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Université Rennes 2, Rennes, France,

2 AGH University of Science and Technology,
al. Mickiewicza 30, 30-059 Krakow, Poland,

email: aedudek@agh.edu.pl
3 Department of Mathematics, Cracow University of Economics,

ul. Rakowicka 27, 31-510 Cracow, Poland,
email: lenartl@uek.krakow.pl

December 13, 2016

Abstract

In this paper a subsampling approach for nonstationary time series
with a non-zero mean function is proposed. It is applied for peri-
odically and almost periodically processes. Two statistical tests are
constructed. An example with real data is presented.
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1 Introduction and problem formulation

In this paper we discuss a subsampling approach for nonstationary time
series, which have non-zero mean function.
As first we introduce some notation. Let {Xt : t ∈ Z} be a nonstationary
time series and µ(t) = E(Xt) be its mean function. We assume that µ(t) 6≡ 0.
Moreover, we consider the following decomposition of the mean function

µ(t) = µ1(t) + µ2(t).
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Functions µ1(t) and µ2(t) can be interpreted differently depending on the
application. In economics they can represent e.g., seasonal or business fluc-
tuations or a long-term trend pattern, while in telecommunications these
can be two periodic functions e.g., the first one may be a pilot tone and
the latter one the mean function of some periodic signal. Pilot tone is a
signal transmitted for control, synchronization or reference purposes. In the
following we assume that µ1(t) is non-zero and we know how to estimate it.
On the other hand, µ2(t) may be a zero function and moreover we may not
have complete knowledge of its form and properties. Such a model describes
a real data situation in which only partial information about the mean func-
tion is available e.g., we know the nature of some structure contained in the
data like seasonality, but other components require further investigation.
The observed sample we denote by Xn = (X1, X2, . . . , Xn). Let µ̂1,n(t)
be the estimator of µ1(t) based on Xn. We consider the modified sample
X̃n = (X̃1,n, X̃2,n, . . . , X̃n), where

X̃t,n = Xt − µ̂1,n(t).

In the sequel, for the sake of simplicity we skip the subscript n and we denote
elements of the triangular array X̃n by X̃i, i = 1, . . . , n. From now we will
be using only the sample X̃n i.e., we consider partially or entirely demeaned
data. This corresponds to the standard procedures of data analysis in which
the data is assumed to be demeaned before any further analysis (e.g. second-
order) is performed.
In the next section we present how the subsampling idea for nonstationary
time series (see chapter 4 in [9]) can be adapted to our setting. In Section
3 we construct two tests designed for time series with periodic and almost
periodic structure. The first one is devoted to the first-order frequency
detection, while the second one can be used for testing the second-order
periodicity. Finally, Section 4 contains a real data application of our results.

2 Subsampling

In the sequel we use notation introduced by [9].
Let θ = θ(P) ∈ R be the parameter of interest, where P is the joint probabil-
ity law governing {Xt, t ∈ Z}. Parameter θ can simply relate to µ2(t), but
one may consider other characteristics of Xt. Moreover, let θ̂n = θ̂n(X̃n)
be the estimator of θ and θ̂n,b,t = θ̂n,b,t(X̃t,n, X̃t+1,n, . . . , X̃t+b−1,n) be the
estimator of θ based on subsample X̃t, X̃t+1, . . . , X̃t+b−1. In addition, let
θ̂′n,b,t = θ̂n,b,t(X

′
t, X

′
t+1, . . . , X

′
t+b−1), where X ′i = Xi − µ1(i), i ∈ Z.
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By J ′b,t(P ) and Jn(P ) we denote the sampling distributions of τb(θ̂
′
n,b,t − θ)

and τb(θ̂n− θ), where τb is an appropriate normalizing sequence. The corre-
sponding cumulative distribution functions are defined as

J ′b,t(x, P ) = P
{
τb(θ̂

′
n,b,t − θ) ≤ x

}
(1)

and
Jn(x, P ) = P

{
τb(θ̂n − θ) ≤ x

}
. (2)

Finally, following [9] we assume that Xt is α-mixing.
Conditions below are the sufficient conditions for the subsampling consis-
tency.

Assumption 2.1 There exist a limiting low J(P ) such that

(i) Jn(P ) converges weakly to J(P ) as n −→∞.

(ii) For any continuity point x of J(P ) and for any sequences n, b with
n, b −→ ∞ and b/n −→ 0, we have 1/q

∑q
t=1 J

′
b,t(x, P ) −→ J(x, P ),

where q = n− b+ 1.
OR
For any continuity point x of J(·, P ) and for any index sequence {tb}
we have that J ′b,tb(x, P ) −→ J(x, P ) as b −→∞.

