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Université Rennes 2, Rennes, France,

2 AGH University of Science and Technology,
al. Mickiewicza 30, 30-059 Krakow, Poland,

email: aedudek@agh.edu.pl
3 Department of Mathematics, Cracow University of Economics,

ul. Rakowicka 27, 31-510 Cracow, Poland,
email: lenartl@uek.krakow.pl

Abstract

In this paper a subsampling approach for nonstationary time series
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1 Introduction and problem formulation

In this paper we discuss a subsampling approach for nonstationary time
series, which have a non-zero mean function.
First we introduce some notation. Let {Xt, t ∈ Z} be a nonstationary time
series and µ(t) = E(Xt) be its mean function. We assume that µ(t) 6≡ 0.
Moreover, we consider the following decomposition of the mean function

µ(t) = µ1(t) + µ2(t).

Functions µ1(t) and µ2(t) can be interpreted differently depending on the
application. In economics they can represent e.g., seasonal or business fluc-
tuations or a long-term trend, while in telecommunications these can be two
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periodic functions e.g., the first one may be a pilot tone and the latter one
the mean function of some periodic signal. A pilot tone is a signal trans-
mitted for control, synchronization or reference purposes. In the following
we assume that µ1(t) is non-zero and we know how to estimate it. On the
other hand, µ2(t) may be a zero function and moreover we may not have
complete knowledge of its form and properties. Such a model describes a
real data situation in which only partial information about the mean func-
tion is available e.g., we know the nature of some structure contained in the
data like seasonality, but other components require further investigation.
We denote the observed sample by Xn = (X1, X2, . . . , Xn). Let µ̂1,n(t)
be the estimator of µ1(t) based on Xn. We consider the modified sample
X̃n = (X̃1,n, X̃2,n, . . . , X̃n,n), where

X̃t,n = Xt − µ̂1,n(t).

In the sequel, for the sake of simplicity we skip the subscript n and we denote
elements of the triangular array X̃n by X̃i, i = 1, . . . , n. From now we will
be using only the sample X̃n i.e., we consider partially or entirely demeaned
data. This corresponds to the standard procedures of data analysis in which
the data is assumed to be demeaned before any further analysis (e.g. second-
order) is performed.
In the next section we present how the subsampling idea for nonstationary
time series (see chapter 4 in [Politis et al., 1999]) can be adapted to our
setting. In Section 3 we construct two tests designed for time series with
periodic and almost periodic structure. The first one is devoted to the first-
order frequency detection, while the second one can be used for testing the
second-order periodicity. Finally, Section 4 contains a real data application
of our results.

2 Subsampling

In the sequel we use notation introduced by [Politis et al., 1999].
Let θ = θ(P) ∈ R be the parameter of interest, where P is the joint probabil-
ity law governing {Xt, t ∈ Z}. Parameter θ can simply relate to µ2(t), but
one may consider other characteristics of Xt. Moreover, let θ̂n = θ̂n(X̃n)
be the estimator of θ and θ̂n,b,t = θ̂n,b,t(X̃t, X̃t+1, . . . , X̃t+b−1) be the es-
timator of θ based on subsample X̃t, X̃t+1, . . . , X̃t+b−1. In addition, let
θ̂′n,b,t = θ̂n,b,t(X

′
t, X

′
t+1, . . . , X

′
t+b−1), where X ′i = Xi − µ1(i), i ∈ Z.

By J ′b,t(P ) and Jn(P ) we denote the sampling distributions of τb(θ̂
′
n,b,t − θ)

and τn(θ̂n − θ), where τ(·) is an appropriate normalizing sequence. The
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corresponding cumulative distribution functions are defined as

J ′b,t(x, P ) = P
{
τb(θ̂

′
n,b,t − θ) ≤ x

}
(1)

and
Jn(x, P ) = P

{
τn(θ̂n − θ) ≤ x

}
. (2)

Finally, following [Politis et al., 1999] we assume that Xt is α-mixing.
Conditions below are sufficient conditions for the subsampling consistency.

Assumption 2.1 There exists a limiting law J(P ) such that

(i) Jn(P ) converges weakly to J(P ) as n −→∞.

(ii) For any continuity point x of J(P ) and for any sequences n, b with
n, b −→ ∞ and b/n −→ 0, we have 1

n−b+1

∑n−b+1
t=1 J ′b,t(x, P ) −→

J(x, P ).
OR
For any continuity point x of J(·, P ) and for any index sequence {tb}
we have that J ′b,tb(x, P ) −→ J(x, P ) as b −→∞.

