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Abstract

We consider integrals of spherical harmonics with Fourier exponents on the sphere S, n > 1. Such
transforms arise in the framework of the theory of weighted Radon transforms and vector diffraction in elec-
tromagnetic fields theory. We give analytic formulas for these integrals, which are exact up to multiplicative
constants. These constants depend on choice of basis on the sphere. In addition, we find these constants
explicitly for the class of harmonics arising in the framework of the theory of weighted Radon transforms.
We also suggest formulas for finding these constants for the general case.

1 Introduction

We consider the integrals

) / Y (0)e” P g, p € S, p > 0,n > 1, (1)

sn

where {Y;™ |k € NU{0}, m = T, ax,nt1} is orthonormal basis of spherical harmonics on ™ C R™"! (see e.g.
[Mor98], [SW16]), ak,r is defined as follows:

k k—2
Ak, n+1 = <n: > + <n—£2 >7 ao,n = 17 A1,n =N, (2)

<Z> :k!(%k!),n,kem{oy 3)

We recall that spherical harmonics {Y;*} are eigenfunctions of the spherical Laplacian Agn and the
following identity holds (see e.g. [Mor98], [SW16]):

where

Asn,Ykm = 7['{)(11 + k- 1)Ykm, m = 1, Ak n+1, (4)

where ay,, is defined in (2).

Integrals I}" arise, in particular, in connection with iterative inversions of the weighted Radon transforms
in dimension d = n + 1 = 2; see [Kun92]. In addition, an exact (up to multiplicative coefficient depending
on k) analytic formula for (1) was given in [Kun92] ford=n+1=2, k =2j, j € NU{0}.

We recall that weighted Radon transform operator Rw is defined (in dimension d = n + 1) as follows
(see e.g. [GN16], [Kun92]):

Rw f(s,0) < / W(z,0)f(z)dz, s € R, § € S", (5)

zh=s

where W is the weight function on R™™! x S", f is a test-function.

The present work is strongly motivated by the fact that integrals I} also arise in the theory of weighted
Radon transforms defined by (5) for higher dimensions d = n + 1 > 3. This issue will be presented in detail
in the subsequent work [Gonl6].

On the other hand, in [NPF*06] integrals I;* were considered for the case of n = 2 in connection with
vector diffraction in electromagnetic theory and exact analytic formulas were given for this case.

In addition, for the case of dimension n = 2 more general forms of integrals I;* were considered in the
recent work [A13]. In particular, the results of [A13] coincide with the results of the present work for the
case of dimension n = 2.
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In the present work we prove that
I (p, p) = c(m, k,n)Y{" ()p" 2T, s (), (6)

where J;.(-) is the r-th Bessel function of the first kind, ¢(m, k,n) is a constant which depends on indexes
m, k of spherical harmonic Y;" and on dimension n; see Theorem 1 in Section 2.

This result is new for the case of d =n + 1 = 2 for odd k£ and for d =n + 1 > 3 in general.

In the framework of applications to the theory of weighted Radon transforms, integrals ;) arise for the
case of even k = 2j, j € NU {0}; see formula (7) of [Kun92] for n = 1 and subsequent work [Gonl16] for
n > 2. For k = 2j we find explicitly the constants c¢(m,2j, n) arising in (6); see Theorem 1 in Section 2.

It is interesting to note that the constants c¢(m, 2j, n) are expressed via the eigenvalues of the Minkowski-
Funk transform M on S", where operator M is defined as follows (see e.g. [Ful3], [GGGO03]):

M(f)(p) = / f(6)d6, peS™, (1)
Sm, (6p)=0

where f is an even test-function on S™; see Section 2 for details.
In Section 3 we give proofs of Theorem 1 and Remark 1.

2 Main results

Theorem 1. Let Ii(p,p) be defined by (1). Then:
(i) The following formulas hold:
I (p, p) = c(m, k,n)Y{" () p" "2,y i (), (8)
pe Sn7 pe Ry = [07+OO)7

where Jr(p) is the standard r-th Bessel function of the first kind, c(m, k,n) depends only on integers m, k, n
for fized orthonormal basis {Y;"}.
(i) In addition, for k = 23, j € NU {0}, the following formulas hold:

200 =D2AT (54 2) Ny
L(+3) ’

c(m, 2j,n) = (10)

(11)

where c(m, k,n) are the constants arising in (8), I'(-) is the Gamma function, \j» are the eigenvalues of the
Minkowski-Funk operator M defined in (7).

In the case of n = 1, k = 2j formulas (8)-(9) arise in formula (7) of [Kun92]. In the case of n = 2
formulas (8)-(9) and constants c(m, k,n) for general k were given in formula (1) of [NPF06].

We didn’t success to find in literature the explicit values for the eigenvalues A; , of operator M defined
in (15) for n > 2.

In particular, formulas (8)-(11) are very essential for inversion of weighted Radon transforms; see [Kun92]
for n =1 and the subsequent work [Gonl6] for n > 2.

