
HAL Id: hal-01415653
https://hal.science/hal-01415653v1

Submitted on 13 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Flexible SoC and Its Methodology for Parser-Based
Applications

Bertrand Le Gal, Yérom-David Bromberg, Laurent Réveillère, Jigar Solanki

To cite this version:
Bertrand Le Gal, Yérom-David Bromberg, Laurent Réveillère, Jigar Solanki. A Flexible SoC and Its
Methodology for Parser-Based Applications. ACM Transactions on Reconfigurable Technology and
Systems (TRETS), 2016, 10 (1), pp.4. �10.1145/2939379�. �hal-01415653�

https://hal.science/hal-01415653v1
https://hal.archives-ouvertes.fr

12

A flexible SoC and its methodology for parser-based applications

Bertrand LE GAL, CNRS IMS Laboratory, Bordeaux INP, University of Bordeaux, France
Yérom-David Bromberg, University of Rennes 1 /IRISA, France
Laurent Réveillère, LABRI, University of Bordeaux, France
Jigar Solanki, LABRI, University of Bordeaux, France

Embedded systems are being increasingly network interconnected. They require to interact with their en-
vironment through text-based protocol messages. Parsing such messages is control-dominated. The work
presented in this article attempts to accelerate message parsers using a codesign-based approach. We pro-
pose a generic architecture associated to an automated design methodology that enables a SoC/SoPC system
generation from high-level specifications of message protocols. Experimental results obtained on a Xilinx
ML605 board show acceleration factors ranging from 4 to 11. Both static and dynamic reconfigurations of
coprocessors are discussed then evaluated so as to reduce the system hardware complexity.

Categories and Subject Descriptors: Hardware [Electronic design automation]: Hardware-software code-
sign

General Terms: Codesign, Hardware accelerators, Protocol parsers, Latency performance, Reconfigurability

Additional Key Words and Phrases:

ACM Reference Format:
ACM Trans. Embedd. Comput. Syst. 0, 1, Article 12 (January 2014), 22 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Embedded systems are increasingly required to interact either altogether or sepa-
rately with legacy infrastructures to provide advanced services to end-users. This kind
of communication between heterogeneous entities requires a protocol to manage their
interactions. Traditionally, due to their highly constrained resources, embedded sys-
tems have used non-standard, application-specific, binary protocols where message
parsing and parser construction are simple [Upender and Koopman 1994]. Since the
use of non-standard protocols complicates the interaction with other systems, standard
text-based protocols are currently preferred. For example, the SIP protocol is massively
used in sensor networks [Krishnamurthy 2006] and mobile ad-hoc networks [Banerjee
et al. 2007; Stuedi et al. 2007] where both computation performance and energy are
limited.

Standard text-based protocol message parsers consume up to 25% of the network
application time [Wanke et al. 2007]. Message parsers are typically software imple-
mented as Finite State Machines (FSM), using a low-level language such as C to
provide efficiency. Developing such parsers is still a challenging task, particularly
when considering embedded system constraints. Automatic approaches such as Gapa
[Borisov et al. 2007] and Zebu [Burgy et al. 2011] have been proposed to automatically
generate a C implementation of the parsing automata from a high-level specification of
a protocol. To the best of our knowledge, existing methodologies focus only on software
code generation and have not yet explored the use of a dedicated hardware.

In the next generation of Internet (NgN) billions of devices related to various appli-
cation domains such as aerospace, telecommunications, health-care, automotive, home
automation, etc., have to smoothly interact with each other. To concretize the NgN, it
is required to parse messages efficiently while saving Central Processing Unit cycles
(CPU), memory and energy, which would maximize the resource constrained device’s
lifetime. To this end, implementing message parsers as FSM using a dedicated hard-
ware architecture - acting as a coprocessor unit - should be an adequate choice com-

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 12, Publication date: January 2014.

12:2 B. Le Gal et al.

pared to a software-based implementation. A dedicated architecture can be designed
specifically to execute multiple computations in parallel in one processor clock cycle.
Moreover, conditional jumps, which are massively used in FSM’s software implemen-
tation, are processed in one clock cycle without pipeline break penalties. Finally, a
hardware-based FSM requires a lower operating clock frequency to reach the same
performance than its software counterpart, thus it consumes less energy.

Nevertheless, developing a network application based on parallel processing hard-
ware parsers is a challenging task which requires not only a hardware design and
integration expertise, but also a substantial knowledge of the protocols involved, and
an understanding of low-level network programming (e.g. sockets). When treated sep-
arately, these issues are hard to manage which explains the difficult challenge to over-
come when developing a hardware protocol message parser that addresses all of them
at once. In this paper, we propose a flexible co-design based architecture able to effi-
ciently parse message streams. Moreover, we provide a complete methodology to im-
plement efficient network applications for all kinds of resource constrained devices as
encountered in the NgN. As such, our approach targets both Systems on Chip (SoC)
and Systems on Programmable Chip (SoPC). From a high level protocol description, it
generates both the Register Transfer Level (RTL) descriptions of the hardware based
network message processing components and the software codes that enable their use
in a network application. Generated hardware components run as coprocessors on top
of a generic hardware platform. The generated software codes include both: (i) appli-
cation source code template to be completed by developers, and (ii) generated software
drivers that manage the generated hardware coprocessors. The contributions of this
paper are as follows:

— We have designed an efficient and flexible SoC architecture for message parsing ap-
plications handling: (a) multiple hardware coprocessors working in parallel (attached
like an arithmetic unit to the processor core), and (b) the deployment of network
software applications. The key innovation of our approach is to provide a definition
of a complete system (processor and coprocessors) that enables the development of
efficient network applications leveraging on hardware accelerated parsers without
requiring a mixture of high-level hardware and software engineering skills.

— We have developed a design flow allowing: (a) RTL coprocessor generation, (b) pro-
cessor core adaptation, and (c) driver code and application template generation. The
design flow was developed to demonstrate the interest of the approach using real
application test cases. One key improvement compared to the state of the art ap-
proaches is that software and hardware parts are considered together during the
SoC generation and are thoroughly evaluated.

— We have conducted a set of experiments to evaluate system efficiency against other
methodologies and architectures. Different protocols such as HTTP, RTSP, SIP, and
SMTP were used to assess our approach. Results have proved the system’s benefits
in terms of throughput, latency and flexibility.
The remainder of this paper is structured as follows: Section II presents the related

works. Section III introduces a case study that illustrates a common parser-based ap-
plication development. Section IV depicts: (i) the SoPC and coprocessor architectures,
(ii) the design flow used to generate and/or configure them from high-level specifica-
tions. Section V summarizes the evaluation of the proposed approach. In Section VI,
the reconfiguration features handled by our system on ASIC and FPGA are discussed.
Section VII eventually concludes the paper.

2. RELATED WORKS
Over the last decade, two main approaches were used to integrate text message pars-
ing functionalities into software applications: (i) legacy parsers and (ii) generated

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 12, Publication date: January 2014.

A flexible SoC and its methodology... 12:3

parsers. Legacy parsers are based on integrating existing source codes or precompiled
libraries. Thus, leveraging on legacy parsers is the fastest way to develop existing net-
work protocols. However, reusing such kind of parsers has certain drawbacks. Most
often, network applications use only a subset of data parsed from legacy parsers. As
such, network applications do not require all features provided by legacy parsers (e.g.
do not require to parse all fields of incoming messages), producing low-processing per-
formances and/or high memory footprints [Burgy et al. 2011]. To overcome this issue,
new approaches have emerged to avoid the painful tasks of handwriting or modifying
protocol message parsers making them compliant with real requirements of network
application to be implemented [Borisov et al. 2007; Burgy et al. 2011; Stefanec and
Skuliber 2011]. In fact, parsers are generated from a DSL (Domain Specific Language).
This approach enables automatic code generation and comprises mainly a three-step
process: (i) describing network protocol messages in a high level specification (e.g.
Backus Normal Form); (ii) generating software parsers from high level specifications;
(iii) providing a framework to ease the development of applications on top of generated
software parsers. This process helps greatly to reduce conception time for customizing
protocols compared with hand coding/altering protocols. Further, it usually improves
the processing performances compared with legacy parsers, particularly if only the re-
quired network applications fields are parsed (e.g. compared to parsers that by default
parse all the existing fields whatever the need of the network application). However,
these approaches target only software implementation of message parsers.

Our main objective is to inherit from the approach mentioned above in order to au-
tomatically generate hardware parsers from a high level language. Therefore, efficient
parsers can be provided and embedded with NgN devices so as to improve their effi-
ciency while saving CPU, memory and energy resources.

Handwritten hardware parser. Developing dedicated hardware [Pasha et al. 2012]
should be the most efficient solution to achieve high processing performance for em-
bedded systems. Dedicated hardware coprocessors, for instance, are mainly used for
Digital Signal Processing (DSP) applications such as video processing or digital com-
munications that are computation intensive. For these application domains, a dedi-
cated architecture is designed specifically to implement a processing task and take ad-
vantage of multiple computations that can be realized in parallel. Massively parallel
computations allow low-clock frequency usage and/or high-throughput performances
compared with general-purpose processor solutions.

