

Kinetic study of dehydration of $MgSO_4$ -6H₂O for seasonal heat storage by composite of sorption

Okrimenko Larysa⁽¹⁾, Favergeon Loïc⁽¹⁾, Kuznik Frédéric⁽²⁾, Johannes Kevyn⁽²⁾, ⁾ Pijolat Michèle⁽¹⁾ ⁽¹⁾ École des Mines, SPIN-EMSE, CNRS: UMR5307 LGF, F-42023 Saint Etienne ⁽²⁾ L'Institut National des Sciences Appliquées de Lyon, CETHIL, (UMR 5008), F-69621, Villeurbanne

Solution

zeolite@ MgSO₄ composite [2,3]:

- Heat of hydration
- **Energy density**

Objectifs

- Kinetic study of dehydration/hydration of MgSO₄
- **Determination of reaction mechanisms**
 - Analysis of coupled phenomena: kinetics (adsorption +

en Rhône-Alpes Génie des Procédés

3000

Conclusions

Localized water

- MgSO₄ hydrate is non-stoichiometric of water
- Rate controlled by diffusional resistance through a thin film at the surface, diffusion coefficient is P_{H2O} and T dependent

van't Hoff law:

Contact larysa.okhrimenko@emse.fr

• Activation energy $E_A = 102.3 \text{ kJ.mol}^{-1}$

Outlooks

- Characterization of porous matrix and composites
- Kinetic modeling zeolite@MgSO₄ composite

Références: [1] ADEME 2015 [2] G. Whiting, D. and all, Solar Energy Materials & Solar Cells (2013). [3] S. Hongois, Ph.D. thesis, INSA of Lyon (2011).

Novembre 2016

Journée scientifique