Remark 1. Let c¢(m,k,n) be the constant arising in (8) and function ®(k,n) be defined as follows:

Ak nt1
®(k,n) < c(m, k,n), (12)

m=

-

where agn+1 is defined in (2). Then function ®(k,n) does not depend on the particular basis of spherical
harmonics {Y;"} for fized k,n.

3 Proofs

3.1 Proof of formula (8)
From the Funk-Hecke Theorem (see e.g. [Mor98], Chapter 2, Theorem 2.39) it follows that:

/Ykm(t‘))ei”(pe) df = Yi" (p)ei' (p), m =1, aknt1. (13)



Formula (8) follows from (13), the following differential equation:

1 d ndep Hkn \ m m
p_"d_p<p d—p>+<17 p2 >Ck =0, ¢ (O)zOforkzl, (14)

where function ¢}’ (p) arises in the right hand-side of (13), and from the fact that the solution of equation
(14) with indicated boundary condition is given by the formula:

Cfn(p) = C(m7k7n)p(1_n)/2‘]k+"7*1(p)7 (16)
where c¢(m, k,n) is some constant depending on integers m, k,n; J-(p) is the r-th Bessel function of the first
kind (see e.g. [Temll]).

Formulas (13), (16) imply formula (8).

It remains to prove that formulas (14)-(16) hold. First, we prove that formulas (14), (15) hold.

We recall that Laplacian A in R™™! in spherical coordinates is given by the formula:
Au=— <pndU)+ L Asnu p € (0,400) (17)
= -5 oS, ) )
" dp p?

where u is a test function.
From formulas (1), (4), (13), (17) it follows that

m _ m ii nﬁ _ Nk,nc;gn
AL (p,p) = Y (p) (pn o (p ap ) ) (18)

where pig,p, is defined in (15).
On the other hand,

AIT (pp) = [ Y (0)2670 do

sn

_ / Y™ (6) 162 €°0 df = I (p, p), p € S, p > 0. (19)
S’VL

Formulas (14), (15) follow from (1), (18), (19). In particular, the boundary condition in (14) follows from
orthogonality of {Y;"} on S™ and the following formulas:

0,k>1
I'O0,p)= [ Y, (0)do=< " — 7 , 20
e (0.2) / & () {Vol(S")c,k—O (20)
STL
YOI(P) =cC 75 07 pE Sn7 (21)

where I} is defined in (1), vol(S™) denotes the standard Euclidean volume of S™.
Next, formula (16) is proved as follows.
We use the following notation for fixed k, m:

y(t) = ¢ (p) t = p > 0. (22)

Using differential equation (14) and the notations from (22) we obtain:
ty" (t) +ny'(t) + (t - ,u;;_n) y(t) =0, y(0)=0, for k> 1. (23)
In order to solve (23) we make the following change of variables:
y(t) =t Z(t), t > 0. (24)

Formula (24) implies the following expressions for 3'(t), y”(t) arising in (23):

1—n

Yy (t) = M2 7)1 12 72 (1), (25)

2 —
Y (1) = Lﬂt—(1+n)/2@ (1= 7 ) 25 g s (26)

where Z(t) is defined in (24).
Using formulas (23), (25), (26) we obtain:

tZ"(t) + Z'(t) + <t — w) Z()=0,t>0. (27)



Differential equation (27) for unknown function Z(t) is known as Bessel differential equation of the first kind
with parameter k+ (n—1)/2 € R (see e.g. [Tem11]). The complete solution of (27) is given by the following
formula:

Z(t) = Crdyy aa (8) + CoY, s (1), £ 20, (28)

ragt
where J-(t), Y-(t) are r-th Bessel functions of the first and second kind, respectively, C1,C5 are some con-
stants; see e.g. [Tem11]. Boundary condition in (23) implies that

Z(t) = C1J, (), t>0. (29)

sagt
Formulas (22), (24), (29) imply that (16) is the complete solution of (23).

Formula (8) is proved.

3.2 Proof of formula (9)
Formula (9) follows from definition (1) and the following property of the spherical harmonic Y;":
Vi (=0) = (-1)"Yi"(6), 6 e S™. (30)

Property (30) reflects the fact that Y;"(0) = Y;*(61,...,0n+1) is a homogeneous polynomial of degree k
restricted to S™.
Formula (9) in Theorem 1 is proved.

3.3 Proof of formulas (10), (11)

Formula (10) follows from orthonormality of {Yy™} (in the sense of L*(S™)), from formulas (1), (8), (9), the
following formula:

MY5i] = ApnYar (31)
and from the following identities:
+o0 too
/@(p) dp / I3k (p, p) dp = 2c(m, 2k, n) / Y35 (p)|*dp / Ty nzapt ™ 2dp (32)
sn —o00 Sig 0
+oo
= 2¢(m, 2k, n) / J2k+n_71p(17")/2dp
2
0
2B=m/2p(L k)
— 2 - “r2
c(m, 2k, n) T D) ,
+oo
[7w) [ 50 do=2n [V db [ v @600 a0 ()
gn “o0 sn gn

= 2n [ VEOIMYRI) dp = 2000 [ 1V P 0)dp
sn sn

= 27 Akn,

where c(m, 2k,n) arises in (8), § = &(s) is 1D Dirac delta function, Y;™ is the complex conjugate of Y},
M[Y;"] is defined in (7), Ak, is given in (11), I'(+) is the Gamma function.