Applying these approaches to protocol processing applications is challenging as they
are control-dominated contrary to DSP applications. However, some research has been
done on the design of specific circuits for control intensive applications. State transi-
tion computations in the parser automata can involve a large set of arithmetic and
logic computations that can be evaluated in parallel. For instance, in [Lunteren et al.
2004; Dai et al. 2010], a specific architecture was proposed to speed-up the eXtensi-
ble Markup Language (XML) document parsing. Similarly, in [Moscola et al. 2008], an
FPGA based regular expression language is used to parse XML based streams. These
works have demonstrated that FPGAs offer a viable alternative thanks to their power
efficiency as well as their higher throughput when compared with software implemen-
tation. Another set of researches has been performed to speed-up regular expression
processing on FPGA devices [Sidhu and Prasanna 2001; Lin et al. 2006]. In [Mitra
et al. 2007], PERL Compatible Regular Expressions (PERL RegExp) were automati-
cally transformed into hardware coprocessors for speeding-up intrusion-detection sys-
tem rules using FPGAs. However, the related works mentioned above are dedicated
to either (i) a particular protocol such as XML or (ii) regular expression problems to
perform pattern matching [Rafla and Gauba 2010]. In the former case, it is not pos-

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 12, Publication date: January 2014.

12:4 B. Le Gal et al.

sible to adapt existing XML parsers for parsing other kinds of protocols. Moreover, in
these works, the interconnection and the interaction between coprocessor and proces-
sor were not considered. In the latter case, our approach is similar to PERL RegExp
since the expression of an FSM is equivalent to a regular language. However, we need
to express value-dependent grammars that cannot be done using RegExps. In addi-
tion, our formalism is closer to Augmented Backus-Naur Form (ABNF) which is the
one used for network protocol message grammars.

Generated hardware parser. Hardware design requires writing complex RTL code
which is error prone and can be notoriously difficult to debug. Automatic compilation
of a high-level specification (e.g. C codes) to silicon has been a decades-long quest in
the EDA field, with an early seminal work done in the 1980s. High Level Synthesis
(HLS) tools have been developed for targeting specific applications. Industrial [Y Ex-
plorations (YXI) 2010; Xilinx 2012; Mentor] or academic [Coussy et al. 2008; Casseau
and Le Gal 2012] tools synthesize a program written in a high-level language such
as C into hardware circuit architecture. Similar works based on domain-specific lan-
guages and automated flows for system generation were also realized [Lucarz et al.
2008]. These approaches efficiently generate RTL architectures for computation inten-
sive applications. However, this does not apply for control intensive applications, such
as network message parsers, since they have a limited computation parallelism and
lots of conditional structures.

To improve flexibility, other works have focused on a mixed hardware and software
solutions. These approaches rely on the concept of an Application-Specific Instruction-
set Processor (ASIP) [Pothineni et al. 2010; Pozzi et al. 2006; Sun et al. 2004; Ca-
nis et al. 2012]. An ASIP combines an instruction-set processor (ISP) core with a set
of custom hardware coprocessors to improve the speed and energy efficiency. Hard-
ware coprocessors are often closely coupled to the processor, which allows them to
directly access the processor’s registers. However, the processor must stall when a co-
processor performs computation. Methodologies related to automatic ASIP design fo-
cus on instruction pattern identification [Galuzzi and Bertels 2011] from source codes
or RTL automatic generation [Martin et al. 2012]. The performance benefits of these
approaches are important for DSP applications where patterns (that are computation
intensive) are easily extracted and accelerated.

However, all these approaches are inefficient for control-based applications which
mainly explains why these applications have not been widely studied. This claim is
proved by experimentation results in Section 5.6.

To the best of our knowledge, previous work on hardware management for network
protocol message processing has been mainly limited to XML parsing and pattern
recognition using regular expressions and does not cover network message parsing
requirements. Moreover, only coprocessor design was addressed. In order to provide
both time performance and software flexibility, we present in this article: (i) a codesign-
based system specialized for message parsing tasks and (ii) an automated methodology
for automatic coprocessor and software code generations from a protocol specification.

3. AN ILLUSTRATIVE CASE STUDY
To ease the development of communicating applications, many of the commonly used
protocols are composed of directly readable messages. However standard text-based
protocol message parsers consumes up to 25% of the execution time of usual network
applications. This high runtime comes from the message analysis task that extracts
the relevant information to generate a software view for the application layer. Let’s
consider the text message provided in Fig. 1. It contains the username and its associ-
ated password.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 12, Publication date: January 2014.

A flexible SoC and its methodology... 12:5

USER LOGIN=UserLambda PASS=*its-p@SsW0rd! END

Fig. 1. Text message example

struct authentification msg{
char username[64]; // contains UserLambda after the Fig. 1 message parsing
char password[64]; // contains *its−p@SsW0rd! after the Fig. 1 message parsing
};

Fig. 2. Example of software view

The message parsing task consists in extracting valuable information (e.g. login and
password fields) from the data stream and filling a software view - such as a data struc-
ture - within the extracted information (e.g. Fig. 2). The second parser task consists in
validating the syntax. For instance (i) the login can contain upper and/or lower case
characters and digits but no space or special characters, (ii) the message stream starts
with the USER keyword and finishes with the END keyword, (iii) the information or-
der is checked: the LOGIN field must be provided before the PASS one.

To speed-up message parser development, automated flows were developed e.g.
[Burgy et al. 2011]. They generate software implementation of parsers from a high-
level specification of a message protocol.

According to the protocol specification (as for example in Fig. 3), it is possible to
generates: (i) the related software implementation of the protocol parser; (ii) its re-
lated data structures (Fig. 2) and (iii) a set of specialized functions for accessing the
information contained in the related data structures.

This software code set enables software developers to seamlessly integrate message-
parsing capabilities in their applications. Indeed, parser related source codes are auto-
matically generated. Consequently, developers do not have to write complex automata
made of dozens to hundreds of states as shown in Section 5.

4. PROPOSED APPROACH
4.1. Introduction
A well-known approach to implement an embedded application in a SoC is to de-
velop a fully dedicated hardware architecture. However, a dedicated ASIC or an FPGA
has important drawbacks. It is a tedious and time-consuming process compared with
traditional software development. Moreover, dedicated design efficiency leads to less
flexibility. Therefore, these solutions are discarded from network application domain,
where applications usually require flexibility and programmability. To alleviate the
burden in hardware-based implementations and increase design flexibility, the code-
sign methodology proposes to blue split an application based on the required perfor-
mances. In this section, we first present the complete SoC architecture developed to
efficiently parse message streams. The proposed solution does not only focus on copro-

%%{
machine foo parser;
SP = ’ ’;
main := ’USER’ SP ’LOGIN’ ’=’ alnum+ ^login SP ’PASS’ ’=’ alnum+

^pass SP ’END’ ^^;
}%%

Fig. 3. Specification of the message protocol for automatic software generation

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 12, Publication date: January 2014.

12:6 B. Le Gal et al.

Coprocessor

"GET HTTP/1.1 …"

<action=31, pos=0>
<action=26, pos=2>
<action=??, pos=?>

General Purpose
Processor

Ethernet
controler

Harddrive

Fig. 4. Proposed approach for protocol parsing application speed-up, composed of a General Purpose Pro-
cessor and a hardware coprocessor

cessor design such as related works but also handles its related software, hardware
and communications issues. Then, we introduce a design flow that enables program-
mers to take advantage of the proposed SoC architecture.

The message parsing task consists mainly in two major parts: (i) the automata
implementation (transition evaluation and next state computation) and (ii) the call-
back functions invoked when the automata detects a pattern or an error in the ana-
lyzed data stream. A profiling evaluation of the software parsers used in our experi-
ments on network captured data streams shows that over 90% of the execution time is
spent on the automata processing. Indeed, callback functions execution time (executed
once, when patterns are detected, to fill the software view) is negligible. According to
these profiling results, we decided to speed-up the message parsing execution using a
hardware-based implementation for the automata processing. Callback functions are
left in software for flexibility reasons.

An overview of the proposed sharing out is provided in Fig. 4. The General Purpose
Processor (GPP) which executes the application, provides the data stream to the copro-
cessor. A set of instructions, dedicated to coprocessor control and data exchange, has
been integrated into the processor core. A list of the new instructions is provided in
Table I.

The coprocessor analyzes the message characters and returns the processing results
to the processor. The results are provided as a set (callback function identifier, stream
position). The processor uses this information set to fill the software view. It invokes
the callback function with the position of the character that generates this action.

A description of the different hardware and software layers involved in the pro-
posed system is provided in Fig. 5. Software applications requiring message-parsing
capabilities do not directly access neither the coprocessors, nor the low-level API. Pro-
cessing executions over coprocessors are managed by the Hardware Abstraction Layer
(HAL). This layer focuses on identification of coprocessors and parallel processing man-
agement (sharing hardware units between multiple threads). Moreover, this approach
provides a seamless access to the protocol parsers independently from its implementa-
tion, its connectivity and the system context. The driver layer abstracts the coprocessor
access API through low-level functions.