(iii) max
1≤t≤n−b+1

τb

∣∣∣θ̂n,b,t − θ̂′n,b,t∣∣∣ p−→ 0.

One may notice that comparing to [Politis et al., 1999] (see Assumption
4.2.1. in [Politis et al., 1999]) we need an additional assumption (iii). It
is caused by the fact that in contrary to [Politis et al., 1999] we are using
partially demeaned data. Finally, condition (i) is identical to the one pro-
posed by Politis et al., while (ii) is adjusted to our problem.

The approximation of Jn(x, P ) is defined as

L̃n,b(x) =
1

n− b+ 1

n−b+1∑
t=1

1
{
τb

(
θ̂n,b,t − θ̂n

)
≤ x

}
,

where 1{A} is an indicator function of the event A.
Below we state the asymptotic validity of subsampling for general statistics.

Theorem 2.1 Assume that {Xt, t ∈ Z} is α-mixing time series. Under
Assumption 2.1 and taking τb/τn −→ 0, b = b(n) −→∞ such that b/n −→ 0
as n −→∞, we have

(i) if x is a continuity point of J(·, P ), then L̃n,b(x)
p−→ J(x, P ),
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(ii) if J(·, P ) is continuous, then supx∈R |L̃n,b(x)− J(x, P )| p−→ 0,

(iii) for α ∈ (0, 1), let c(1−α) = inf{x : J(x, P ) ≥ 1−α} and c̃n,b(1−α) =
inf{x : L̃n,b(x) ≥ 1−α}. If J(·, P ) is continuous at point c(1−α), then
subsampling confidence intervals are asymptotically consistent i.e.,

P
(
τn(θ̂n − θ) ≤ c̃n,b(1− α)

)
−→ 1− α. (3)

Remark: In our methodology we applied subsampling to partially de-
meaned data i.e., to X̃n. However, an alternative approach is possible. One
may consider the usual subsampling and use subsamples (Xt−µ̂1,n,b,t(t), Xt+1−
µ̂1,n,b,t(t+ 1), . . . , Xt+b−1− µ̂1,n,b,t(t+ b− 1)), where µ̂1,n,b,t(·) is the estima-
tor of the function µ1(·) based on (Xt, Xt+1, . . . , Xt+b−1). In such cases the
subsampling consistency can be obtained under the sufficient condition pre-
sented in [Politis et al., 1999] (see Assumption 4.2.1). However, one should
be aware that the estimator µ̂1,n,b,t(·) may have higher variance or bias than
µ̂1,n(·), especially when b is small.

3 Applications

In this section we present possible applications of our subsampling approach.
In the first subsection we introduce the class of time series with periodic and
almost periodic structure. Additionally, we discuss the assumptions that we
use in the consecutive subsections in which we provide two tests.

3.1 PC/APC time series

In our considerations we focus on periodically correlated (PC) and almost
periodically correlated (APC) time series, which are used for modeling sig-
nals in many different fields like economics, telecommunication, mechanics,
vibroacoustics and hydrology (see e.g. [Hurd and Miamee, 2007], [Napolitano, 2012],
[Napolitano, 2016]). Time series Xt is called PC with period T if it has pe-
riodic mean and autocovariance functions, i.e.

µ (t) = µ (t+ T ) and B(t, τ) = Cov (Xt, Xt+τ ) = Cov (Xt+T , Xt+τ+T )

for each t, τ ∈ Z. For more details we refer the reader to [Hurd and Miamee, 2007].
Sometimes it may happen that period length is not known or a considered
signal is a composition of two components with incommensurable periods.
To model such data APC time series are used (see e.g. [Napolitano, 2012]).
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They are a generalization of PC sequences. A time series that has finite sec-
ond order moments is called APC if its mean and autocovariance functions
are almost periodic in time. Finally, a function f(t) : Z −→ R of an integer
variable is called almost periodic if for any ε > 0 there exists an integer
Lε > 0 such that among any Lε consecutive integers there is an integer pε
with the property supt∈Z |f(t + pε) − f(t)| < ε (see [Corduneanu, 1989] for
more details).
Analysis of PC and APC processes is often performed in the frequency do-
main. In such cases the following Fourier expansions of the mean and the
autocovariance functions are used