Formula (31) reflects the known property of the Funk-Minkowski transform M that the eigenvalue Ak,
of operator M|-] defined in (7) corresponds to the eigensubspace of harmonic polynomials of degree 2k on
R™! restricted to S™ (see e.g. [GGGO3], Chapter 6, p. 24). Note that, in [GGG03] it was proved that
formula (31) holds also for all harmonic polynomials in R (i.e. n = 2) restricted to S?, however these
considerations admit a straightforward generalization to the case of arbitrary dimension n > 1.

Formulas (32), (33) imply formula (10).

Now, it remains to find the explicit value for A, in formula (31). We obtain it according to [GGGO03]
(Chapter 2, page 24), where the case of dimension n = 2 was considered.

In particular, formula (31) holds for any homogeneous harmonic polynomial Pay of degree 2k in R™"!,
where Py is restricted to the sphere S® C R™!; see [GGGO03] (Chapter 2).

We consider the following harmonic polynomial in R™*:

ng(x) = ng(xl, ... 7xn+1) = (mn + i$n+1)2k, S Rn+1. (34)

From formula (34), afforementioned results of [GGGO03] (Chapter 6) and their generalizations to the case of
arbitrary dimension n > 1 it follows that P being restricted to sphere S™ is an eigenfunction of operator
M which corresponds to the eigenvalue Ay .



We consider the spherical coordinates in R"*! given by the following formulas:

x1 = cos(6r),

x2 = sin(0,) cos(0n-1),

(35)
Zn = sin(6y) sin(Op—1) - - - sin(f2) cos(o),
Znt1 = sin(6y,) sin(0r,—1) - - - sin(62) sin(¢),
On, On_1,--- ,02 € [0771'], ¢ € [07271')4
Formulas (34), (35) imply that polynomial Py being restricted to S™ may be rewritten as follows:
Poglsn = Pag(On, On1,...,01,¢) = e ][ sin®* (6,), (36)
where (0n, ..., 601,¢) are the coordinates on S™ according to (35).
From formulas in (34), (35), (36) it follows that:
P2k|gn:ng(ﬂ/2,4“771'/2,0):14 (37)
From formulas (31), (37), (36) we obtain:
Aeyn = M[Pog](m/2,...,7/2,0) = 2(— kH/sm 0;
=2
F(k+ l) n—1
—9(_1)k 2
—2(-1) [\/%MH)] , (39)
which implies (11).
Formulas (10), (11) are proved.
3.4 Proof of Remark 1
The statement of the remark follows from the following formulas:
= (1-n)/2 U agnt1 9)
= —n n ip(p
> elm ko) = (o0 0 (0) e, / / Pen(p0)e'”®”) dp do), (39)
m=1 sn sn
p > 0 such that p(lfn)/QkaLLq (p) #0, (40)
2
vol(S™) e my NG n
Pyn(00) = —"2 > ¥i"(0)Y;"(0), 0,0 € S", (41)
Ak, n+1 m—1

where @41 is defined in (2), vol(S™) denotes the standard Euclidean volume of S™, Y;™ is the complex

conjugate of V", Pi.n(t), t € [-1,1] is a Gegenbauer’s polynomial defined by the formula (see [Mor98]):

ef (=1DF T(3 1 d”

Pk,n(t) = ( k) (2)n n—2 _k(
2 F(k+ 5) (1_t2)T dt

1 )" ke NU{0}, n > 2, (42)

where I'(+) is the Gamma function.

The integrand in dpdf in the right hand-side of (39) is independent of basis {Y;"}, which implies the
statement of Remark 1.

It remains to prove that formulas (39), (41) hold, where Py ,(¢), t € [—1,1] is defined in (42).

Formula (41) is proved in [Mor98] (Chapter 2), which is also the known property of Gegenbauer’s poly-
nomials.

From formulas (1), (8), (41) it follows that:

1 n A n+1
VO S Z /Ik D, p Ym dp //Pkn p9 lﬁ(p(’)d(gdp
Ak, n+1 m—
S’Vl S’Vl
_ I(s™) !
= (V2SS ) [ )P,
kt=5 Ok,n+1
m=1 sn
ny Gk,nt1
 emy2 vol(S™)
=p Jk+"§1(p) Aknt1 = clm. k) .

where {Y;7"} is the orthonormal basis of spherical harmonics on S™, Py ,(t), t € [—1,1] is defined in (42).
Formulas (41), (43) imply formula (39).
Remark 1 is proved.



4 Aknowledgments

The present work was fulfilled in the framework of research conducted under the direction of Prof. R. G.

Novikov.
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