Table I. Instruction set added to the processor core to manage parsing coprocessors
Instruction Description
void px reset (void) Reset the coprocessor state and internal character counter.
void px send1(char) Send one character to the coprocessor (for parsing).
void px send4(char[4]) Send 4 characters to the coprocessor. It enables 32-bit bus usage to speed-up transfer.
bool px isRunning(void) Tells if the coprocessor is currently processing message data.
bool px isIdle(void) Tells if the processor has finished processing message data.
bool px hasResults(void) Tells if there exists a waiting processing results in the coprocessor output FIFO.
int px getResults(void) Read a processing result (couple: action, position) from the coprocessor output FIFO.
int px Identifier(void) Get the parser identifier. It indicates the protocol managed by the hardware module.
int px saveContext(void) Save the coprocessor context to enable the coprocessor usage in multi-threaded mode.
void px loadContext(int) Load coprocessor execution context to resume a stalled data stream parsing.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 12, Publication date: January 2014.

A flexible SoC and its methodology... 12:7

4.2. Targeted ASIP-based architecture
One of the major bottleneck in co-design based systems is the communication between
the processor and its accelerators. There are two main approaches for coprocessor cou-
pling in a codesign-based system: (i) a closely coupled approach that integrates the
coprocessor directly in the processor datapath and (ii) a generic approach that inter-
connects the coprocessor to the processor core using a shared peripheral bus. The first
approach provides low latency data transfer times. However, it requires processor in-
struction set modifications, which often requires that the processor stalls while a co-
processor performs computation. The second approach is more generic as: (i) it does
not require processor core modification and (ii) the coprocessor is seen as a peripheral.
In this context, the processor does not stall during coprocessor computations and data
transfer can be managed by a Direct Memory Access (DMA) engine. This solution is not
drawback free. First, communications between the processor and coprocessors become
slower due to the shared bus arbiter. Second, the communications are more complex
to set up, e.g. DMA transaction configuration or management (coprocessor output data
set has a priori an unknown length). Finally, the development and verification times
are longer due to the system complexity. In the system we have proposed, we took the
best of both approaches. Parsing coprocessors are closely coupled with the processor
as shown in Fig. 6. They are integrated in the datapath like an arithmetic logic unit
(ALU). This tight coupling allows very fast coprocessors accesses. To avoid the pro-
cessor to stall while a coprocessor performs computation, the coprocessors are linked
to the processor core using decoupling FIFOs (for data channels only). This architec-
ture enables: (i) concurrent execution of computations on the coprocessors and on the
processor core and (ii) different working frequency between the processor core and its
coprocessors. To manage parallel execution of both units, synchronization instructions
were added to the processor instruction set. This implementation looks like an exten-
sion of Xilinx’s Fast Simplex Link approach for the Microblaze processor. However, in
the proposed implementation, the control and the status signals are managed in an
identical way.

The GPP instruction set has been extended to handle the coprocessors. To minimize
the processing latency of incoming messages, the system may switch from one message
stream to another. To this end, new instructions such as saveContext and loadContext
have been added to save and/or load coprocessor internal states to enable interleaving
of message processing depending on data availability.

Application(s)
Thread 1 Thread 2 Thread 3

Middleware
(Hardware Abstraction Layer)

Hardware
driver (P1)

Hardware
driver (P2)

Hardware
driver (P3)

General Purpose Processor

Coprocessor
Unit (P1)

Coprocessor
Unit (P2)

Coprocessor
Unit (P3)H

ar
dw

ar
e

So
ft
w
ar

e

Fig. 5. Software and hardware layers involved in the proposed system

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 12, Publication date: January 2014.

12:8 B. Le Gal et al.

Computation
sequencer (state)

next state
computation

R
eg

is
te

rs

Pr
oc

es
so

r
in

te
rf

ac
e

control signals

hardware status

state load/store

message characters

parsing results

General Purpose
Processor

results
generation

Coprocessor

Fig. 6. Processor coupling with the protocol message parsers

4.3. Hardware coprocessors
Contrary to related works, e.g. on XML parser, the interconnection between the co-
processors and the processor has been taken into account. Fig. 7 presents both the
interconnection links existing among the coprocessors, the processor core, and the in-
ternal coprocessor architecture. Fig. 7 provides also the width of the signals (colors are
provided only to ease the figure understanding). Automaton implementation in the co-
processor is based on the commonly used Mealy FSM implementation. The message
parsing specification is first transformed into a Deterministic Finite Automaton (DFA)
model that implements the parsing task. States dedicated to I/O synchronization and
advanced features (like context load/save) are then inserted into the model. Finally,
the RTL architecture is generated.

The architecture used to implement the automaton was designed to provide timing
efficiency (in terms of character processing throughput). Next state computation logic
is scaled (number of arithmetical and logical resources) to enable the evaluation of the
state transitions in a single clock cycle. This approach limits the processing time for
a message character to from one to two clock cycles (one clock cycle when no action
is triggered, two otherwise). Due to this allocation, the character processing time is
independent of the number of transitions per state. In terms of hardware complexity,
the hardware resources used to implement the automata depends on the maximum
number of transitions per state and their computation complexities1.

Additional resources are finally added to the coprocessor architecture to enable
context loading/saving. These resources transfer the couple (state, stream position)
from/to a 32-bit data that can be saved/loaded by the processor into one-clock cycle.
This approach enables very fast context switching in multi-threaded applications when
the overall thread requires the same coprocessor. Note that context switching requires
first that the coprocessor be in idle state (input FIFO processing is finished), and sec-
ond, that software layer has/will retrieve results available in the output FIFO.

The data stream transfer can be 8 or 32-bit wide at the processor output. Depending
on the amount of data transferred to the coprocessor, the serializer module inserts
sequentially one or four data in the FIFO resource that is 8b width. The amount of data
processed by the serializer module depends on the instruction used in the software
code. The fastest approach (4 characters per clock cycle) speeds-up the overall parsing

1Selection of other automaton models like multi-symbol automatons or other hardware implementations is
still possible to achieve higher throughput or lower hardware complexity. However, such techniques were
not evaluated in the current study because they were out of the objectives.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 12, Publication date: January 2014.

A flexible SoC and its methodology... 12:9

General
Purpose

Processor

empty (1)

odata (32)
 odata (32)

owe (1)

context for loading (32)
enable context loading (1)

we (1)

odata
(32)

idata (8)4x (1)

Se
ri

al
iz

er we (1)

coprocessor current context (32)

coprocessor identifier (32)

next state
computation

logic

Output
generation

St
at

e
re

gi
st

erCo
ut

ne
r

Context
encoder

Context
decoder

idle status (1)
processing status (1)

Constant
ID

ivalid (1)

read_en (1)

read_en (1)odata
(8)

Coprocessor

Fig. 7. Detailed view of the system architecture (numbers indicates signal width)

time. This approach hides the latency required by the processor to access character
streams in its main memory and to transfer them to the coprocessor: a 32-bit data
loading access provides enough characters for the coprocessor for 4 up to 8 clock cycles.

Result transfers from the coprocessor to the GPP are done using a 32b interface.
The set (action, character position in the stream) is concatenated into a 32b word for
fast processor access. Character position counter in the coprocessor was fixed in the
[0, 216 − 1] range. The HAL is in charge of managing the counter value translation in
case of longer streams. Action value was also fixed in range [0, 216 − 1] to ease the
development so that the HAL processes the information in the same way. It is possible
to adapt the action and the counter value widths according to the real coprocessor
requirements.

The context saving and loading interfaces are also 32b width. State information
and internal counter values that are both 16b wide are merged to fulfill the 32b data
width. Using this approach, context switching can be performed within two consecutive
processor clock cycles (one cycle to save the context value and the following one to
restore a previously saved context). To obtain the best working frequency / hardware
complexity trade-off, the state encoding format (one hot, gray, etc.) is selected by the
synthesis tool. Depending on the encoding format used by the logical synthesis tool
(e.g. one hot encoding format), it becomes necessary to translate the state value back on
16b (for context save and restore functions). This action and its opposite are performed
respectively by the context encoder and context decoder modules shown in Fig. 7.

4.4. Hardware Abstraction Layer (HAL)
To process network messages, an application must register a callback function, and
gives both the input socket and the protocol to be used to the HAL. The HAL man-
ages registered applications by reading data on input streams as they are received
and sending them to the corresponding coprocessor. The HAL reads then parsing re-
sults from the output interface of the coprocessor. When a message element parsing is
completed, the HAL executes the ad-hoc code in order to make the value accessible by
the application.

The HAL layer provides at least three main features. Firstly, it detects and starts au-
tomatically the coprocessor when the system starts. It identifies the protocol handled

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 12, Publication date: January 2014.

