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Surface anisotropy energy density is a key quantity in the description of the dynamics of surface
spins in ferromagnetic thin films and is known to result in a ferromagnetic resonance fine structure of
a thin film: a multipeak spectrum is observed in an effect known as spin-wave resonance (SWR). The
so-called surface pinning parameter, directly correlated with the surface anisotropy energy, plays a
fundamental role in determining the character of an SWR spectrum in the theory of SWR based on
the surface inhomogeneity model. Here we extend the theory of SWR by introducing a new formula
representing the surface pinning parameter as a series of contributions from different anisotropies
existing in (Ga,Mn)As thin films. We show how to determine the coefficients in this series by
comparing the SWR theory with data obtained in a resonance experiment. The proposed procedure
allows to determine the proportion with which each type of the anisotropy contributes to the total
surface anisotropy of (Ga,Mn)As, and, consequently, to assess to what extent the proportions on
the surface differ from those in the bulk. The presented considerations can be used for the study of
any other thin-film system, since we provide also a general rule that allows to express the surface
pinning parameter of a thin film, as well as its surface anisotropy energy, by the free energy of the
considered thin-film system. This enables the interpretation of experimental SWR spectra in terms
of the free-energy density of the thin film.

PACS numbers: 75.50.Pp 76.50.+g 75.70.-i 75.30.Ds 76.60.-k
Keywords: ferromagnetic semiconductors, (Ga,Mn)As thin films, spin-wave resonance, surface anisotropy,
surface spin pinning, surface parameter

I. INTRODUCTION

Ferromagnetic semiconductors are in the class of ma-
terials that show promise of application in new spin-
electronic - or, in short, spintronic - devices using both
the charge and spin of the electron. Gallium manganese
arsenide, (Ga,Mn)As, is a promising material in this
class, hence the recent intensification of studies of its
properties. Its magnetic anisotropy is of particular inter-
est for its prospective technological applications. How-
ever, the origins of this anisotropy in (Ga,Mn)As have
not been entirely elucidated yet, which can be expected
to affect the control of its use in spintronic devices. Par-
ticularly, the magnetic anisotropy of thin films of gallium
manganese arsenide, (Ga,Mn)As, is one of their most in-
teresting properties, since it determines the direction of
the sample magnetization, the manipulation of which is
of key importance for prospective application of this ma-
terial in memory devices. For this reason the magnetic

anisotropy of (Ga,Mn)As thin films is being intensively
investigated by many experimental techniques. These in-
clude spin-wave resonance (SWR), a method for studying
the surface of (Ga,Mn)As thin films in this respect.1–16

It is worthy of notice that the main objective of the SWR
studies conducted so far in (Ga,Mn)As has been to obtain
information on certain volume characteristics, such as
the value of uniaxial anisotropy7 or exchange constant14

in the studied material. This is understandable, as the
complex nature of ferromagnetism in dilute semiconduc-
tors prompts the search of methods that could provide
new information explaining this new (volume) material
property. Paradoxically, this leaves the main potential of
SWR unexploited, since the chief message of SWR stud-
ies provides information on magnetic characteristics of
the surface (see e.g.17). We propose here to use SWR
first of all for probing the surface magnetic anisotropy in
(Ga,Mn)As thin films.

The structure of the multi-peak SWR spectra observed
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in thin-film samples strongly depends on the type of in-
homogeneity existing in the sample. Two extremely ide-
alized models, the volume inhomogeneity (VI) model and
the surface inhomogeneity (SI) model, have been used so
far for the description of this dependence. The objec-
tive of this paper is to contribute to a present theory of
spin-wave resonance based on the SI model adjusted in
its touchiest point, namely - the boundary conditions.
The model uses the concept of surface pinning param-
eter, which describes the freedom of precessing surface
spins in relation to that of precessing bulk spins.