(iii) For any index sequence {tb} we have that τb

∣∣∣θ̂n,b,tb − θ̂′n,b,tb∣∣∣ p−→ 0.

One may notice that comparing to [9] (see Assumption 4.2.1. in [9]) we need
an additional assumption (iii). It is caused by the fact that in contrary to
[9] we are using partially demeaned data. Finally, condition (i) is identical
to the one proposed by Politis et al., while (ii) is adjusted to our problem.

The approximation of Jn(x, P ) is defined as

L̃n,b(x) =
1

q

q∑
t=1

1
{
τb

(
θ̂n,b,t − θ̂n

)
≤ x

}
,

where 1{A} is an indicator function of the event A.
Below we state asymptotic validity of subsampling for general statistics.

Theorem 2.1 Assume that Xt is α-mixing. Under Assumption 2.1 and
taking τb/τn −→ 0, b = b(n) −→ ∞ such that b/n −→ 0 as n −→ ∞, we
have
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(i) if x is a continuity point of J(·, P ), then L̃n,b(x)
p−→ J(x, P ),

(ii) if J(·, P ) is continuous, then supx∈R |L̃n,b(x)− J(x, P )| p−→ 0,

(iii) For α ∈ (0, 1), let c(1−α) = inf{x : J(x, P ) ≥ 1−α} and c̃n,b(1−α) =
inf{x : L̃n,b(x) ≥ 1−α}. If J(·, P ) is continuous at point c(1−α), then
subsampling confidence intervals are asymptotically consistent i.e.,

P
(
τn(θ̂n − θ) ≤ c̃n,b(1− α)

)
−→ 1− α. (3)

Remark: In our methodology we applied subsampling to partially de-
meaned data i.e., to X̃n. However, an alternative approach is possible. One
may consider the usual subsampling and use subsamples (Xt−µ̂1,n,b,t(t), Xt+1−
µ̂1,n,b,t(t+ 1), . . . , Xt+b−1− µ̂1,n,b,t(t+ b− 1)), where µ̂1,n,b,t(·) is the estima-
tor of the function µ1(·) based on (Xt, Xt+1, . . . , Xt+b−1). In such cases the
subsampling consistency can be obtained under the sufficient condition pre-
sented in [9] (see Assumption 4.2.1). However, one should be aware that the
estimator µ̂1,n,b,t(·) may have much higher variance than µ̂1,n(t), especially
when b is small.

3 Applications

In this section we discuss possible applications of our subsampling approach.
We focus on periodically correlated (PC) and almost periodically correlated
(APC) time series, which are used for modeling signals in many different
fields like economics, telecommunication, mechanics, vibroacoustics and hy-
drology (see e.g. [3], [7], [8]). Time series Xt is called PC with period T if
it has periodic mean and autocovariance functions, i.e.

µ (t) = µ (t+ T ) and B(t, τ) = Cov (Xt, Xt+τ ) = Cov (Xt+T , Xt+τ+T )

for each t, τ ∈ Z. For more details we refer the reader to [3]. Sometimes
it may happen that period length is not known or a considered signal is a
composition of two components with incommensurable periods. To model
such data APC time series are used (see e.g. [7]). They are generalization
of PC sequences. A time series that has finite second order moments is
called APC if its mean and autocovariance functions are almost periodic
in time. Finally, a function f(t) : Z −→ R of an integer variable is called
almost periodic if for any ε > 0 there exists an integer Lε > 0 such that
among any Lε consecutive integers there is an integer pε with the property
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supt∈Z |f(t+ pε)− f(t)| < ε (see [2] for more details).
Analysis of PC and APC processes is often performed in the frequency
domain. In such cases the following Fourier representations of the mean and
the autocovariance functions are used

µ(t) ∼
∑
ψ∈Ψ

m(ψ)eiψt, B(t, τ) ∼
∑
λ∈Λτ

a(λ, τ)eiλt (4)

for any τ ∈ Z, where

m(ψ) = lim
n→∞

1

n

n∑
t=1

µ(t)e−iψt, a(λ, τ) = lim
n→∞

1

n

n∑
j=1

B(j, τ)e−iλj

and the sets Ψ = {ψ ∈ [0, 2π) : m(ψ) 6= 0} and Λτ = {λ ∈ [0, 2π) :
a(λ, τ) 6= 0} are countable. Moreover, in the case of PC time series Ψ,Λτ ⊆
{2kπ/T, k = 0, 1, . . . , T − 1} for any τ ∈ Z. In the sequel we assume that
the sets Ψ and Λτ are finite. Then in (4) we have equalities.