12:10 B. Le Gal et al.

Network
application

source
codeS

ZEBRA
tool

Logical
synthesis

GCC
tool chain

System design
for SoC

Binary
executable

Message
parser

descriptions

Softcore
processor

sources

Modified
softcore

processor
(ASIP)

RTL
coprocessor

source
codes

C drivers +
customized
middleware

1

2

Network
application

source
codeS

3

4

5

6

7

Fig. 8. Proposed design methodology for generation and configuration the system according to message
parser specifications.

by each coprocessor. Secondly, it manages the coprocessor accesses for the different
threads running on the processor. This service includes the context saving and restor-
ing. Finally, it provides to the application an easy and elegant way to use coprocessor
units (identical to the message processing in software).

To increase the usage rates of coprocessors between several tasks, the HAL ade-
quately saves and restores the parser state when required. This switching on context
of the hardware parsing units is very efficient and requires 8 to 10 clock cycles when
the time of context reading/writing in the processor memory is taken into account.

4.5. Design methodology
Designing a coprocessor unit from protocol specifications, then integrating it and
finally writing software code are long and complex tasks. Moreover, they require
deep knowledge of hardware design, software development and network protocols. To
demonstrate the efficiency of the proposed architecture on real use cases and to enable
the development of efficient dedicated systems, an automated flow was elaborated.
This methodology removes developers from the complex process of developing and us-
ing a coprocessor in a software application. Proposed design methodology is summa-
rized in Fig. 8. Its input set is composed of:

— Specification(s) of the message protocol(s) (Fig. 8 ·). A high-level specification lan-
guage (close to the BNF notation) is used to describe text-based message formats.

— The RTL description of the softcore processor (Fig. 8 ¶). This processor core that
will be interconnected with the coprocessors has to be automatically modified (e.g.
creation of the interconnections to the hardware coprocessors).
According to these dataset, the proposed methodology enables to:

— Generate the RTL description(s) of the coprocessor(s) that implement the message
parsing specifications (Fig. 8 ¹).

— Modify the system RTL description to instantiate and interconnect the generated
coprocessors to the softcore processor (Fig. 8 ¸).

— Generate the driver codes that provide the low-level access, configuration and control
functions for the generated coprocessors (Fig. 8 º).

— Configure the hardware abstraction layer source codes according to the number and
the type of the generated coprocessors.

— Generate the associated C code tailored to application needs. This code provides stan-
dard interfaces and callback functions to enable coprocessor usage at application

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 12, Publication date: January 2014.

A flexible SoC and its methodology... 12:11

Request = Request_Line
((general_header
| request_header
| entity_header) CRLF)*

CRLF

message_body? {clen} ¸;

Request_Line = Method SP Request_URI ^uri · SP
HTTP_Version CRLF;

Request_URI = ’*’ | absoluteURI | abs_path | authority;
entity_header = Allow

| Content_Length
| ...

Content_Length = ’Content-Length: ’ digit+ ^clen as uint32 ¶;

Fig. 9. Excerpt of Zebra specification for HTTP

level. The number of callback functions and their associated processing tasks are
generated according to the protocol specifications.
A set of logical synthesis and software compilation scripts finish the integration pro-

cess on the hardware device selected by the software developer (Fig. 8 », ¼).

4.6. The Zebra language
Protocol specifications (Fig. 8 ·) are provided in the Zebra language. It is based on
the ABNF notation used in RFCs to specify the syntax of protocol messages to ease
its adoption by network application developers. Once a basic Zebra specification is cre-
ated, the developer can further annotate it according to application-specific require-
ments. Fig. 9 shows an excerpt of the Zebra specification for the HTTP protocol as de-
fined in RFC 2616. Annotations define the message view available for the application,
by indicating the message elements that this view should include. These annotations
drive the generation of the data structure containing the message elements. For ex-
ample, three message elements are annotated in Fig. 9. To make an element available,
the programmer has to annotate it only with the ˆ symbol and the name of a field in
the generated data structure that should store the element’s value. For instance, in
Fig. 9, the Zebra programmer indicates that the application requires the Uniform Re-
source Identifier (URI) of the request line (·). Hence, the data structure representing
the message will contain one string field: uri.

Besides tagging message elements that will be available to the application, anno-
tations impose type constraints on these elements. This can be specified using the
notation as followed by the name of the desired type. For example, in Figure 9, the
Content-Length field value (¶) is specified to represent an unsigned integer of 32 bits
(uint32). A type constraint enables representing an element as a type other than
string. The use of both kinds of annotations allows the generated data structure to
be tailored to the requirements of the application logic. This simplifies the application
logic’s access to the message elements.

In our experience in exploring RFCs, the ABNF specification does not completely de-
fine the message structure. Indeed, further constraints are explained in the accompa-
nying text. For example, the RFC of HTTP indicates that the length an HTTP message
body depends on the Content-Length field value. To express this constraint, the devel-
oper has to annotate only the variable-length field message-body (¸) with the name of
the field, between curly brackets, that defines its size (i.e., clen). Note that such fields
must be typed as an integer.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 12, Publication date: January 2014.

12:12 B. Le Gal et al.

Finally, the Zebra compiler generates2 a coprocessor tailored to the application needs
according to the provided annotations, and associated C code to drive it. The coproces-
sor corresponds to an FSM where some transitions indicate the start or the end of
message elements annotated in the Zebra specification. Thus, when such transitions
are fired, the coprocessor writes into its output interface the current position of the
consumed data and an action identifier. This latter specifies the name of the message
element being parsed and whether it is the start or the end. This information is then
used by the Zebra middleware to execute the corresponding generated callback C code.

5. PERFORMANCE EVALUATION
5.1. Introduction to experiments
In order to evaluate the performance improvement achieved by the presented system
compared to fully software based ones, a set of commonly used network protocols has
been selected. This includes Zebra specifications for four of the most ubiquitous pro-
tocols on the Internet (HTTP, SMTP, SIP and RTSP) which were developed (adapted
from works on real software gateways presented in [Bromberg et al. 2009]). For each
of them, we have used the Zebra compiler framework to automatically generate the
VHDL architecture of the coprocessors and the associated software layers.

To highlight the complexity of the required automaton to implement the selected
network protocols, their characteristics are provided in Table II which contains:

— the number of unfactorized transitions - It is the number of atomic transitions be-
tween states: there may exist more than one transition from state x to state y when
the conditions t(x,y) are different;

— the number of factorized transitions - It is the number of complex transitions be-
tween states: there exists only one transition from state x to state y disregarding the
condition complexity.
Note that specifications used in our experiments extract only the most commonly

used subset of the protocol tokens as usually performed in network applications such
as those developed for monitoring network traffic, computing statistics, billing or en-
abling NIDS based filters, or network protocol gateways [Bromberg and Issarny 2005;
Bromberg et al. 2009; Burgy et al. 2011]. For instance, our HTTP-based application
records 4 fields for each request and response (date, host, uri for requests, status code
for responses, and body). Although our HTTP specification extracts only four fields, it
still consists of 55 rules and 300 different tokens. The number of specification lines that
were required to specify the message protocol in the BNF like format were 97, 87, 128
and 80 for respectively HTTP, RTSP, SIP and SMTP protocols.

5.2. Hardware demonstrator on FPGA target
A prototyping system was developed targeting a Xilinx ML605 development board.
The selected softcore processor was the LEON-3 [Gaisler Research 2010]. This pro-
cessor core has been successfully implemented on different FPGA devices and ASIC

2The current compiler release relies on the use of regular expressions to implement the protocol parsers.

Table II. Complexity of the message parsing automata

Specification #states Unfactorized transitions Factorized transitions
#trans Avg

(trans/state)
Max
(trans/state)

#trans Avg
(trans/state)

Max
(trans/state)

HTTP parser 66 3922 59.4 98 209 3.2 7
RTSP parser 56 2722 48.6 84 150 2.7 5
SIP parser 284 17451 61.4 119 1790 6.3 19
SMTP parser 333 6974 20.9 86 1083 3.3 7

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 12, Publication date: January 2014.

A flexible SoC and its methodology... 12:13

Modified Leon-3 processor core

Computation sequencer
(state)

next state
computation

R
eg

is
te

rs

Pr
oc

es
so

r
in

te
rf

ac
e

control signals
hardware status

state load/store

message characters

parsing results

results
generation

Ethernet
controler

Compact flash
interface

UART
interface

Computation sequencer
(state)

next state
computation

R
eg

is
te

rs

Pr
oc

es
so

r
in

te
rf

ac
e

control signals
hardware status

state load/store

message characters

parsing results

results
generation

Pipeline

Integer
ALU

Register
file

Memory
controller

Memory
cache

Instruction decoder

Exception handler
Coprocessor 1

Coprocessor 2

Fig. 10. Overview of the implemented system based on LEON-3 processor core (target: Xilinx ML605 de-
velopment board - Virtex-6 device)

technologies. LEON-3 is fully compliant with the SPARC v8 instruction-set specifica-
tion [SPARC International Inc. 1999]. The processor choice has been done based on
two arguments (a) it has open-source VHDL code which allows core modifications and
(b) its peripherals are fully compatible with Xilinx ML605 board. However, it is impor-
tant to notice that the proposed approach is not processor core locked, other softcores
may be used e.g. Plasma [Rhoads 2009], Amber [Amber Open Source Project 2013], or
Altera Nios II.