The paper is organized as follows. In Section II we
determine the contribution of the magnetocrystalline
anisotropy to the free-energy density of a (Ga,Mn)As
thin film; the contribution includes first-, second- and
third-order cubic anisotropy terms, first- and second-
order perpendicular-to-plane uniaxial anisotropy terms,
and two in-plane uniaxial anisotropy energy terms. Next,
in Section III we demonstrate how specifically (by what
formula) each of the above-mentioned magnetocrystalline
anisotropies contributes to the surface anisotropy and the
surface pinning. In Sections IV and V we consider, with
reference to the experimental data, specific angular con-
figurations of the static magnetic field with respect to the
surface of the thin film typically used in SWR studies; of
these configurations we indicate those that together pro-
vide an optimal basis for experimental determination of
the contribution of each anisotropy present in (Ga,Mn)As
to the surface anisotropy. Finally, in Section VI we for-
mulate some observations based on the comparison of our
results with those of the SWR studies of (Ga,Mn)As thin
films reported to date.

II. BULK MAGNETOCRYSTALLINE
ANISOTROPIES IN (Ga,Mn)As

The interpretation of most experimental studies of fer-
romagnetic resonance (FMR) in (Ga,Mn)As is based on
a phenomenological formula for the free energy of the in-
vestigated sample. The main characteristic of the stud-
ied system contained in this formula is the angular de-
pendence of the magnetocrystalline anisotropy energies.
The free energy of a (Ga,Mn)As sample is expressed as
a series of terms related to different symmetries; usually
the series is limited to low-order terms related to the cu-
bic and uniaxial symmetries. In the present study we are
going to rely on a formula for the free-energy density F
in (Ga,Mn)As proposed in Ref. [18]. In this equation the
terms of the series are expressed by the coordinates nx,
ny and nz of the unit vector M̂ ≡ M/M oriented along
the magnetization M of the sample: nx = cosϕ sinϑ,
ny = sinϕ sinϑ, and nz = cosϑ, where the angles ϕ and
ϑ are measured with respect to the [100] and [001] axes,

respectively. The equation reads:
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where F0 is an isotropic term expressed by an angle-
independent constant. The next three terms repre-
sent an expansion of the cubic anisotropy energy re-
lated to the crystal symmetry of the zinc-blende struc-
ture of (Ga,Mn)As. The cubic anisotropy is described
by terms invariant under permutation of the coordinate
indexes x, y and z. The independent first-, second- and
third-order cubic terms read Kc1
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, respec-
tively, where Kc1, Kc2 and Kc3 are cubic energy density
coefficients.
Along with the cubic anisotropy, (Ga,Mn)As has dif-

ferent types of uniaxial anisotropy, originating in lattice
strains; these uniaxial anisotropies are described by the
last four terms of equation (2.1). The terms −K[001]

1
n2
z

and − 1
2K[001]

2
n4
z refer to the perpendicular-to-plane uni-

axial anisotropy energy, which is due to the growth strain
induced in the sample by the lattice mismatch between
the substrate and the film; −K[001]

1
n2
z refers to the

lowest-order anisotropy component, while − 1
2K[001]

2
n4
z

is the second-order contribution. The last two terms in
Eq. (2.1) are contributions to the free energy brought
by the in-plane uniaxial anisotropy, originating in strains
which occur in the sample along particular in-plane crys-
tal axes. Thus, the term −K[100]n

2
y refers to the uniax-

ial anisotropy along the main crystal axes, since posi-
tive K[100] favors an in-plane easy axis aligned close to

the [010] axis; the last term, − 1
2K[110] (ny − nx)

2
, refers

to the uniaxial anisotropy along the diagonals, positive
− 1

2K[110] favoring an easy axis aligned close to the [11̄0]
axis.
The model of magnetocrystalline anisotropy devel-

oped in Ref. [18] predicts that the anisotropy coefficients
in equation (2.1) strongly depend on the hole density,
Mn local-moment concentration and temperature, which
is confirmed by numerous experiments. Another predic-
tion implied by this model is that the cubic anisotropy
coefficient Kc1 should be proportional to M4, and the
uniaxial anisotropy coefficients K[001], K[100] and K[110]

to M2.
Usually in the literature the free energy is not repre-

sented directly by formula (2.1), but by an equivalent
equation with anisotropy fields in place of the energy co-
efficients. The anisotropy fields Ha are related to the en-
ergy coefficients Ka by the identity Ha ≡ 2Ka/M . Also,

the coordinates of the magnetization unit vector M̂ in
Eq. (2.1) are expressed directly by the angles defining