µ(t) =
∑
ψ∈Ψ

m(ψ)eiψt, B(t, τ) =
∑
λ∈Λτ

a(λ, τ)eiλt (4)

for any shift τ ∈ Z, where

m(ψ) = lim
n→∞

1

n

n∑
j=1

µ(j)e−iψj , a(λ, τ) = lim
n→∞

1

n

n∑
j=1

B(j, τ)e−iλj

and Ψ = {ψ ∈ [0, 2π) : m(ψ) 6= 0} and Λτ = {λ ∈ [0, 2π) : a(λ, τ) 6= 0}
are the sets of the frequencies. The expansions (4) hold, if the sets Ψ and
Λτ , τ ∈ Z are finite. In the case of PC time series this condition always
holds and additionally, we know that Ψ,Λτ ⊆ {2kπ/T, k = 0, 1, . . . , T − 1}
for any τ ∈ Z.

Below we present the conditions that are used in the sequel.
Let {Xt, t ∈ Z} be an α-mixing time series. Depending on the considered
case we will assume that Xt is PC or APC.

A1 There exists a constant δ > 0 such that

sup
t∈Z

E |Xt|2+δ <∞ and

∞∑
k=0

α(k)δ/(2+δ) <∞;

A2 {Xt, t ∈ Z} is uniformly bounded i.e., there exists a constant M > 0
such that P (|Xt| ≤ M) = 1 for all t ∈ Z. Moreover, there exists a
constant ζ > 0 such that

∞∑
k=0

(k + 1)2α(k)ζ/(8+ζ) <∞;

A3 For any τ1, τ2, τ3 ∈ Z the function (t, τ1, τ2, τ3) −→ E (XtXt+τ1Xt+τ2Xt+τ3)
is periodic in t i.e.,

E (XtXt+τ1Xt+τ2Xt+τ3) = E (Xt+TXt+τ1+TXt+τ2+TXt+τ3+T ) .
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3.2 Testing the significance of a frequency in the mean func-
tion

In this section we assume that {Xt, t ∈ Z} is an APC time series. Let
us recall that we consider µ(t) = µ1(t) + µ2(t) and we know the estimator
of µ1(t). Moreover, functions µ1(t) and µ2(t) have the following Fourier
expansions µ1(t) =

∑
ψ∈Ψ1

m(ψ)eiψt and µ2(t) =
∑
ψ∈Ψ2

m(ψ)eiψt, where Ψ =

Ψ1 ∪Ψ2, the set Ψ1 is known and Ψ1 ∩Ψ2 = ∅. Then the natural estimator
of µ1(t) has the form (see e.g. [Hurd and Miamee, 2007])

µ̂1,n(t) =
∑
ψ∈Ψ1

 1

n

n∑
j=1

Xje
−iψj

 eiψt. (5)

Our aim is to test if for some frequency, for which we know that ψ0 6∈ Ψ1, we
have that ψ0 ∈ Ψ2. This problem can be equivalently expressed in terms of
the corresponding Fourier coefficients i.e., we consider H0 : |m(ψ0)| = 0 vs
H1 : |m(ψ0)| > 0. In this case θ = |m(ψ0)| and the test statistics Tn based
on X̃n is of the form

Tn =
√
n |m̂n(ψ0)| = 1√

n

∣∣∣∣∣∣
n∑
j=1

(Xj − µ̂1,n(j)) e−iψ0j

∣∣∣∣∣∣ .
Large values of Tn suggests that H1 is true. The quantiles of Tn can be
approximated using the subsampling method. For that purpose below we
state the subsampling validity for |m(ψ0)|.

Theorem 3.1 Assume that condition A1 is fulfilled. Moreover, let the
set Ψ be finite. Then Assumption 2.1 holds for θ = |m(ψ0)| and θ̂n =

|m̂n(ψ0)| = 1
n

∣∣∣∑n
j=1 (Xj − µ̂1,n(j)) e−iψ0j

∣∣∣. Therefore Theorem 2.1 ensures

that the subsampling based on X̃n is consistent i.e., (i)-(iii) in Theorem 2.1
holds.