The LEON-3 instruction-set has been extended to manage the generated coproces-
sors. The control pipeline of the processor core has also been extended to manage data
exchange, context load/storing, etc. Moreover, coprocessor links has been included in
the processor core like the Arithmetic and Logical Unit (ALU) to enable one clock cycle
data transfer from/to the coprocessors. According to these hardware modifications, the
GCC 4.4.1 toolchain has been updated to handle these new processor capabilities.

An overview of the implemented SoC is provided in Fig. 10. The complete system
is composed of the LEON-3 processor core, the coprocessors and some peripherals.
Included peripherals enable external DDR memory management through instruction
and data caches, Ethernet communications and UART message debugging.

This system has been implemented on a ML605 development board from Xilinx. The
FPGA device integrated on the board is a Xilinx Virtex-6 (XC6VLX240T-1FFG1156).
Xilinx ISE 14.6 toolchain was used to generate bitstream from VHDL descriptions.
Synthesis scripts and processor configurations are recovered from default LEON-3
package. The SoPC system was prototyped and evaluated using a 75 MHz clock fre-
quency constraint. The 75 MHz clock corresponds to the maximum frequency that the
LEON-3 processor system (version 1.3.7 b4144) can reach when synthesized by the
Xilinx ISE 14.6 toolchain. The clock frequency was limited by the DDR3 controller.

Table III provides a resource breakdown of the system which consists of the ASIP
core, its 4 coprocessors and the peripherals e.g. DDR3 and Ethernet controller, memory
cache, etc. The ASIP hardware estimation provided below includes the coprocessor
costs.

In terms of Virtex-6 Slices, the coprocessor complexity varies from 6% up to 20%
of the full processor. In this implementation the cost of the coprocessors represents
41% of the complete system slice complexity3. The coprocessor complexity depends on
the protocol automata complexity (number of states, transition computation complex-
ity). Furthermore, logical synthesis results (after Place and Route (PaR)) show that

3However, it is important to notice that these percentages take into account only the Virtex-6 slice resources.
Taking into account memory resources (RAM18k) would reduce the relative cost of the coprocessors (this is
demonstrated in ASIC experimentation).

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 12, Publication date: January 2014.

12:14 B. Le Gal et al.

Table III. Hardware complexity - Xilinx ISE 14.6 (post-MAP and PaR under 75 MHz con-
straint) - Virtex-6 (ML605) - Percentages indicate device occupancy.

Slices LUTs REGs RAM18k Max freq.

RTSP 298 (1%) 812 (1%) 208 (< 1%) 0 (0%) 150 MHz
SMTP 703 (2%) 2413 (1%) 217 (< 1%) 0 (0%) 122 MHz
SIP 1293 (3%) 4330 (3%) 213 (< 1%) 0 (0%) 123 MHz
HTTP 381 (1%) 1178 (1%) 206 (< 1%) 0 (0%) 149 MHz

Total SoC 13959 (37%) 34107 (23%) 15158 (5%) 42 (5%) 75 MHz

Table IV. Characteristic of text-based messages

#messages Message length (in chars.)
Min. Max. Avg. Med.

HTTP 515 330 779 532 557
RTSP 205 56 210 135 151
SIP 62 274 1357 627 582
SMTP 9378 6 1003 118 27

the maximum coprocessors’ operating clock frequency is systematically higher than
LEON-3 system one. Thus, the overall operating clock frequency of the system is not
slowed down by any of the coprocessors involved4. Consequently, one way to improve
the performances of message-processing tasks is to split the clock domain into two.
Thus, high frequency would be applied to coprocessors, helping them to process mes-
sages faster. Low frequency would be used by the processor core as required by its
constraints. This technique requires that FIFO resources work in two different clock
domains. This approach has not been used in the experimentations: the LEON-3 core
and its coprocessors work at 75 MHz. Three main reasons have oriented our choice:
(i) working in a Globally Asynchronous Locally Synchronous (GALS) system makes
development and debugging tasks harder; (ii) performance comparison understanding
would be more difficult; (iii) it won’t change the experimental conclusions (performance
may only be improved using this approach).

5.3. Processing performance evaluation
A fair evaluation of the processing performance of the prototyped system was per-
formed to estimate the coprocessor based architecture advantages. The performance
evaluation of the system was carried out using a large set of real {HTTP, SMTP, SIP,
RTSP} messages captured on a real network. The captured network streams provide
message characteristics for the same protocol which can change from one message to
another (e.g. message length). An overview of the characteristics of the captured mes-
sage streams is provided in Table IV.

Timing evaluation was performed using the automated design approach. The exe-
cution time was measured on the prototype (using a dedicated clock cycle counter) for
C based implementations of the parsers and was compared to coprocessor accelerated
ones. C and VHDL based parsers were generated from the same protocol specifications.

5.3.1. System evaluation at the driver level. A first evaluation set was performed at the
driver level in which the measured execution time corresponds to the computation time
required for: (i) analyzing a complete message (data transfer to the coprocessor, stream
parsing), (ii) filling the application view from the parsing results (callback functions
are not executed).

4Maximum operating clock frequencies reported in Table III correspond to the maximum frequency obtained
post-PaR when the different resources are synthesized without clock constraint.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 12, Publication date: January 2014.

A flexible SoC and its methodology... 12:15

Table V. Comparison of processing performances at the driver level

Protocol
Software parsers Hardware parsers Speed-up factors

[min,max] Driver avg [min, max] Driver avg [min, max] avg
(cycles/msg) (cycles/char) (cycles/msg) (cycles/char)

HTTP [11516, 21938] 29.80 [987, 1890] 2.67 [9.79, 12.61] ×11.16
RTSP [2434, 6453] 34.51 [517, 765] 5.08 [4.71, 8.61] ×7.00
SIP [9278, 21627] 27.66 [981, 2122] 2.59 [9.28, 11.61] ×10.68
SMTP [141, 8422] 25.5 [116, 2090] 9.1 [1.5, 5.5] ×3.7

For experimental purpose, the messages were stored in the main memory of the sys-
tem. Execution time results measured experimentally on board are provided in Table
V which contains the number of processor clock cycles required to parse the messages.
This experimentation setup shows that coprocessor usage is efficient to reduce the mes-
sage parsing execution time. Parsing speed-up factor varies from 3.7 to 11.2 compared
with the software based solution. The speed-up factor depends on message length and
the number of patterns discovered. Indeed, the execution time required to initialize
the driver and to manage the hardware coprocessor becomes negligible for messages
with length longer than few hundreds of characters. This fact explains the lower per-
formances achieved by RTSP and SMTP parsers that process a large set of messages
shorter than 100 characters (Table IV).

5.3.2. System evaluation at the application level. Speed-up factors were also measured at
the application level. This evaluation takes into account the execution time required to
fill the software structure with the contents identified during the parsing processing.
Structure filling requires memory allocation and memory copy of the stream content
into the software structure. Execution time measurements are provided in Table VI.

Speed-ups are lower than previously. This result is due to the fact that memory
allocation (malloc) and memory copying (memcpy) operations that are performed to fill
the software structure consume a large number of clock cycles independently from the
parser implementation. However, the improvement is not negligible: execution times
are reduced 3.7 to 4.5 times compared with the software solution.

5.3.3. Evaluation over a macro-benchmark. A final experimentation set has been done to
perform a macro-benchmark of the platform. Application execution times were mea-
sured when the system processes multiple network streams in parallel. The test cases
are those from experimentations reported in [Bromberg et al. 2009] for the front-end
part of the gateway. In this experiment, 4 message streams (one for each handled pro-
tocol) were processed in parallel to stress as much as possible the processor core and
its coprocessors. Message streams were injected to the network interface of the system
from a laptop computer. For each protocol, the overall message set described in Table
IV was transmitted using 4 network sockets. The Ethernet connection speed was set to
100 Mbps due to LEON-3 open-source restriction. The efficiency of the proposed solu-
tion (LEON-3 and its coprocessors) was compared with two software based-solutions:
one executed on a single LEON-3 core and another one composed of four LEON-3

Table VI. Comparison of processing performances at the application level

Protocol
Software parsers Hardware parsers Speed-up factor

[min,max] App avg [min, max] App avg [min, max] avg
(cycles/msg) (cycles/char) (cycles/msg) (cycles/char)

HTTP [15345, 28449] 39.03 [3566, 6946] 8.76 [3.70, 4.78] ×4.47
RTSP [4165, 9580] 53.18 [1512, 2723] 16.41 [2.49, 3.85] ×3.30
SIP [14804, 30779] 40.63 [3870, 8512] 9.81 [3.13, 4.46] ×4.13
SMTP [333, 9239] 41.68 [326, 2090] 23.01 [1.5, 5.5] ×3.7

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 12, Publication date: January 2014.

