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Abstract: Benchmark calculations provide a large amount of information that can be very useful in
assessing the performance of density functional approximations, and for choosing the one to use.
In order to condense the information some indicators are provided. However, these indicators might
be insufficient and a more careful analysis is needed, as shown by some examples from an existing
data set for cubic crystals.
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1. Introduction

An increase in computing power has allowed the replacement of personal experience with
databases (see for instance [1–6]). In the realm of density functional theory, these have become
a valuable tool for both tuning and tailoring new methods (see [7–10] for recent examples) and,
in particular, to assess the performance of density functional approximations [5,11,12]. Ultimately,
benchmarks should help computational chemists in choosing the best method to be adopted in a new
study. However, the large amount of available data requires synthetic and reliable indicators [13–15]
capable of providing a ranking based on the quality of the approach. Unfortunately, these indicators
do not always give the necessary information, so one has to go back to the database and analyze the
data according to the objectives of the study.

Some examples are given below, where indicators might lead to erroneous conclusions:

1. choosing the method giving the best results for two properties, A and B;
2. choosing the method giving the best results for property B, knowing that property A is

well described.

Benchmark calculations for density functionals on some cubic crystals, provided in [16], will be
used as a concrete example.

It is not the purpose of this paper to rank density functionals, or to advise for or against any of
the density functionals cited here: the questions raised are not connected to any specific functional.
Their names appear only in order to facilitate reading and enable reproducibility.
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2. When Condensed Information Is Not Sufficient

2.1. Setting the Problem

Consider two methods, X and Y: method X is “better” than method Y for each of the properties
A and B taken separately. Should method X be chosen

1. when good results are needed for both property A and property B?
2. when it is guaranteed (it can be checked) that A is well described, but good results for property B

are also needed?

The rapid answer would be to use the method X for both (1) and (2). However, after a brief
reflection, it becomes evident that the information provided by the indication that X is better for A
and B separately is not sufficient.

2.2. Two Properties Simultaneously Needed

In order to formalize the problem, let us call the set of systems in the benchmark database, S.
The total number of systems is N(S). A subset SM,P gives “good” results with method M ∈ (X, Y)
for property P ∈ (A, B). The number of elements in SM,P is N(SM,P). The probability of obtaining a
“good” result with method M for property P is given by pM,P = N(SM,P)/N(S). We say that method
X is “better” than Y for property P when N(SX,P) > N(SY,P), or pX,P > pY,P.

We now consider the case where M = X is better than M = Y both for P = A, and P = B.
This is schematically represented in Figure 1 by disks corresponding to the subsets SM,P. The color
of the disks correspond to the properties (blue for property A, orange for property B). The disks in
the left panel, corresponding to M = X, are larger than in the right panel, corresponding to M = Y,
indicating that N(SX,P) > N(SY,P). However, we do not have any information about the intersection
S(M, A) ∩ S(M, B), the number of cases when properties A and B are both well described using
method M. We cannot exclude that method X gives “better” results for a larger number of systems
N(SX,P) > N(SY,P) and for A and B separately, but that the number of systems for which the results
are better both for A and B is smaller for X than for Y: N(SX,A ∩ SX,B) < N(SY,A ∩ SY,B). A similar
result is obtained for the probabilities

pX,A∩B =
N(SX,A ∩ SX,B)

N(S)
<

N(SY,A ∩ SY,B)

N(S)
= pY,A∩B

This is schematically represented in Figure 1 where the overlap of the disks, corresponding to
the sets SX,A ∩ SX,B (left panel) is smaller than that corresponding to SY,A ∩ SY,B (right panel). In such
a case, when “good” results are desired for both properties, A and B, it is better choose method Y,
although method X was better when analyzing each property separately.

To be more specific, let us consider data for cubic crystals given in [16], and choose as A the lattice
constants (LC) , and as B the bulk moduli (BM). We consider a method to be “good”, if it reproduces
the lattice constants within 3 pm, and bulk moduli within 3 GPa. The probabilities of obtaining “good”
results with three different density functional approximations ( i.e., LDA [17,18], PBEsol [19] and
HISS [20,21]) are given in Table 1.
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Figure 1. Diagrammatic explanation that method X can be better than method Y for property A and
property B when taken separately, but method Y is better when both A and B are needed. Blue disks:
cases when the method works well for property A; orange disks: cases when the method works well
for property B; (left) method X; (right) method Y.

Table 1. Probability that a given method gives “good” results for the lattice constants pM,LC, for the
bulk moduli pM,BM, and for both of them pM,LC∩BM. The uncertainty on all reported values, estimated
by the Agresti–Coull formula [22], is about 0.1 for a data set of size 28.