3.1 Testing significance of a frequency in mean function

Let us recall that we consider µ(t) = µ1(t)+µ2(t) and we know the estimator
of µ1(t). Moreover, functions µ1(t) and µ2(t) have the following Fourier
expansions µ1(t) =

∑
ψ∈Ψ1

m(ψ)eiψt and µ2(t) =
∑
ψ∈Ψ2

m(ψ)eiψt, where Ψ =

Ψ1 ∪Ψ2, the set Ψ1 is known and Ψ1 ∩Ψ2 = ∅. Then the natural estimator
of µ1(t) has the form (see e.g. [3])

µ̂1,n(t) =
∑
ψ∈Ψ1

 1

n

n∑
j=1

Xje
−iψj

 eiψt. (5)

Our aim is to test if for some frequency ψ0 6∈ Ψ1 we have ψ0 ∈ Ψ2. This
problem can be equivalently expressed in terms of the corresponding Fourier
coefficients i.e., we consider H0 : |m(ψ0)| = 0 vs H1 : |m(ψ0)| > 0. In this
case θ = |m(ψ0)| and the test statistics Tn based on X̃n is of the form

Tn =
√
n |m̂n(ψ0)| = 1√

n

∣∣∣∣∣∣
n∑
j=1

(Xj − µ̂1,n(j)) e−iψ0j

∣∣∣∣∣∣ .
Large values of Tn suggests that H1 is true. The quantiles of Tn can be
approximated using the subsampling method. For that purpose below we
state the subsampling validity for |m(ψ0)|.

5



Theorem 3.1 Assume that the assumptions of Theorem 2.1 from [4] hold.
Then the subsampling based on X̃n is consistent for θ = |m(ψ0)| i.e., Theo-
rem 2.1 holds.

3.2 Testing if B(t, τ) is periodic

In this section we discuss the problem of testing periodicity of the au-
tocovariance function in the class of PC time series with known period
T . Note that in such a class of time series we have µ2(t) ≡ 0. More-
over, µ̂1,n(t) is the estimator of the periodic function µ(t) and is given
by formula (5), where Ψ1 = {2kπ/T : k = 0, 1, 2, . . . , T − 1}. To sim-
plify the notation we will write µ̂n(t) instead of µ̂1,n(t). We take τ ∈ Z
and we consider the following test H0 : B(t, τ) is constant in t ∈ Z vs
H1 : B(t, τ) is periodic in t. Note that H0 can be now equivalently rewrit-
ten as H0 : |a(λ, τ)| = 0 for all λ ∈ {1, 2, . . . , T − 1}. Assume that τ ≥ 0.
The estimator of a(λ, τ) based on X̃n has the form

ân(λ, τ) =
1

n

n−τ∑
t=1

(Xt − µ̂n(t))(Xt+τ − µ̂n(t+ τ))e−iλt. (6)

Therefore we consider the following test statistics Un =
√
n
∑
λ∈A
|ân(λ, τ)|,

where A = {2kπ/T, k = 1, . . . , T − 1}. Large values of Un suggests that H1

is true. To approximate quantiles of Un, we show subsampling consistency.

Theorem 3.2 Assume that the assumptions of Theorem 2 of [5] hold. Then
the subsampling based on X̃n is consistent for θ =

∑
λ∈A
|a(λ, τ)| i.e., Theorem

2.1 holds.

4 Real data example

Below we present the real data application of the testing problem described
in Section 3.1. For that purpose we use data published by Eurostat, concern-
ing monthly industrial production (percentage change on previous period)
for Mining and quarrying; manufacturing; electricity, gas, steam and air
conditioning supply in three countries: France, Germany and Italy. In the
first row of Figure 1 are visualized gross data i.e., data that were not modi-
fied in any way before publishing (neither seasonally nor calendar adjusted).
The length of the analyzed sequence for each country is n = 288 (January
1992 - December 2015).
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The considered data are known to contain two types of periodic structure.
The first one represents the typical seasonal effect with period length equal
to 12 months. The latter one is a consequence of the fact that in each month
the number of working days can be different. As the result an additional
period equal to 4800 months (400 years) is observed (see chapter 11.2 in
[1]). The main theoretical frequency corresponding to the trading-day effect
is ψ0