12:16 B. Le Gal et al.

Table VII. System hardware complexity on 65nm ASIC technology

Component Constrained Freq. NAND gates Area (%)
LEON-3 core 400 MHz 158100 88.4%
HTTP 400 MHz 3995 2.23%
RTSP 400 MHz 2661 1.15%
SIP 400 MHz 8579 4.80%
SMTP 400 MHz 5446 3.04%
Total 400 MHz 178781 100%

cores5. The time required to process the overall message set was respectively 31.1s
and 14s for the multi-threaded applications executed on the single and the quad-core
systems respectively. Execution times measured to process the same set of messages
on the proposed system were only 9.4s. The experimentation complexity was limited.
However, understanding and optimizing different stacks’ behavior (hardware, drivers,
HAL, TCP/IP stack, etc.) became complicated which led to analysis results reduced.

5.4. Hardware evaluation of the system in ASIC technology
FPGAs enable rapid SoC prototyping. However, they limit the system clock frequen-
cies. The implementation of logic functions using LUTs and signal routing structures
generates long critical path delay that may not exist in ASIC implementation. In order
to evaluate more precisely the effectiveness of the proposed approach, an evaluation of
the system implementation on ASIC technology was realized.

Logical synthesis of the system was done using the Synopsys Design Compiler
toolchain (2013.03). Standard cell library is a 65 nm library from ST Microelectronics
(CORE65 LPLVT 1.00V) that is low power optimized. The clock frequency constraint
used during logicial synthesis was 400 MHz (maximum operating clock frequency of
the low-power memories available in our design kit to implement the processor reg-
ister banks). The LEON-3 processor core and the coprocessor elements all meet the
timing requirement. The hardware complexity of the processor core and its coproces-
sors are provided in Table VII. The hardware complexity estimations of the different
parts provided by the logical synthesis toolchain is given in NAND gates6.

Results presented in Table VII show that the hardware complexity of the coproces-
sor is quite low (area of the 4 coprocessor equals 11% of the circuit area). Moreover,
it can be noticed that the cost of the coprocessor set is less expensive when compared
to the LEON-3 processor core in ASIC technology than in FPGA one. This difference
is due to two main reasons. First, in the FPGA implementation the register bank of
the processor core was done using RAM blocks which skews slice-based comparison
of complexity in FPGA experimentation. Second, in ASIC technology for instance a
2-input logic function consumes less resources than a 6-input function, contrarily to
FPGA technology. Concerning the operating clock frequency of the processor, it is lim-
ited to 400 MHz due to the ASIC technology used. However, we can suppose that using
High Voltage Threshold (HVT) standard cell libraries or 22 nm ASIC technology would
increase its operating frequency and would reduce its silicon cost.

5.5. System comparison with industrial processor core
To highlight the efficiency of the proposed processing system, we compared its process-
ing performances with a commonly used industrial processor core. We made compar-
isons with an ARM Cortex-A9 processor core, which mainly targets power-constrained
embedded applications. The evaluated ARM Cortex A9 processor core is the one in-

5Both systems were implemented in the Xilinx ML605 board.
6In current 65nm ASIC technology, a NAND gate is 2.08 µm2, thus the silicon area is 0.371mm2. The power
consumption estimated by design compiler for the system is lower than 5 mW.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 12, Publication date: January 2014.

A flexible SoC and its methodology... 12:17

Table VIII. Comparison of accelerated LEON-3 performances with ARM Cortex-A9 ones.

Component Processing throughput at driver level (ns/char)
LEON-3 ARM Cortex-A9

75 MHz 400 MHz 204 MHz 370 MHz 475 MHz 1400 MHz
HTTP 36 ns 7 ns 127 ns 70 ns 55 ns 19 ns
RTSP 68 ns 13 ns 312 ns 172 ns 134 ns 45 ns
SIP 35 ns 7 ns 113 ns 62 ns 48 ns 16 ns
SMTP 121 ns 23 ns 105 ns 58 ns 45 ns 15 ns

tegrated in the NVIDIA development board (Carma Tegra 3). This quad-core ARM
processor is implemented in a 40 nm ASIC technology from TSMC. Each CPU core has
a 32 KB of L1 instruction cache and 32 KB of data cache. The four cores share a 1
MB unified L2 cache memory. The operating clock frequency of the system is 1.4 GHz
when a single ARM core is activated and 1.3 GHz in multi-core configuration. ARM-
based evaluations were performed at the driver level in order to discard specific LIBC
optimizations. Source codes of software parsers for the four protocols were compiled
using GCC 4.6.2 with −O3 optimization flag. Results are provided in the Table VIII.
The ARM SoC used enclosed frequency scaling, thus we forced its clock frequency to
different values to provide a finer performance comparison. Processing latency mea-
sures were realized using the clock gettime function. Note that only one processor core
was switched on due to the fact that driver level benchmarks are mono-threaded.

Results provided in Table VIII demonstrate that the proposed architecture is effi-
cient in terms of processing latency and throughput. The processor core running at
75 MHz on FPGA device achieves similar performances compared to software based
parsers on the ARM core running at 475 MHz (except for the SMTP protocol). The
ASIC version of the system provides better processing performance than ARM core
running a 1.4 GHz (except for SMTP protocol). These results comes from the fact that
ARM processor cores have 8 to 11 pipeline stages that generate costly penalties. Indeed,
as an FSM requires a high amount of control and jump instructions, the behavior is
difficult to predict.

5.6. Coprocessor efficiency compared to other C-to-RTL approaches
To validate the efficiency of the coprocessor implementation, a comparison of their ex-
ecution time and hardware complexity has been performed. This comparison was done
with other methodologies that generate hardware coprocessors from C source codes.
The main purpose of this benchmark was to compare the hardware complexity and the
timing performance of the hardware coprocessors generated by the Zebra methodology.

Five high-level synthesis (HLS) tools have been evaluated: GAUT (2.4.3) [Coussy
et al. 2008], LegUP (3.0) [Canis et al. 2012], Vivado HLS (2014.2) [Xilinx 2012] from
Xilinx, C to Verilog (2013) [Ben-Asher et al. 2010] and eXcite (4.1c) [Y Explorations
(YXI) 2010]. To achieve the evaluation of the aforementioned tools, parsers’ C source
codes were generated from high level protocol specifications. All C source codes require
advanced C language functionalities like arithmetic pointer, goto jumps, function call,
etc. Due to this large subset of ANSI C features that are required, and the automaton
complexity, four of the HLS tools evaluated failed to handle the generated C source
code of the different parsers.

The GAUT tool does not manage at least the goto keyword. Concerning the Vivado
HLS, LegUP, C to Verilog and eXcite tools, they handle the overall semantic required
by C parser codes. Nevertheless, the C to Verilog tool failed to synthesize the copro-
cessors and the generate RTL codes. The Excite tool compiles but crashes during the
coprocessor generation due to the automata complexities. Vivado generates high com-
plexity architectures for RTSP and HTTP parsers and crashes for the latest SMTP

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 12, Publication date: January 2014.

12:18 B. Le Gal et al.

and SIP parsers (out of memory error on a 16 GB laptop computer). Consequently, in
this section we only provide a comparison of the Zebra coprocessors with the ones gen-
erated using the LegUp tool. It is important to notice that generated C codes were
modified by hand to help the HLS tool. Moreover, some advanced functionalities, such
as context switching, were not included in the processed C descriptions.

Hardware complexity results for the RTL coprocessors are provided in Table IX. As
the LegUp tool generates RTL source codes dedicated to Altera only IP cores, results
are provided using the Altera Quartus II (12.1) toolchain. To provide a fair compari-
son for Zebra and LegUp coprocessors, Zebra coprocessors (whose RTL source code is
generic) were synthesized for the same Stratix-4 device.

Coprocessors generated with the LegUp HLS tool have a higher hardware complex-
ity compared to our approach. Indeed, the hardware resource usage is 6 to 10 times
higher. This hardware complexity increases the routing issues, generating low operat-
ing clock frequency results as demonstrated by Table IX results. Moreover, the copro-
cessors using the LegUp tool have a lower throughput. Indeed, they require [2.5, 4.5]
times more clock cycles to process a message character.

These results are on account of two major facts. First, HLS tools like LegUp were de-
veloped mainly to target computation intensive (e.g. DSP) applications. Protocol mes-
sage parsers targeted in this study are control-dominated applications. Second, the
LegUp tool has made the choice to instantiate one hardware resource per operation
found in the application source code[Canis et al. 2012]. This choice has been made to
remove usage of resources such as multiplexers that are required to share operators.
In our approach, we do the opposite: we share arithmetic and logical resources as much
as possible to express condition computation to reduce the overall hardware complex-
ity. This evaluation shows that the hardware designs generated by our approach in
terms of hardware complexity and throughput performance is the most adequate one
to implement hardware coprocessors for message parsing applications.