3

FIG. 1. Coordinate system used in this paper to describe
sample configuration. The orientation of the applied mag-
netic field H is described by angles ϑH and ϕH , whereas
the equilibrium orientation of the sample magnetization M

is given by ϑ and ϕ.

its direction in space, i.e., the angles ϕ and ϑ measured
with respect to the [100] and [001] axes, respectively (see
Fig. 1):

nx = cosϕ sinϑ;ny = sinϕ sinϑ;nz = cosϑ. (2.2)

The resulting formula for the free energy is:
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(2.3)

The anisotropy fields in equation (2.3) have the following
sense: Hc1, Hc2 and Hc3 are the first-, second- and third-
order cubic anisotropy fields, respectively; H[001]

1
and

H[001]
2
denote the first- and second-order perpendicular

uniaxial anisotropy fields, respectively; H[100] and H[110]

are independent in-plane uniaxial anisotropy components
along the [100] and [110] axes, respectively.
Some information on the properties of these anisotropy

fields is available in the literature; the reported proper-
ties were either established in experimental studies or
predicted theoretically (for an exhaustive review of these
data please refer to paper [18]). For example, Hc1, H[110]

and H[100] are known to be oscillatory functions of the
hole density, and there exist critical hole densities where

the anisotropy fields change sign; these critical values de-
pend on the Mn local-moment concentration. Moreover,
the in-plane uniaxial anisotropy fields oscillate with a
longer period than the cubic anisotropy field Hc1. It has
been established that the extreme values of H[110] are
an order of magnitude smaller than the extreme values
of Hc1 ∼ 103 Oe and weakly dependent on the hole den-
sity. In general, the amplitude of oscillations decreases
with decreasing Mn local-moment concentration.18 It has
also been established15 that in some (Ga,Mn)As thin film
samples the out-of-plane uniaxial anisotropy field H[001]

1

varies linearly with the hole/Mn concentration (changing
from positive to negative values), however it is sugested18

that the extreme values ofH[001]
1
are of the same order as

those of Hc1. The higher-order anisotropy terms are be-
lieved to be small, or even negligible, in (Ga,Mn)As thin
films. For example, Hc2 and Hc3 have not been definitely
resolved experimentally to date.
Ferromagnetic resonance (FMR) and spin-wave reso-

nance (SWR) studied in thin films are major sources
of information on the anisotropy fields in (Ga,Mn)As.
However, it has been underestimated in the literature so
far that SWR studies can provide information not only
on bulk anisotropy fields, but also, and perhaps first of
all, on surface anisotropy fields. Note by the way that
the surface properties of (Ga,Mn)As have been stud-
ied very scarcely, and in the light of recent findings19

they can be of crucial importance for a deeper under-
standing of the essence of the ferromagnetism of diluted
ferromagnetic semiconductors.20–28 In the present paper
we propose a simple model for surface anisotropy char-
acterization independent of the bulk anisotropy. The
model describes SWR in (Ga,Mn)As thin films on the
basis of the above-specified phenomenological formula
expressing the anisotropic part of the free energy in
this material. For this purpose we are going to in-
troduce a separate concept of surface free-energy den-
sity F s(M̂ ) ≡ F surf (M̂ ), a surface characteristic of a
ferromagnetic sample expressed by surface anisotropy
fields Hs

a ≡ Hsurf
a = 2Ksurf

a /M , as opposed to the bulk

free-energy density F b(M̂) ≡ F bulk(M̂ ), a bulk charac-
teristic expressed by bulk anisotropy fieldsHb

a ≡ Hbulk
a =

2Kbulk
a /M . We will use these quantities in the next Sec-

tion, in which we propose a general formula for the sur-
face pinning parameter, a key quantity in the analysis
of SWR spectra; it is precisely the surface pinning pa-
rameter that will be expressed by the above-introduced
surface and bulk free energies.