∼= 2.18733 for the monthly data set. Our aim is to test its presence
using tools introduced in Section 3.1. The second and the third row of Fig-
ure 1 contain the estimated values of Tn =

√
n|m̂n(ψ)|, ψ ∈ [0, π] obtained

using the raw data and partially demeaned data X̃n, respectively. One may
note that in a case of the gross data ψ0 is very close to the strong true
frequency ψ = 2π/3. That fact could have a serious impact on the results of
our test if we used simply the raw data. To check that we decided to apply
our methodology to the data obtained after removing the seasonal effect
and additionally to the raw data (based on [4]). Below we discuss results
of both approaches. We set the significance level α = 5% and subsample
length b ∈ {15, 20, . . . , 40}. The obtained values of the test statistics for the
raw data are: 0.397 (Germany), 0.371 (France) and 0.497 (Italy). In the
case of partially demeaned data corresponding values are a bit lower: 0.382
(Germany), 0.303 (France) and 0.411 (Italy). For each considered country
values of the subsampling quantiles are the highest for b = 15 and decrease
when b increases. For example in the case of Germany taking b = 15 we
got a subsampling quantile equal to 0.117 (raw data) and 0.06 (partially
demeaned data). Corresponding values for b = 40 are: 0.094 and 0.042.
Moreover, for the gross data quantiles have much higher values than those
for the partially demeaned data. As a result in the case of France and Italy
values of the subsampling quantiles for the raw data are close to the values
of the test statistics. Moreover, when for Italy the raw data and b = 15
are considered, the null hypothesis is not rejected i.e., at a significance level
5%, frequency ψ0 is not detected. Simultaneously for the partially demeaned
data, independent of the chosen country and the subsample length b, the null
hypothesis is strongly rejected, which means that at the considered signifi-
cance level we always detect the frequency ψ0. Thus, using our subsampling
approach allows for better frequency detection.

5 Appendix

Proof of Theorem 2.1. The proof is similar to the one proposed by [9] and
hence we skip most of the details, indicating only some major differences.
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Figure 1: First row: Monthly industrial production (percentage change
on previous period, gross data - neither seasonally nor calendar adjusted,
source: Eurostat) from Jan. 1992 to Dec. 2015. Second and third row:
values of test statistics Tn =

√
n|m̂n(ψ)| for ψ ∈ [0, π] obtained respectively

for the gross data and for data got after subtracting estimates of seasonal
means.

Let q = n − b + 1 and Un(x) = 1/q
q∑
t=1

1{τb(θ̂′n,b,t − θ) ≤ x}. Notice that

L̃n,b(x) = 1/q
q∑
t=1

1{τb[θ̂′n,b,t− θ] + τb[θ̂n,b,t− θ̂′n,b,t]− τb[θ̂n− θ] ≤ x}. We show

that for any x ∈ R and ε > 0

Un(x− ε)1{En} ≤ L̃n,b(x)1{En} ≤ Un(x+ ε), (7)

where En =

{
max
1≤t≤q

|Sn,b,t| ≤ ε
}

and Sn,b,t = τb

(
[θ̂n,b,t − θ̂′n,b,t]− [θ̂n − θ]

)
for 1 ≤ t ≤ q. If 1{En} = 0, then (7) is obvious. If 1{En} = 1 then

max
1≤t≤q

|Sn,b,t| = τb max
1≤t≤q

∣∣∣[θ̂n,b,t − θ̂′n,b,t]− [θ̂n − θ]
∣∣∣ ≤ ε,
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which means that uniformly in 1 ≤ t ≤ q we have Sn,b,t ∈ [−ε, ε]. Thus, for
any 1 ≤ t ≤ q we get that

1{τb(θ̂′n,b,t − θ) ≤ x− ε} ≤ 1{τb(θ̂′n,b,t − θ) ≤ x− Sn,b,t}

= 1{τb[θ′n,b,t − θ] + τb[θ̂n,b,t − θ̂′n,b,t]− τb[θ̂n − θ] ≤ x}, (8)

1{τb(θ̂′n,b,t − θ) ≤ x+ ε} ≥ 1{τb(θ̂′n,b,t − θ) ≤ x− Sn,b,t}

= 1{τb[θ′n,b,t − θ] + τb[θ̂n,b,t − θ̂′n,b,t]− τb[θ̂n − θ] ≤ x}. (9)

Summing inequalities (8), (9) over t = 1, 2, . . . , q we get (7).
In the next step we show that P (En)→ 1. Note that

max
1≤t≤q

|Sn,b,t| ≤ max
1≤t≤q

τb|θ̂n,b,t − θ̂′n,b,t|+ τb|θ̂n − θ|.