6. SYSTEM FLEXIBITY DISCUSSION
A network application may require to manage a large set of protocols depending on its
set of provided services. In the previous sections, each protocol was accelerated using
a dedicated coprocessor. However, this approach is not applicable when the number
of protocol increases, since it involves high hardware complexity. In this section, we
discuss the possible solutions reflected upon to overcome this issue. Two scenarios are
discussed according to the targeted FPGA and/or ASIC technologies.

6.1. Flexibility solution targeting Xilinx & Altera FPGA
Both the Xilinx and the Altera FPGA families [Xilinx 2014; Altera 2012] enable FPGA
to be partially reconfigured at runtime without interrupting the overall system. This
partial reconfiguration is performed using a dedicated hardware component (ICAP re-
source for Xilinx FPGA) and a specific synthesis methodology. A partial reconfigura-
tion provides a solution to the mentioned flexibility problem: it provides reconfigurable
zones (RZ) that can be modified at runtime. Integrating such reconfigurable zones (RZ)

Table IX. Comparison of coprocessor hardware complexity and processing performances on Altera
Stratix-4 FPGA (SGX180HF35C2)

Protocol
LegUp generated coprocessors Zebra generated coprocessors

ALUT REGs Freq. Avg ALUT REGs Freq. Avg
(MHz) (cycle/char) (MHz) (cycle/char)

HTTP 7771 1040 25 9.40 1021 466 240 2.20
RTSP 5806 925 35 9.00 894 504 225 2.11
SIP 36847 2930 9 8.34 3970 1330 174 2.11
SMTP 29894 2559 9 5.05 2827 1516 183 2.06

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 12, Publication date: January 2014.

A flexible SoC and its methodology... 12:19

Table X. Information related to partial bitstreams (footprint, reconfiguration times)

Protocol
Without data compression With data compression

Time Time Footprint Time Time Footprint
(cycles) @75MHz (bytes) (cycles) @75MHz (bytes)

RTSP parser 3.7× 106 49.8ms 831376 5.3× 106 71.0ms 113104
SMTP parser 3.7× 106 49.8ms 831376 5.8× 106 77.9ms 223008
SIP parser 3.7× 106 49.8ms 831376 6.6× 106 88.3ms 386632
HTTP parser 3.7× 106 49.8ms 831376 5.3× 106 71.1ms 116520

is not cost free: partial bitstream data must be transfered to the ICAP component from
the system to update reconfigurable zones. Inherently, such a process requires: (i) ad-
ditional execution time, and (ii) additional system memory to store the bitstream data.
Moreover, RZ zones must provide a higher set of resources compared to the most costly
coprocessor. Xilinx considers [Xilinx 2014] that about 80% of the slices in an RZ can
be used. Moreover, the working frequency of the system in the RZ may be reduced by
10%.

To evaluate the reconfiguration costs more precisely, a demonstrator was prototyped.
It is composed of a LEON-3 core and two RZ made to demonstrate and evaluate the
concept. The ICAP interface is directly connected (as a custom ALU) to the LEON-3
processor to ease the debugging task. In the implemented prototype, we decided to allo-
cate three times more slices to the RZ than the amount required by the SIP coprocessor
that is the coprocessor consuming most of the resources in our system. Such a choice
of design was based two arguments. First, we want to embody new coprocessors, de-
signed after the system is synthesized. These coprocessors can have higher hardware
complexity that the ones currently implemented. Second, we want to avoid the case
where routing would fail. In the current study an RZ implements at most one copro-
cessor (protocol) at a time. The opportunity to implement more than one coprocessor
simultaneously in a single RZ when enough resources are available has not been yet
evaluated. However, it seems to be an interesting way to optimize resource usage.

The partial bitstreams were stored in the LEON-3 processor memory (DDRAM) to
enable partial dynamic reconfiguration at runtime7. The memory footprints of partial
bitstreams are provided in Table X. The compression approach used to reduce memory
footprint is based on the Variable Length Coding (VLC) algorithm. Execution times
required for hardware reconfiguration, measured on the prototype, are also provided.
Once reconfigured, coprocessor performances (cycle/character) are identical to the ones
measured in previous section (Table V).

It is important to notice that the RZ were oversized when compared with the exist-
ing coprocessors’ real requirements. This design choice has an impact on the memory
footprint and the reconfiguration times. As useless resources are included in the RZ,
reconfiguring them consumes more time and memory. However, an optimized RZ size
can improve performances by a factor of 2 to 3. Further improvement in reconfiguration
times and memory footprints would be made possible through advanced optimization
techniques like the ones presented in [Duhem et al. 2012; Pham et al. 2012]. These
literature approaches have not been yet added to our system demonstrator due to the
huge engineering effort required to integrate them. A partially reconfigurable system
helps in reducing the system hardware complexity but it has drawbacks:

— Hardware reconfiguration is time consuming, therefore simultaneous processing of
multiple requests requiring different protocols on a single reconfigurable zone would
be inefficient. The number of reconfigurable zones must be at least equal to the num-
ber of protocols handled by the system at the same time;

7Another solution is to store bitstream data in system Compact flash (if any) and to load required configu-
ration information in memory only when the reconfigurable functionality is required.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 12, Publication date: January 2014.

12:20 B. Le Gal et al.

logic

control signals

hardware status

state load/store

message characters

parsing results

Transition table

Action table(s)

Condition table(s)

... table(s)

@ddr
counters

Controler

State
reg.re

gPr
oc

es
so

r
in

te
rf

ac
e

 RAM elements
 whose content

is replaced to change the
coprocessor parsing

behavior

 Address counters
 that are configured

according to RAM element
depth and content.

Fig. 11. Table-based coprocessor design

— Partial bitstreams required by the dynamic reconfiguration process must be stored
in the system (dynamic or static memory);

— Software codes managing the hardware coprocessors and their reconfiguration are
more complex which increases the complexity and implies an execution time over-
head.

6.2. Flexibility solution for ASIC technology
Partial reconfigurable solutions are only available on Xilinx and Altera FPGA devices.
In order to provide flexibility to other FPGA and ASIC based systems, a second ap-
proach has been investigated. It is based on another automata implementation which
uses the State Transition Tables working with memory blocks instead of logic for tran-
sition and state computations [Sklyarov 2002; Tang et al. 2010]. An overview of the
implementation architecture is provided in Fig. 11. This kind of implementation pro-
vides lower throughput performances than the previously presented one for both soft-
ware and hardware targets. This performance reduction is ensued from dichotomous
computations realized by the next-state evaluation function. These computations that
require memory accesses need more than one cycle to evaluate the next-state accord-
ing to input data and current state. The number of memories and their depths depend
on the automaton to implement (# states, # transitions, condition complexities).

The main advantage of this hardware design is that the coprocessor behavior can
be modified by replacing the memory blocks contents without hardware modification.
This (re)configuration opportunity helps in reducing the area required in our system.

The message processing time (cycles/char) is higher compared to logic-based copro-
cessors: transition evaluations and next-state computations require more than one
clock cycle. Compared to the (cycles/char) performance reported in Table IX, the table-
based coprocessors provide lower throughputs compared to logical-based coprocessor:
{×2.7,×3.1,×3.5,×1.6} for {HTTP, RTSP, SIP, SMTP} protocols, respectively.

Reconfiguration times for a system running at 75MHz and memory footprints (mem-
ory content required for coprocessor reconfiguration) are provided in Table XI. These
results were obtained from data with or without compression (using a Variable Length
Coding algorithm). Table XI shows that the execution times required to modify the
coprocessor behaviors are quite fast, proportional to memory footprint and reversely

Table XI. Coprocessor memory content reloading time and associated memory footprint

Protocol
Without data compression With data compression

Time Time Footprint Time Time Footprint
(cycles) @75MHz (bytes) (cycles) @75MHz (bytes)

RTSP parser 13802 0.22 ms 1524 18509 0.30ms 1307
HTTP parser 17263 0.28 ms 1905 29012 0.46ms 1643
SIP parser 100297 1.60 ms 13196 136152 2.18ms 10501
SMTP parser 70151 1.12 ms 9236 99284 1.58ms 7781

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 12, Publication date: January 2014.

A flexible SoC and its methodology... 12:21

proportional to the complexity of the message-parser automatons. The hardware cost
of such parser implementation is mainly composed of memory blocks: 1794 LUTs, 485
REGs. Besides, 35 BRAMs are required to handle the four protocols on Virtex-6 device.
This coprocessor’s architecture speed-up factor is lower than the one obtained previ-
ously. However, this architecture enables area cost reduction for systems that do not
offer runtime hardware reconfiguration.