3.3 Testing if B(t, τ) is periodic

In this section we discuss the problem of testing periodicity of the auto-
covariance function in the class of PC time series with known period T .
Note that in such a class of time series we have µ2(t) ≡ 0. Moreover,
µ̂1,n(t) is the estimator of the periodic function µ(t) and is given by for-
mula (5) with Ψ = Ψ1 = {2kπ/T : k = 0, 1, 2, . . . , T − 1}. To sim-
plify the notation we will write µ̂n(t) instead of µ̂1,n(t). We take τ ∈ Z
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and we consider the following test H0 : B(t, τ) is constant in t ∈ Z vs
H1 : B(t, τ) is periodic in t with period T . Note that H0 can be now equiv-
alently rewritten as H0 : |a(λ, τ)| = 0 for all λ ∈ {1, 2, . . . , T − 1}. Assume
that τ ≥ 0. The estimator of a(λ, τ) based on X̃n has the form

ân(λ, τ) =
1

n

n−τ∑
t=1

(Xt − µ̂n(t))(Xt+τ − µ̂n(t+ τ))e−iλt. (6)

Therefore we consider the following test statistics Un =
√
n
∑
λ∈A
|ân(λ, τ)|,

where A = {2kπ/T, k = 1, . . . , T − 1}. Large values of Un suggest that H1

is true. To approximate quantiles of Un, we show subsampling consistency.

Theorem 3.2 Assume that conditions A2 and A3 are fulfilled. Then As-
sumption 2.1 holds for θ =

∑
λ∈A |a(λ, τ)| and θ̂n =

∑
λ∈A |ân(λ, τ)|, where

ân(λ, τ) is given by (6). Therefore Theorem 2.1 ensures that the subsampling
based on X̃n is consistent i.e., (i)-(iii) in Theorem 2.1 holds.

4 A real data example

Below we present the real data application of the testing problem described
in Section 3.2. For that purpose we use data published by Eurostat, concern-
ing monthly industrial production (percentage change on previous period)
for Mining and quarrying; manufacturing; electricity, gas, steam and air
conditioning supply in three countries: France, Germany and Italy. In the
first row of Figure 1 are visualized gross data i.e., data that were not modi-
fied in any way before publishing (neither seasonally nor calendar adjusted).
The length of the analyzed sequence for each country is n = 288 (January
1992 - December 2015).
The considered data are known to contain two types of periodic structure.
The first one represents the typical seasonal effect with period length equal
to 12 months. The second one is a consequence of the so-called trading-day
effect or the calendar effect, which is caused by a different number of work-
ing days in each month. Note that, each February in non-leap-years has the
same number (equal to 20) of working days. For other months, this number
varies from month to month. For the Georgian calendar this additional de-
terministic source of variability (well characterized for macroeconomic time
series) is periodic with period equal to 400 years. But only a few frequen-
cies corresponding to this periodic phenomenon are predominant (for more
details see to chapter 11.2 in [Bell et al., 2012]). Thus, following the nota-
tion introduced in Section 3.2 we have that Ψ1 ⊆ {2kπ/12, k = 0, . . . , 11}.
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Moreover, it is known that for monthly data the predominant trading-day
frequency ψ0

∼= 2.18733.
We perform the test introduced in Section 3.2 to confirm that the frequency
ψ0 is significant i.e., that |m(ψ0)| 6= 0. Thus, we test the hypothesis:
ψ0 ∈ Ψ2 against ψ0 6∈ Ψ2. Note that ψ0 ∈ Ψ2 is equivalent to |m(ψ0)| 6= 0.
In our approach we are using data obtained after removing the seasonal
effect. One may note that in the case of the raw data, the ψ0 is very
close to the frequency ψ = 2π/3 ∈ Ψ1. To visualize this fact in the sec-
ond and in the third row of Figure 1 we present the estimated values of
Tn =

