) are r-th Bessel functions of the first and second kind, respectively, C1, C2 are some constants; see e.g. [START_REF] Temme | Special functions: An introduction to the classical functions of mathematical physics[END_REF]. Boundary condition in (23) implies that

Z(t) = C1J k+ n-1 2 (t), t ≥ 0. (29) 
Formulas ( 22), ( 24), (29) imply that ( 16) is the complete solution of (23). Formula (8) is proved.

Proof of formula (9)

Formula (9) follows from definition (1) and the following property of the spherical harmonic Y m k :

Y m k (-θ) = (-1) k Y m k (θ), θ ∈ S n . ( 30 
)
Property (30) reflects the fact that

Y m k (θ) = Y m k (θ1, . . . , θn+1
) is a homogeneous polynomial of degree k restricted to S n . Formula (9) in Theorem 1 is proved.

Proof of formulas (10), (11)

Formula (10) follows from orthonormality of {Y m k } (in the sense of L 2 (S n )), from formulas (1), ( 8), ( 9), the following formula:

M[Y m 2k ] = λ k,n Y m 2k (31)
and from the following identities:

S n Y m 2k (p) dp +∞ -∞ I m 2k (p, ρ) dρ = 2c(m, 2k, n) S n |Y m 2k (p)| 2 dp +∞ 0 J 2k+ n-1 2 ρ (1-n)/2 dρ (32) = 2c(m, 2k, n) +∞ 0 J 2k+ n-1 2 ρ (1-n)/2 dρ = c(m, 2k, n) 2 (3-n)/2 Γ( 1 2 + k) Γ(k + n 2 ) , S n Y m 2k (p) +∞ -∞ I m 2k (p, ρ) dρ = 2π S n Y m 2k (p) dp S n Y m 2k (θ)δ(pθ) dθ (33) = 2π S n Y m 2k (p)M[Y m 2k ](p) dp = 2πλ k,n S n |Y m 2k | 2 (p) dp = 2πλ k,n , where c(m, 2k, n) arises in (8), δ = δ(s) is 1D Dirac delta function, Y m k is the complex conjugate of Y m k , M[Y m k ] is defined in (7), λ k,n is given in (11), Γ(•)
is the Gamma function. Formula (31) reflects the known property of the Funk-Minkowski transform M that the eigenvalue λ k,n of operator M[•] defined in (7) corresponds to the eigensubspace of harmonic polynomials of degree 2k on R n+1 restricted to S n (see e.g. [START_REF] Gel'fand | Selected topics in integral geometry[END_REF], Chapter 6, p. 24). Note that, in [START_REF] Gel'fand | Selected topics in integral geometry[END_REF] it was proved that formula (31) holds also for all harmonic polynomials in R 3 (i.e. n = 2) restricted to S 2 , however these considerations admit a straightforward generalization to the case of arbitrary dimension n ≥ 1.

Formulas (32), (33) imply formula (10). Now, it remains to find the explicit value for λ k,n in formula (31). We obtain it according to [GGG03] (Chapter 2, page 24), where the case of dimension n = 2 was considered.

In particular, formula (31) holds for any homogeneous harmonic polynomial P 2k of degree 2k in R n+1 , where P 2k is restricted to the sphere S n ⊂ R n+1 ; see [START_REF] Gel'fand | Selected topics in integral geometry[END_REF] (Chapter 2).

We consider the following harmonic polynomial in R n+1 :

P 2k (x) = P 2k (x1, . . . , xn+1) = (xn + ixn+1) 2k , x ∈ R n+1 . ( 34 
)
From formula (34), aforementioned results of [START_REF] Gel'fand | Selected topics in integral geometry[END_REF] (Chapter 6) and their generalizations to the case of arbitrary dimension n ≥ 1 it follows that P 2k being restricted to sphere S n is an eigenfunction of operator M which corresponds to the eigenvalue λ k,n .

We consider the spherical coordinates in R n+1 given by the following formulas: Formulas (34), (35) imply that polynomial P 2k being restricted to S n may be rewritten as follows:

P 2k | S n = P 2k (θn, θn-1, . . . , θ1, φ) = e i2kφ n i=2 sin 2k (θi), (36) 
where (θn, . . . , θ1, φ) are the coordinates on S n according to (35).

From formulas in (34), ( 35), (36) it follows that:

P 2k | S n = P 2k (π/2, . . . , π/2, 0) = 1. ( 37 
)
From formulas (31), ( 37), (36) we obtain:

λ k,n = M[P 2k ](π/2, . . . , π/2, 0) = 2(-1) k n i=2 π 0 sin 2k (θi) dθi = 2(-1) k √ π Γ(k + 1 2 ) Γ(k + 1) n-1 , (38) 
which implies (11). Formulas (10), (11) are proved.

Proof of Remark 1

The statement of the remark follows from the following formulas:

a k,n+1 m=1 c(m, k, n) = ρ (1-n)/2 J k+ n-1 2 (ρ) -1 a k,n+1 vol(S n ) S n S n P k,n (pθ)e iρ(pθ) dp dθ, (39) 
ρ ≥ 0 such that ρ (1-n)/2 J k+ n-1 2 (ρ) = 0, (40) 
P k,n (σθ) = vol(S n ) a k,n+1 a k,n+1 m=1 Y m k (σ)Y m k (θ), σ, θ ∈ S n , (41) 
where a k,n+1 is defined in (2), vol(S n ) denotes the standard Euclidean volume of S n , Y m k is the complex conjugate of Y m k , P k,n (t), t ∈ [-1, 1] is a Gegenbauer's polynomial defined by the formula (see [START_REF] Morimoto | Analytic functionals on the sphere[END_REF]):

P k,n (t) def = (-1) k 2 k Γ( n 2 ) Γ(k + n 2 ) 1 (1 -t 2 ) n-2 2 d k dt k (1 -t 2 ) k+ n-2 2 , k ∈ N ∪ {0}, n ≥ 2, (42) 
where Γ(•) is the Gamma function.

The integrand in dp dθ in the right hand-side of (39) is independent of basis {Y m k }, which implies the statement of Remark 1.

It remains to prove that formulas (39), (41) hold, where P k,n (t), t ∈ [-1, 1] is defined in (42). Formula (41) is proved in [Mor98] (Chapter 2), which is also the known property of Gegenbauer's polynomials.

From formulas (1), (8), (41) it follows that: 

where {Y m k } is the orthonormal basis of spherical harmonics on S n , P k,n (t), t ∈ [-1, 1] is defined in (42). Formulas (41), (43) imply formula (39). Remark 1 is proved.
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  x1 = cos(θn), x2 = sin(θn) cos(θn-1), • • • (35) xn = sin(θn) sin(θn-1) • • • sin(θ2) cos(φ), xn+1 = sin(θn) sin(θn-1) • • • sin(θ2) sin(φ), θn, θn-1, • • • , θ2 ∈ [0, π], φ ∈ [0, 2π).
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  ρ)Y m k (p) dp = S n S n P k,n (pθ)e iρ(pθ) dθ dp = ρ (1-n)/2 J k+ n-1 )| 2 dp, = ρ (1-n)/2 J k+ n-1 2 (ρ) vol(S n ) a k,n+1 a k,n+1m=1c(m, k, n).