7. CONCLUSION
In this article, we presented an efficient and flexible SoC architecture performing text-
based message analysis for network applications. The associated design flow allows
an automatic generation of hardware coprocessors and software layers. Besides, it au-
tomatically configures the SoC architecture starting from high-level specification of
text-based messages. Different evaluations of the approach have demonstrated that
the system reduces the execution time of the message analysis task and enables par-
allel processing between CPU and coprocessors. Furthermore, the coprocessors’ hard-
ware complexity is lower than the one produced by traditional HLS tools. In addition, a
discussion and an evaluation of the system’s flexibility have shown that it is possible to
support a large set of protocols with a low hardware complexity using runtime recon-
figuration on both ASIC and FPGA targets. Future works will first focus on improving
the design methodology algorithms then on the evolution of the SoPC architecture so
that to include other platforms such as ARM cores. Finally, the evaluation of much
more complex applications e.g. complete protocol gateways will be performed.

REFERENCES
ALTERA. 2012. Quartus II handbook version 12.1, Volume 1: design and synthesis, Chapter 3: design plan-

ning for partial reconfiguration. Altera corporation.
AMBER OPEN SOURCE PROJECT. 2013. Amber 2 Core Specification.
BANERJEE, N., ACHARYA, A., AND DAS, S. K. 2007. Enabling sip-based sessions in ad hoc networks. Wire-

less Netw. 13, 4, 461–479.
BEN-ASHER, Y., MEISLER, D., AND ROTEM, N. 2010. Reducing memory constraints in modulo scheduling

synthesis for fpgas. ACM Transactions on Reconfigurable Technology and Systems 3, 3, 15:1–15:19.
BORISOV, N., BRUMLEY, D. J., WANG, H. J., DUNAGAN, J., JOSHI, P., AND GUO, C. 2007. A generic

application-level protocol analyzer and its language. In 14th Annual Network & Distributed System
Security Symposium. 14:1–14:14.

BROMBERG, Y.-D. AND ISSARNY, V. 2005. INDISS: Interoperable discovery system for networked services.
In International Conference on Middleware. 164–183.

BROMBERG, Y.-D., RÉVEILLÈRE, L., LAWALL, J. L., AND MULLER, G. 2009. Automatic generation of net-
work protocol gateways. In International Conference on Middleware. 21–41.

BURGY, L., RÉVEILLÈRE, L., LAWALL, J., AND MULLER, G. 2011. Zebu: A language-based approach for
network protocol message processing. IEEE Transactions on Software Engineering 37, 575–591.

CANIS, A., CHOI, J., ALDHAM, M., ZHANG, V., KAMMOONA, A., CZAJKOWSKI, T., BROWN, S., AND AN-
DERSON, J. 2012. Legup: An open source high-level synthesis tool for fpga-based processor/accelerator
systems. ACM Transactions on Embedded Computing Systems (TECS) 1, 1, 1–25.

CASSEAU, E. AND LE GAL, B. 2012. Design of multi-mode application-specific cores based on high-level
synthesis. Integration, the VLSI Journal 45, 1, 9–21.

COUSSY, P., CHAVET, C., BOMEL, P., HELLER, D., SENN, E., AND MARTIN, E. 2008. High-Level Synthesis.
Springer, Chapter GAUT: A High-Level Synthesis Tool for DSP Applications, 147–169.

DAI, Z., NI, N., AND ZHU, J. 2010. A 1 cycle-per-byte xml parsing accelerator. In Proceedings of the 18th
annual ACM/SIGDA international symposium on Field programmable gate arrays. FPGA’10. 199–208.

DUHEM, F., MULLER, F., AND LORENZINI, P. 2012. Reconfiguration time overhead on field programmable
gate arrays: reduction and cost model. IET Computers & Digital Techniques 6, 2, 105–113.

GAISLER RESEARCH. 2010. GRLIB IP Library User’s Manual.
GALUZZI, C. AND BERTELS, K. 2011. The instruction-set extension problem: A survey. ACM Trans. Recon-

figurable Technol. Syst. 4, 2, 18:1–18:28.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 12, Publication date: January 2014.

12:22 B. Le Gal et al.

KRISHNAMURTHY, S. 2006. Tinysip: Providing seamless access to sensor-based services. Proc. 3rd Int. Conf.
Mobile Ubiquitous Sys.: Netw. Serv. 4611, 1–9.

LIN, C.-H., HUANG, C.-T., JIANG, C.-P., AND CHANG, S.-C. 2006. Optimization of regular expression pat-
tern matching circuits on FPGA. In Proceedings of the DATE Conference. 12–17.

LUCARZ, C., MATTAVELLI, M., WIPLIEZ, M., ROQUIER, G., RAULET, M., JANNECK, J., MILLER, I., AND
PARLOUR, D. 2008. Dataflow/actor-oriented language for the design of complex signal processing sys-
tems. In Proceedings of the DASIP Conference. 168–175.

LUNTEREN, J. V., ENGBERSEN, T., BOSTIAN, J., CAREY, B., AND LARSSON, C. 2004. Xml accelerator engine.
In 1st Int. Workshop on High Performance XML Processing.

MARTIN, K., WOLINSKI, C., KUCHCINSKI, K., FLOCH, A., AND CHAROT, F. 2012. Constraint Program-
ming Approach to Reconfigurable Processor Extension Generation and Application Compilation. ACM
TRETS 5, 2, 1–38.

MENTOR. Catapult C Synthesis User’s and Reference Manual.
MITRA, A., NAJJAR, W., AND BHUYAN, L. 2007. Compiling PCRE to FPGA for accelerating SNORT IDS. In

Proceedings of the Symposium on Architecture for networking and communications systems. 127–136.
MOSCOLA, J., CHO, Y. H., AND LOCKWOOD, J. W. 2008. Reconfigurable content-based router using

hardware-accelerated language parser. ACM Trans. on Design Automation of Electroni Systems 13, 2.
PASHA, M. A., DERRIEN, S., AND SENTIEYS, O. 2012. System-level synthesis for wireless sensor node

controllers: A complete design flow. ACM TODAES 17, 1, 1–24.
PHAM, M., BONAMY, R., PILLEMENT, S., AND CHILLET, D. 2012. Power-aware ultra-rapid reconfiguration

controller. In Proceedings of the Conference on Design and Test in Europe (DATE). 1373–1378.
POTHINENI, N., BRISK, P., LENNE, P., KUMAR, A., AND PAUL, K. 2010. A high-level synthesis flow for

custom instruction set extensions for application-specific processors. In ACM/IEEE Asia and South
Pacific Design Automation Conference. 707–712.

POZZI, L., ATASU, K., AND LENNE, P. 2006. Exact and approximate algorithms for the extension of embed-
ded processor instruction sets. IEEE Trans. on CAD of Integrated Circuits and Systems 25, 7, 1209–1229.

RAFLA, N. AND GAUBA, I. 2010. A reconfigurable pattern matching hardware implementation using on-chip
ram-based fsm. In Proceedings of the MWSCAS Conference. 49–52.

RHOADS, S. 2009. Plasma - most MIPS I(TM) opcodes: Overview.
SIDHU, R. AND PRASANNA, V. K. 2001. Fast regular expression matching using fpgas. In Proceedings of the

IEEE Symposium on Field-Programmable Custom Computing Machines. 227–238.
SKLYAROV, V. 2002. Reconfigurable models of finite state machines and their implementation in fpgas.

EUROMICRO Journal of Systems Architecture 47, 14-15, 1043–1064.
SPARC INTERNATIONAL INC. 1999. The SPARC Architecture Manual.
STEFANEC, T. AND SKULIBER, I. 2011. Grammar-based SIP parser implementation with performance opti-

mizations. In Proceedings of the International Conference on Telecommunications. 81–86.
STUEDI, P., BIHR, M., REMUND, A., AND ALONSO, G. 2007. Siphoc: Efficient sip middleware for ad hoc

networks. In Proceedings of the ACM International Conference on Middleware. 60–79.
SUN, F., RAGHUNATHAN, A., RAVI, S., AND JHA, N. 2004. Custom-instruction synthesis for extensible-

processor platforms. IEEE Trans. on CAD of Integrated Circuits and Systems 23, 7, 216–228.
TANG, Y., JIANG, J., WANG, X., WANG, Y., AND LIU, B. 2010. Cache-based scalable deep packet inspection

with predictive automaton. In Proceedings of the IEEE Global Telecommunications Conference. 1–5.
UPENDER, B. AND KOOPMAN, P. 1994. Communications protocols for embedded systems. ACM Transactions

on Programming Languages and Systems (TOPLAS) 11, 7, 46—58.
WANKE, S., SCHARF, M., KIESEL, S., AND WAHL., S. 2007. Measurement of the sip parsing performance in

the sip express router. Lecture Notes in Computer Science 460, 103–110.
XILINX. 2012. Vivado Design Suite User Guide: Synthesis. UG901 (v2012.2).
XILINX. 2014. Vivado Design Suite User Guide - Partial Reconfiguration (UG909). Xilinx corporation.
Y Explorations (YXI) 2010. eXCite C to RTL Behavioral Synthesis 4.1(a). Y Explorations (YXI).

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.

Received March 2014; revised July 2014; accepted —

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 12, Publication date: January 2014.