Method pM,LC pM,BM pM,LC∩BM pM,BM|LC

LDA 0.54 0.29 0.21 0.40
PBEsol 0.61 0.36 0.21 0.35
HISS 0.79 0.39 0.21 0.27

HISS gives the best results both for LC and BM. PBEsol comes next and the local density
approximation is the worst. However, when we consider the performance for both LC and BM,
LDA, PBEsol, and HISS perform equally. Note that the success probability is rather low.

We would like to stress that the numbers presented in the tables are only to indicate that the
effects discussed here can show up. The size of the data set is too small to allow conclusions about the
quality of the functionals.

The probability of obtaining a reliable result with method M is not pM,A∩B as indicated above,
but is the probability of obtaining a good result for B given that the result for A is good

pM,B|A =
N(SM,A ∩ SM,B)

N(SM,A)

Now the reference set is not the full set of data, S, but the subset of results reliable for A, SM,A.
Using the same example as above, we find now that pM,BM|LC increases from HISS to PBEsol, and to
LDA (Table 1), in reverse order of the probability obtained for LC and BM individually.

Remark 1. The problem presented in this paper is related to the lack of positive correlation between the errors
made when computing different properties [23]. In the example given in Table 1, the rank correlation coefficients
between the errors for lattice constants and bulk moduli are: −0.51 (LDA), −0.24 (PBEsol) and −0.65 (HISS).

3. Improving the Quality of the Approximations Reduces the Risk of Unreliable Selection

The risk of such unpleasant surprises as presented above comes from the low quality of
the approximations: in the limiting case when one of the method gives perfect agreement for
both properties and the other does not, there is no doubt about which method to choose. In the
following we will use a simple approach to improve the performance of the approximations and repeat
the analysis made above.
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The previous section uses the results directly provided by density functional approximations.
A careful analysis of the data reveals that the parametrizations were not good enough to eliminate
systematic errors. Having an exact density functional would obviously solve the problems presented
above. An efficient way to correct, at least partially, errors of the actual density functionals is to apply
a statistical correction, e.g., as a linear transformation [16,24,25]. This correction is a technique to
eliminate the main part of the systematic errors, a necessary step to evaluate prediction uncertainty [16].

We now use corrected methods and evaluate their performance on the basis of prediction uncertainty,
as reported in [16]. For the same methods as above, one can estimate the success probabilities reported
in Table 2. One sees that the success probability has notably increased for LC and is slightly less for
BM. In this group, HISS is not the best method for LC anymore, although it still is for BM.

Table 2. Probability that a given method gives “good” results for lattice constants pM,LC,
for bulk moduli pM,BM, and for both of them pM,LC∩BM. The uncertainty on all reported values,
estimated by the Agresti–Coull formula [22], is about 0.1 for a data set of size 28. Results are obtained
using corrected methods.

Corrected Method pM,LC pM,BM pM,LC∩BM pM,BM|LC

LDA 0.79 0.32 0.25 0.32
PBEsol 1.00 0.46 0.46 0.46
HISS 0.89 0.54 0.46 0.52

Comparing PBEsol and HISS with LDA individually we notice that the joint and conditional
probabilities preserve the supremacy of both “best” methods for individual properties. With PBEsol,
as LC is perfect the error only comes from BM. Joint and conditional probabilities become equal
to pBM. With one property perfect, the error of the other determines everything. For HISS, LC is not
so good, but BM is better, so the joint probabilities are not worse than for PBEsol and the conditional
probabilities are even better than for PBEsol.

4. Conclusions

The wealth of methods available, e.g., density functional approximations, require a selection to be
made prior to undertaking a study. This can be made based on benchmark data sets. However, the
information condensed from such data sets can be misleading and should be adapted to the study for
which the method is chosen.

If a benchmark provides the information that a method X is better than a method Y for
some properties A, B, . . . it does not necessarily mean that the method X is better when these properties
are all needed for a given study. In other words, the probability of obtaining a “good” result for each
of the properties is not the same as the probability of obtaining a “good” result for all the properties.
Similarly, when a property can be tested and only systems that pass this test are considered, the
statement that a given method is superior to the other methods for each of the properties is insufficient
for choosing a functional for the remaining properties. Numerical results from existing benchmarks
show that such situations can appear.

The solution to these problems is relatively simple, but one has to go back to the full set of
data used in the benchmark and construct the measure relevant to the project. Unfortunately, this is
not always possible: benchmarks are not always constructed using the same set of molecules for
different properties.

A final remark: although we used “probabilities” to obtain a “good” result in this paper, confusions
such as those indicated here can show up also for other measures rating the quality of an approximation.
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