√
n|m̂n(ψ)|, ψ ∈ [0, π] obtained using the raw data Xn and partially

demeaned data X̃n, respectively. The observed effect could have a serious
impact on the results of our test if we used simply the raw data. To check
that we decided to apply our methodology not only to the data obtained
after removing the seasonal effect X̃n, but also to the raw data Xn (based
on [Lenart, 2013]). Below we discuss results of both approaches.
We set the significance level α = 5% and subsample length b ∈ {15, 20, . . . , 40}.
The obtained values of the test statistics for the raw data are: 0.397 (Ger-
many), 0.371 (France) and 0.497 (Italy). In the case of partially demeaned
data the corresponding values are a bit lower: 0.382 (Germany), 0.303
(France) and 0.411 (Italy). For each considered country values of the sub-
sampling quantiles are the highest for b = 15 and decrease when b increases.
For example in the case of Germany taking b = 15 we got a subsampling
quantile equal to 0.117 (raw data) and 0.06 (partially demeaned data). Cor-
responding values for b = 40 are: 0.094 and 0.042. Moreover, the raw data
quantiles have much higher values than those for the partially demeaned
data. As a result in the case of Italy values of the subsampling quantiles
for the raw data are close to the values of the test statistics. Additionally,
for Italy when the raw data and b = 15 are considered, the null hypothesis
is not rejected i.e., at a significance level 5%, frequency ψ0 is not detected
(p-value 0.0511). For b ∈ {20, 25, 30, 35, 40} the corresponding p-values are
equal to 0.026, 0.0114,0,0,0 and hence H0 is rejected. Simultaneously for
the partially demeaned data, independently of the chosen country and the
subsample length b, the null hypothesis is strongly rejected (p-values are
equal to 0), which means that at the considered significance level we always
detect the frequency ψ0. Thus, using our subsampling approach allows for
better frequency detection.
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Figure 1: First row: Monthly industrial production (percentage change on
previous period, raw data - neither seasonally nor calendar adjusted, source:
Eurostat) from Jan. 1992 to Dec. 2015. Second and third row: values of
test statistics Tn obtained respectively for the raw data Xn and for data got
after subtracting estimates of seasonal means X̃n.

5 Appendix

Proof of Theorem 2.1. The proof is similar to the one proposed by
[Politis et al., 1999] and hence we skip most of the details, indicating only

some major differences. Let q = n− b+ 1 and Un(x) = 1/q
q∑
t=1

1{τb(θ̂′n,b,t −

θ) ≤ x}. Notice that L̃n,b(x) = 1/q
q∑
t=1

1{τb[θ̂′n,b,t − θ] + τb[θ̂n,b,t − θ̂′n,b,t] −

τb[θ̂n − θ] ≤ x}. We show that for any x ∈ R and ε > 0

Un(x− ε)1{En} ≤ L̃n,b(x)1{En} ≤ Un(x+ ε), (7)

where En =

{
max
1≤t≤q

|Sn,b,t| ≤ ε
}

and Sn,b,t = τb

(
[θ̂n,b,t − θ̂′n,b,t]− [θ̂n − θ]

)
for 1 ≤ t ≤ q. If 1{En} = 0, then (7) is obvious. If 1{En} = 1 then

max
1≤t≤q

|Sn,b,t| = τb max
1≤t≤q

∣∣∣[θ̂n,b,t − θ̂′n,b,t]− [θ̂n − θ]
∣∣∣ ≤ ε,
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which means that uniformly in 1 ≤ t ≤ q we have Sn,b,t ∈ [−ε, ε]. Thus, for
any 1 ≤ t ≤ q we get that

1{τb(θ̂′n,b,t − θ) ≤ x− ε} ≤ 1{τb(θ̂′n,b,t − θ) ≤ x− Sn,b,t}

= 1{τb[θ′n,b,t − θ] + τb[θ̂n,b,t − θ̂′n,b,t]− τb[θ̂n − θ] ≤ x}, (8)

1{τb(θ̂′n,b,t − θ) ≤ x+ ε} ≥ 1{τb(θ̂′n,b,t − θ) ≤ x− Sn,b,t}

= 1{τb[θ′n,b,t − θ] + τb[θ̂n,b,t − θ̂′n,b,t]− τb[θ̂n − θ] ≤ x}. (9)

Summing inequalities (8), (9) over t = 1, 2, . . . , q we get (7).
In the next step we show that P (En)→ 1. Note that

max
1≤t≤q

|Sn,b,t| ≤ max
1≤t≤q

τb|θ̂n,b,t − θ̂′n,b,t|+ τb|θ̂n − θ|.

Using assumptions (iii) and (i) we obtain that max
1≤t≤q

τb|θ̂n,b,t − θ̂′n,b,t|
p−→ 0

and τb|θ̂n−θ|
p→ 0. Therefore max

1≤t≤q
|Sn,b,t|

p−→ 0 and we get that P (En)→ 1.