III. SURFACE PINNING ENERGY IN TERMS
OF FREE-ENERGY DENSITY

In a ferromagnetic thin film with magnetic properties
homogeneous along the direction perpendicular to the
surface of the sample this homogeneity is only disturbed
structurally at the surfaces. Thus, the magnetic prop-
erties of such a sample can be described using the sur-
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face inhomogeneity (SI) model, which in the molecular
field approximation assumes that an effective magnetic
field H

bulk
eff uniform across the sample acts on spins in

its bulk, whereas surface spins experience another effec-

tive magnetic field, which we will denote as Hsurf
eff . The

difference between these two fields is referred to as the
effective surface anisotropy field29,30 K

surf
eff :

K
surf
eff ≡ H

surf
eff −H

bulk
eff . (3.1)

Thus, in relation to bulk spins, surface spins have an
additional pinning that is due to the effective surface
anisotropy field, which in general consists of surface
single-ion and surface exchange anisotropies.
As we have demonstrated in our earlier papers,29,30,33

the precession of surface spins under this additional

anisotropy fieldK
surf
eff can be fully described by introduc-

ing into the corresponding equations of motion a surface

pinning parameter A, defined:

A = 1− d2

Dex
K

surf
eff · M̂ , (3.2)

where d is the lattice constant, Dex is the exchange con-
stant, and M̂ denotes a unit vector oriented along the
magnetization M of the thin film. Another quantity
used in the literature for quantitative description of the
surface pinning is the surface anisotropy energy Esurf ,
which, in contrast to the above-defined dimensionless

surface pinning parameter, is expressed in energy density
units (erg/cm2). These two approaches are equivalent,
since A and Esurf are related as follows:

Esurf =
1

d
MDex (A− 1) . (3.3)

Note that in the surface parameter model the lack of
surface anisotropy, Esurf = 0, implies A = 1; by equa-
tion (3.2) this, in turn, means that the surface anisotropy

field is either zero (Ksurf
eff ≡ 0), or nonzero but perpen-

dicular to the magnetization of the sample, and thus of
no effect on the surface pinning. In this situation, which
we will refer to as the natural surface pinning, surface
spins only feel energetically the natural lack of that part
of their neighbors of which they have been deprived by
the formation of the surface, and do not experience at
all the influence of the surface anisotropy field. This in-
terpretation results from the way in which formula (3.2)
is derived in the SI model29,30: the breaking of the in-
teraction between the surface spins and their eliminated
neighbors is contained in the “unity” in equation (3.2),
whereas all other surface perturbations are contained in

the anisotropy field Ksurf
eff . The natural pinning is a ref-

erence point with respect to which we consider other sur-
face spin pinning situations (see Fig. 2). When Esurf > 0
(i.e. A > 1), we say that surface spins and unpinned ;
when Esurf < 0 (A < 1), the freedom of surface spins
is constrained, and therefore we say they are pinned.
(The boundary conditions corresponding to the natural

FIG. 2. Schematic representation of three surface spin pin-
ning regimes which prevail in a thin film depending on the
configuration of its magnetization M with respect to the
effective surface anisotropy field K

surf
eff (see (3.2)). When

aligned as in (b), the surface spins do not feel the anisotropy
field and A = 1, which corresponds to their natural freedom.
In the configurations (a) and (c) the surface spins are un-
pinned (A > 1) and pinned (A < 1), respectively, due to the
anisotropy field. Esurf denotes the surface anisotropy energy
density (see (3.3)).

pinning are particular and require additional discussion,
which we have included in Appendix A.)
The resonance intensity I of a given spin wave in the SI

model with symmetric boundary conditions is described
by the equation:29

I (k) ∼ (A− 1)
2
[usurf1 (k) + usurf2 (k)]

2
sin−4

(

k

2

)