Using assumptions (iii) and (i) we obtain that max
1≤t≤q

τb|θ̂n,b,t − θ̂′n,b,t|
p−→ 0

and τb|θ̂n−θ|
p→ 0. Therefore max

1≤t≤q
|Sn,b,t|

p−→ 0 and we get that P (En)→ 1.

�

Proof of Theorem 3.1. Notice that under the appropriate regularity
conditions (see Theorem 2.2 from [4]) (ii) holds. To show (i) note that

1

n

n∑
t=1

(Xt − µ̂1,n(t))e−iψ0t −m(ψ0) =

(
1

n

n∑
t=1

(Xt − µ1(t))e−iψ0t −m(ψ0)

)

+
1

n

n∑
t=1

(µ1(t)− E[µ̂1,n(t)])e−iψ0t +
1

n

n∑
t=1

(E[µ̂1,n(t)]− µ̂1,n(t))e−iψ0t. (10)

The second and the third summand on the right-hand side we denote by pn
and qn, respectively. We have

√
npn =

1√
n

n∑
t=1

∑
ψ∈Ψ1

m(ψ)−

 1

n

n∑
j=1

∑
ρ∈Ψ

m(ρ)eiρje−iψj

 eiψte−iψ0t

=
1√
n

∑
ψ∈Ψ1

1

n

∑
ρ∈Ψ\{ψ}

m(ρ)
ei(ρ−ψ)(ein(ρ−ψ) − 1)

ei(ρ−ψ) − 1

 ei(ψ−ψ0)(ein(ψ−ψ0) − 1)

ei(ψ−ψ0) − 1
.
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Therefore |
√
npn| = O(n−3/2). Moreover, note that |

√
nqn| is equal to∣∣∣∣∣∣ 1√

n

∑
ψ∈Ψ1

1

n

n∑
j=1

µ(j)e−iψj

− ∑
ψ∈Ψ1

1

n

n∑
j=1

Xje
−iψj

ei(ψ−ψ0)(ein(ψ−ψ0) − 1)

ei(ψ−ψ0) − 1

∣∣∣∣∣∣
≤ 1√

n

∑
ψ∈Ψ1

 1

n

n∑
j=1

|µ(j)−Xj |

 2

|ei(ψ−ψ0) − 1|
.

Since E|µ(j)−Xj | is bounded by some constant independent of n uniformly

at j ∈ Z, we get that E|
√
nqn| = O(n−1/2) and finally that

√
nqn

p−→ 0.
To show (iii) we use the inequality ||x| − |y|| ≤ |x− y| (which holds for any
x, y ∈ C). Then τb|θ̂n,b,tb − θ̂′n,b,tb | can be bounded from above by

1√
b

∣∣∣∣∣∣
t+b−1∑
j=t

(Xj − µ̂1,n(j))e−iψ0j −
t+b−1∑
j=t

(Xj − µ1(j))e−iψ0j

∣∣∣∣∣∣
=

1√
b

∣∣∣∣∣∣
t+b−1∑
j=t

∑
ψ∈Ψ1

m(ψ)eiψj −
∑
ψ∈Ψ1

[
1

n

n∑
k=1

Xke
−iψk

]
eiψj

 e−iψ0j

∣∣∣∣∣∣
≤ 1√

b

∑
ψ∈Ψ1

∣∣∣∣∣m(ψ)− 1

n

n∑
k=1

Xke
−iψk

∣∣∣∣∣ 2

|ei(ψ−ψ0) − 1|
.

Since |m(ψ) − 1/n
n∑
k=1

Xke
−iψk| −→ 0 in probability as n −→ ∞ for each

ψ ∈ Ψ1, we get that τb|θ̂n,b,tb − θ̂′n,b,tb | −→ 0 in probability as n −→∞. �

Proof of Theorem 3.2. Notice that under appropriate regularity con-
ditions (see [5]) (ii) holds. To show (i) one needs to decompose

√
n(θ̂n − θ)

similarly to (10) and then to show the convergence to 0 in probability of the

corresponding terms. For that purpose let us denote pn = 1/
√
n
n−τ∑
t=1

(Xt −

µ(t))(µ(t+ τ)− µ̂n(t+ τ))e−iλt, qn = 1/
√
n
n−τ∑
t=1

(µ(t)− µ̂n(t))(Xt+τ − µ(t+

τ))e−iλt and rn = 1/
√
n
n−τ∑
t=1

(µ(t)− µ̂n(t))(µ(t+ τ)− µ̂n(t+ τ))e−iλt.