�

Proof of Theorem 3.1. Notice that under A1 the condition (ii) of As-
sumption 2.1 holds by the same arguments as were used in the proof of
Theorem 2.2 in [Lenart, 2013]. To show (i) note that

1

n

n∑
t=1

(Xt − µ̂1,n(t))e−iψ0t −m(ψ0) =

(
1

n

n∑
t=1

(Xt − µ1(t))e−iψ0t −m(ψ0)

)

+
1

n

n∑
t=1

(µ1(t)− E[µ̂1,n(t)])e−iψ0t +
1

n

n∑
t=1

(E[µ̂1,n(t)]− µ̂1,n(t))e−iψ0t. (10)

The second and the third summand on the right-hand side we denote by pn
and qn, respectively. We have

√
npn =

1√
n

n∑
t=1

∑
ψ∈Ψ1

m(ψ)−

 1

n

n∑
j=1

∑
ρ∈Ψ

m(ρ)eiρje−iψj

 eiψte−iψ0t

=
1√
n

∑
ψ∈Ψ1

1

n

∑
ρ∈Ψ\{ψ}

m(ρ)
ei(ρ−ψ)(ein(ρ−ψ) − 1)

ei(ρ−ψ) − 1

 ei(ψ−ψ0)(ein(ψ−ψ0) − 1)

ei(ψ−ψ0) − 1
.
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Therefore |
√
npn| = O(n−3/2). Moreover, note that |

√
nqn| is equal to∣∣∣∣∣∣ 1√

n

∑
ψ∈Ψ1

1

n

n∑
j=1

µ(j)e−iψj

− ∑
ψ∈Ψ1

1

n

n∑
j=1

Xje
−iψj

ei(ψ−ψ0)(ein(ψ−ψ0) − 1)

ei(ψ−ψ0) − 1

∣∣∣∣∣∣
≤ 1√

n

∑
ψ∈Ψ1

 1

n

n∑
j=1

|µ(j)−Xj |

 2

|ei(ψ−ψ0) − 1|
.

Since E|µ(j)−Xj | is bounded by some constant independent of n uniformly

at j ∈ Z, we get that E|
√
nqn| = O(n−1/2) and finally that

√
nqn

p−→ 0.
To show (iii) we use the inequality ||x| − |y|| ≤ |x− y| (which holds for any
x, y ∈ C). Then for any 1 ≤ t ≤ n − b + 1 the term τb|θ̂n,b,t − θ̂′n,b,t| can be
bounded from above by

1√
b

∣∣∣∣∣∣
t+b−1∑
j=t

(Xj − µ̂1,n(j))e−iψ0j −
t+b−1∑
j=t

(Xj − µ1(j))e−iψ0j

∣∣∣∣∣∣
=

1√
b

∣∣∣∣∣∣
t+b−1∑
j=t

∑
ψ∈Ψ1

m(ψ)eiψj −
∑
ψ∈Ψ1

[
1

n

n∑
k=1

Xke
−iψk

]
eiψj

 e−iψ0j

∣∣∣∣∣∣
≤ 1√

b

∑
ψ∈Ψ1

∣∣∣∣∣m(ψ)− 1

n

n∑
k=1

Xke
−iψk

∣∣∣∣∣ 2

|ei(ψ−ψ0) − 1|
.

Since |m(ψ)−1/n
n∑
k=1

Xke
−iψk| does not depend on t and tends to 0 in prob-

ability as n −→∞ for each ψ ∈ Ψ1, we get that (iii) holds. �

Proof of Theorem 3.2. Notice that under A2 and A3 the condition
(ii) of Assumption 2.1 holds by the same arguments as were used in the
proof of Theorem 1 and 2 in [Lenart et al., 2008]. To show (i) one needs
to decompose

√
n(θ̂n − θ) similarly to (10) and then to show the con-

vergence to 0 in probability of the corresponding terms. For that pur-

pose let us denote pn = 1/
√
n
n−τ∑
t=1

(Xt − µ(t))(µ(t + τ) − µ̂n(t + τ))e−iλt,

qn = 1/
√
n
n−τ∑
t=1

(µ(t)−µ̂n(t))(Xt+τ−µ(t+τ))e−iλt and rn = 1/
√
n
n−τ∑
t=1

(µ(t)−

µ̂n(t))(µ(t+ τ)− µ̂n(t+ τ))e−iλt.
Note that using the same arguments as in the proof of Theorem 2.1 in
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[Lenart, 2013] (under the same assumptions) and results of [Kim, 1994] we
get that

‖m̂n(ψ)−m(ψ)‖2 = O(n−1/2). (11)

Thus,

E|pn| ≤
∑
ψ∈Ψ

‖m(ψ)− m̂n(ψ)‖2

∥∥∥∥∥ 1√
n

n−τ∑
t=1

(Xt − µ(t))e−iλt+iψ(t+τ)

∥∥∥∥∥
2

= o(1).