,

(3.4)
where k is the “wavevector” component perpendicular
to the surface of the film describing the character of the
standing spin-wave assigned to the given resonance ex-
citation; usurf1 (k) and usurf2 (k) are the surface am-
plitudes of the standing spin-wave at the bottom and
top surfaces, respectively. As we can see, nonzero res-
onance intensities are only possible when A 6= 1, i.e.,
when the surface spin pinning is different from natural;
in other words, a surface anisotropy is necessary for the
occurrence of SWR in a thin film. However, even when
this condition is fulfilled, antisymmetric modes (in which
usurf1 = −usurf2) will not be excited and the resonance
spectrum will only consist of symmetric modes. The
spectrum of symmetric modes kn allowed by the bound-
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ary conditions results from the following characteristic
equation (discussed in detail in Ref. [29 and 30]):

A =
cos L+1

2 k

cos L−1
2 k

, (3.5)

where L is the thickness of the film (in units of lattice con-
stant d). A careful analysis of equations (3.4) and (3.5)
leads to the conclusion that the intensities of spin-wave
resonance peaks depend solely on the surface parame-
ter A and the surface amplitudes of the corresponding
spin-wave modes. Therefore, SWR opens a number of
doors, which we will point out in the next Sections, to
the investigation of some exceptional surface properties.
In this context it is particularly important to relate the

surface pinning parameter of a material with the expres-
sion for its free energy. Note that the standard method
for the description of ferromagnetic resonance in thin
films is always based on an appropriately constructed ex-
pression for the free energy of the sample. However, its
boundary conditions are commonly formulated with the
aid of something that we can call a kind of “prosthesis”:
a variously defined, depending on the context, quantity
referred to as the surface anisotropy, by no means related
to the basic characteristic of the bulk material, which is
its free energy. In the present study we have managed
to fill this conceptual gap by finding a relatively simple
bridge connecting the surface free energy with the surface
boundary, or pinning, conditions.
Let us rewrite equation (3.2) taking account of rela-

tion (3.1). We obtain:

A = 1− d2

MDex

[

H
surf
eff ·M −H

bulk
eff ·M

]

. (3.6)

Note that the terms in square brackets are locally defined
free-energy densities:

F bulk = −M ·Hbulk
eff ;

F surf = −M ·Hsurf
eff . (3.7)

Thus, the formula for the surface pinning parameter be-
comes:

A = 1 +
d2

MDex

[

F surf − F bulk
]

. (3.8)

Accordingly, from equation (3.3) we obtain the following
expression for the surface anisotropy energy:

Esurf = d
[

F surf − F bulk
]

(3.9)

Considering this, we can again rewrite formula (3.8) as:

A = 1 +
Esurf

MDex/d

= 1 +
Esurf

2Aex/d
,

(3.10)

where Aex ≡ 1
2MDex denotes the exchange stiffness pa-

rameter. This expression of the surface parameter al-
lows to identify34 our surface anisotropy energy Esurf

as the surface anisotropy constant figuring in the Rado-
Weertman (RW) boundary equation, the earliest bound-
ary condition to have been proposed in the theory of
surface magnetism35:

2Aex

(

∂m

∂n

)

surf

− Esurf msurf = 0, (3.11)

where m is the amplitude of the transversal (dynamic)
component of the magnetization and n denotes the di-
rection normal to the surface of the film. Since our sur-
face anisotropy energy density Esurf is identical with
the RW surface anisotropy constant by the above-derived
formula (3.10) the RW equation acquires a general char-
acter, becoming suitable for studying the configuration
effects contained explicitly in the dependence A (ϑ, ϕ):

d

(

∂m

∂n

)

surf

− (A− 1)msurf = 0. (3.12)

A major advantage of equations (3.8) and (3.9) we have
derived above is that by using expression (2.3) for the free
energy in these equations we will obtain full information
on the angular configuration dependence of the surface
pinning. Note that this information was not provided
directly by the initial formula (3.2), expressing the sur-
face pinning parameter by the unspecified effective sur-

face anisotropy field K
surf
eff .