Note that using the same arguments as in the proof of the Theorem 2.1 in
[4] (under the same assumptions), it can be shown that for any ψ ∈ (0, π]
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and any δ0 > 0 we have ‖m(ψ)− m̂n(ψ)‖2 = o(n−1/2+δ0) as n −→∞. Thus,

E|pn| ≤
∑
ψ∈Ψ

‖m(ψ)− m̂n(ψ)‖2

∥∥∥∥∥ 1√
n

n−τ∑
t=1

(Xt − µ(t))e−iλt+iψ(t+τ)

∥∥∥∥∥
2

= o(1).

Similarly E|qn| −→ 0 as n −→ ∞ and hence pn, qn −→ 0 in probability as
n −→∞. Finally, E|rn| is bounded by

∑
ψ1∈Ψ

∑
ψ2∈Ψ

‖m(ψ1)− m̂n(ψ1)‖2‖m(ψ2)− m̂n(ψ2)‖2

∣∣∣∣∣ 1√
n

n−τ∑
t=1

e−iλt+iψ1t+iψ2(t+τ)

∣∣∣∣∣
=
∑
ψ1∈Ψ

∑
ψ2∈Ψ

‖m(ψ1)− m̂n(ψ1)‖2‖m(ψ2)− m̂n(ψ2)‖2O(
√
n) = o(1).

To get (iii) note that using similar arguments as in the proof of Theorem
3.1, expression τb|θ̂n,b,tb − θ̂′n,b,tb | can be bounded from above by

1√
b

∑
λ∈Λτ\{0}

∣∣∣∣∣∣
t+b−1∑
j=t

Xj [µ̂n(j + τ)− µ(j + τ)]e−iλj

∣∣∣∣∣∣+ 1√
b

∑
λ∈Λτ\{0}

∣∣∣∣∣∣
t+b−1∑
j=t

Xj+τ [µ̂n(j)

−µ(j)]e−iλj
∣∣∣+

1√
b

∑
λ∈Λτ\{0}

∣∣∣∣∣∣
t+b−1∑
j=t

[µ̂n(j)µ̂n(j + τ)− µ(j)µ(j + τ)]e−iλj

∣∣∣∣∣∣ .
Let us denote summands above by an, bn and cn, respectively. Since b/n −→
0 as n −→∞, there exists a positive constant δ′ such that

√
b = O(n1/2−δ′).

Thus,

E|an| ≤
1√
b

∑
λ∈Λτ\{0}

∑
ψ∈Ψ

‖m̂n(ψ)−m(ψ)‖2

∥∥∥∥∥∥
t+b−1∑
j=t

Xje
−iλj+iψ(j+τ)

∥∥∥∥∥∥
2

=
∑
ψ∈Ψ

‖m̂n(ψ)−m(ψ)‖2O(b1/2) = O(n1/2−δ′)o(n−1/2+δ0) = o(1)

for any δ0 < δ′. This means that an −→ 0 in probability as n −→ ∞. The
corresponding convergence for bn can be obtained analogically. Finally,

cn ≤ O(
√
b)
∑

ψ1∈ΨT

∑
ψ2∈Ψ

|m̂n(ψ1)m̂n(ψ2)−m(ψ1)m(ψ2)|. (11)

To finish the proof of the theorem it is enough to show that the each
term of the sum in the right-hand side of (11) converges to 0 in prob-
ability as n −→ ∞. For that purpose let us take any ψ1, ψ2 ∈ Ψ. If
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|m(ψ1)m(ψ2)| = 0 (without loss of generality we assume that |m(ψ1)| = 0),
then O(

√
b)|m̂n(ψ1)m̂n(ψ2)| −→ 0 in probability as n −→ ∞. The last

convergence follows from the continuous mapping theorem, convergence
n1/2−δ0 |m̂n(ψ1)| −→ 0 in probability as n −→ ∞, convergence in proba-
bility of m̂n(ψ2) to m(ψ2) and Slutsky’s lemma. If |m(ψ1)m(ψ2)| 6= 0, then
from Theorem 2.1 in [6], the multivariate delta method, the continuous map-
ping theorem and Slutsky’s lemma we have that n1/2−δ0 |m̂n(ψ1)m̂n(ψ2) −
m(ψ1)m(ψ2)| p−→ 0 as n −→ ∞ for any δ0 > 0. Taking δ0 < δ′ we get
the required convergence of the right-hand side of (11). �
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