Similarly E|qn| −→ 0 as n −→ ∞ and hence pn, qn −→ 0 in probability as
n −→∞. Finally, E|rn| is bounded by

∑
ψ1∈Ψ

∑
ψ2∈Ψ

‖m(ψ1)− m̂n(ψ1)‖2‖m(ψ2)− m̂n(ψ2)‖2

∣∣∣∣∣ 1√
n

n−τ∑
t=1

e−iλt+iψ1t+iψ2(t+τ)

∣∣∣∣∣
=
∑
ψ1∈Ψ

∑
ψ2∈Ψ

‖m(ψ1)− m̂n(ψ1)‖2‖m(ψ2)− m̂n(ψ2)‖2O(
√
n) = o(1).

To get (iii) note that using similar arguments as in the proof of Theorem
3.1, expression τb|θ̂n,b,t − θ̂′n,b,t| can be bounded from above by

1√
b

∑
λ∈Λτ\{0}

∣∣∣∣∣∣
t+b−1∑
j=t

Xj [µ̂n(j + τ)− µ(j + τ)]e−iλj

∣∣∣∣∣∣+ 1√
b

∑
λ∈Λτ\{0}

∣∣∣∣∣∣
t+b−1∑
j=t

Xj+τ [µ̂n(j)

−µ(j)]e−iλj
∣∣∣+

1√
b

∑
λ∈Λτ\{0}

∣∣∣∣∣∣
t+b−1∑
j=t

[µ̂n(j)µ̂n(j + τ)− µ(j)µ(j + τ)]e−iλj

∣∣∣∣∣∣ ,
for any 1 ≤ t ≤ n − b + 1. Let us denote summands above by an, bn and
cn, respectively and q = n − b + 1. Note that max

1≤t≤q
τb|θ̂n,b,tb − θ̂′n,b,t| ≤

max
1≤t≤q

an + max
1≤t≤q

bn + max
1≤t≤q

cn. Thus

max
1≤t≤q

an ≤ max
1≤t≤q

1√
b

∑
λ∈Λτ\{0}

∑
ψ∈Ψ

|m̂n(ψ)−m(ψ)|

∣∣∣∣∣∣
t+b−1∑
j=t

Xje
−iλj+iψ(j+τ)

∣∣∣∣∣∣
≤ 1√

b

∑
λ∈Λτ\{0}

∑
ψ∈Ψ

|m̂n(ψ)−m(ψ)|Mb, a.s.,

where the last inequality follows from assumption A2. Hence by (11)

‖ max
1≤t≤q

an‖2 ≤
∑
ψ∈Ψ

‖m̂n(ψ)−m(ψ)‖2O(b1/2) = O(
√
b/n)→ 0.
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This means that max
1≤t≤q

an −→ 0 in probability as n −→∞. The correspond-

ing convergence for bn can be obtained analogically. Finally,

max
1≤t≤q

cn ≤ O(
√
b)
∑
ψ1∈Ψ

∑
ψ2∈Ψ

|m̂n(ψ1)m̂n(ψ2)−m(ψ1)m(ψ2)|. (12)

To finish the proof of the theorem it is enough to show that the each
term of the sum on the right-hand side of (12) converges to 0 in prob-
ability as n −→ ∞. For that purpose let us take any ψ1, ψ2 ∈ Ψ. If
|m(ψ1)m(ψ2)| = 0 (without loss of generality we assume that |m(ψ1)| =
0), then O(

√
b/n)
√
n|m̂n(ψ1)||m̂n(ψ2)| −→ 0 in probability as n −→ ∞.

The last convergence follows from convergence of
√
nm̂n(ψ1) in distribu-

tion to Gaussian random variable (see Theorem 2.1 in [Lenart, 2013]), con-

vergence O(
√
b/n)|m̂n(ψ2)| p−→ 0 as n −→ ∞, the continuous mapping

theorem and Slutsky’s lemma. If |m(ψ1)m(ψ2)| 6= 0, then from Theorem
2.1 in [Lenart and Pipień, 2013], the multivariate delta method and Slut-

sky’s lemma we have that O(
√
b/n)
√
n|m̂n(ψ1)m̂n(ψ2)−m(ψ1)m(ψ2)| p−→

0 as n −→∞. �
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