Now, if we use equation (2.3) for expressing both the
bulk and surface free energies in (3.8), we obtain the
following expression for the surface pinning parameter:

A (ϑ, ϕ) = 1+aiso+
1

8
ac1 sin

2 ϑ
(

sin2 ϑ sin2 2ϕ+ 4 cos2 ϑ
)

+
1

8
ac2 sin

4 ϑ cos2 ϑ sin2 2ϕ

+
1

32
ac3

[

sin8 ϑ sin4 2ϕ+ 4 (3 + cos 4ϕ) cos4 ϑ sin4 ϑ
]

− 1

2
a[001]1 cos

2 ϑ− 1

4
a[001]2 cos

4 ϑ

− 1

2
a[100] sin

2 ϑ sin2 ϕ− 1

2
a[110] sin

2 ϑ sin2
(

ϕ− π

4

)

,

(3.13)

where the dimensionless surface pinning coefficients aa
are related to the respective surface anisotropy fields by:

aanis =
d2

Dex

(

Hsurf
anis −Hbulk

anis

)

=

=
2d2

MDex

(

Ksurf
anis −Kbulk

anis

)

(3.14)

The general idea for using equation (3.13) in SWR
studies is the following: The experiment allows to es-
tablish the configuration dependence of SWR spectra on
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either ϑ or ϕ; this provides the basis for the determina-
tion of the dependence of the pinning parameter on both
angles, A = A (ϕ, ϑ). In the next step, by numerical fit-
ting of the experimental data to equation (3.13) we can
determine the set of surface pinning coefficients that fig-
ure in this equation. Finally, in the third step, the surface
pinning coefficients can be used for the determination of
the corresponding surface anisotropy fields from equa-
tion (3.14) (the bulk anisotropy fields are assumed to be
known from other measurements). Our recent papers33,36

provide an example in which this procedure is used for
studying very special configurations considered in an ex-
perimental study by Liu et al.14

For practical reasons, equation (3.13) still needs some
adjustment to be adapted to the experimental conditions.
Usually in an SWR experiment only one angle is varied
(either ϑ or ϕ), the other one being fixed. Thus, two
configurations are considered: the in-plane configuration,
in which the static magnetic field lies in the plane of the
film (ϑ = 90◦) and rotates around the z axis, and the out-
of-plane configuration, with the magnetic field rotating
in a plane perpendicular to the surface of the film. In the
out-of-plane configuration the plane of rotation is defined
by the z axis and a straight half-line ϕ = const; the
magnetic field is tilted with respect to the film surface
and its orientation can vary from perpendicular (ϑ = 0◦)
to parallel (ϑ = 90◦) to the surface. In the next Section
each of these two configurations will be discussed in detail
separately.

IV. SPECIAL RESONANCE ARRANGEMENTS:
IN-PLANE VS. OUT-OF-PLANE SWR

In-plane SWR occurs when the static magnetic field H

lies in the plane of the film; consequently, the magneti-
zation M of the sample is forced to be oriented in the
same plane, i.e. its polar angle ϑ = 90◦. In the in-plane
configuration formula (3.13) for the surface pinning pa-
rameter simplifies to the following equation, in which the
azimuthal angle ϕ is the only angle variable:

Ain−plane(ϕ) = 1 + aiso +
1

8
ac1 sin

2 2ϕ+
1

32
ac3 sin

4 2ϕ

− 1

2
a[100] sin

2 ϕ− 1

2
a[110] sin

2
(

ϕ− π

4

)

. (4.1)

Note that in the considered in-plane configuration the
surface pinning parameter does not include contribu-
tions from the second-order cubic anisotropy (the term
with ac2 has vanished) and from the first- and second-
order perpendicular uniaxial anisotropy (the terms with
a[001]1 and a[001]2 have vanished, too). Only the first- and
third-order cubic anisotropies and both in-plane uniaxial
anisotropies still contribute to the surface pinning.
Out-of-plane SWR is realized when the azimuthal an-

gle ϕ is fixed and only the polar angle ϑ varies. For
example, in the SWR study of (Ga,Mn)As thin films by
Liu et al. the azimuthal angle is fixed at ϕ = −45◦. This

means that the applied magnetic field is rotated in the
plane perpendicular to the surface of the film defined by
two axes: the [001], or z, axis and the [11̄0] axis, which
lies in the film plane. Thus, in this experiment the mag-
netic field rotates from the direction normal to the surface
of the film (ϑ = 0, perpendicular SWR) to the in-plane
direction (ϑ = 90◦, parallel SWR). For this particular
experimental setup the formula for the surface pinning
parameter becomes:

A
[11̄0]
out−of−plane(ϑ) = 1 + aiso

+
1

8
ac1 sin

2 ϑ
(

sin2 ϑ+ 4 cos2 ϑ
)

+
1

8
ac2 sin

4 ϑ cos2 ϑ

+
1

32
ac3 sin

4 ϑ
(

sin4 ϑ+ 8 cos4 ϑ
)

− 1

2
a[001]1 cos

2 ϑ− 1

4
a[001]2 cos

4 ϑ

− 1

4
a[100] sin

2 ϑ− 1

2
a[110] sin

2 ϑ. (4.2)

As we can see, in this out-of-plane configuration all the
anisotropies present in (Ga,Mn)As contribute to the sur-
face pinning parameter.
For better illustration of the role the chosen azimuthal

angle ϕ plays in the out-of-plane SWR let us consider the
situation in which ϕ = 45◦, i.e. the plane of rotation of
the magnetic field H is perpendicular to the surface of
the film and determined by the in-plane [110] axis. For
ϕ = 45◦ the last term in (3.13) vanishes; consequently,
the surface pinning parameter in this case will differ, by
this very term, from the surface pinning parameter de-
termined for ϕ = −45◦. Thus:

A
[110]
out−of−plane(ϑ) = A

[11̄0]
out−of−plane(ϑ) +

1

2
a[110] sin

2 ϑ.

(4.3)
The vanishing of the term with a[110] in the configu-
ration with ϕ = 45◦ implies that the uniaxial in-plane
anisotropy related to the diagonal [110] axis (‘diagonal’
in-plane anisotropy) does not contribute to the surface
pinning parameter in this configuration; the formula for

A
[110]
out−of−plane(ϑ) simply does not include the correspond-

ing term. Consequently, on the basis of two measure-
ments of the surface pinning parameter, one for ϕ = 45◦

and one for ϕ = −45◦, with the same polar angle ϑ, it
is possible to determine, from relation (4.3), the surface

diagonal uniaxial in-plane anisotropy expressed by a[110].
Let us consider yet another out-of-plane configuration,

corresponding to the azimuthal angle ϕ = 0. In this case
equation (3.13) becomes:

A
[100]
out−of−plane(ϑ) = 1 + aiso +

1

2
ac1 sin

2 ϑ cos2 ϑ

+
1

2
ac3 cos

4 ϑ sin4 ϑ− 1

2
a[001]1 cos

2 ϑ

− 1

4
a[001]2 cos

4 ϑ− 1

4
a[110] sin

2 ϑ. (4.4)

Thus, in this particular azimuth orientation the sur-
face pinning parameter formula loses two terms, related
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to the cubic anisotropy ac2 and the uniaxial in-plane
anisotropy a[100].
From the general formula (3.13) for the surface pinning

parameter, which applies to any polar and azimuth orien-
tation, it follows that in (Ga,Mn)As thin films the surface
pinning parameter is a sum of isotropic and anisotropic
contributions: the isotropic term aiso goes along with
three terms related to the cubic anisotropies acub and
four terms related to the uniaxial anisotropies auni. This
gives a total of eight separate energy contributions, all of
which should be determined for a full insight into the pin-
ning of surface spins. In the next Section we will propose
an optimal experimental arrangement for SWR measure-
ments to enable the determination of the complete set of
pinning coefficients figuring in equation (3.13). Namely,
we will specify optimal angles ϑ in particular out-of-plane
configurations, as well as optimal angles ϕ in the in-plane
configuration.

V. FURTHER EXPERIMENTAL
CONJECTURES

We propose two types of SWR studies for the explo-
ration of the surface anisotropy of (Ga,Mn)As thin films.
Experiments of the first type are aimed at the determina-
tion of the critical angles, i.e., the angles at which a mul-
tipeak SWR spectrum will reduce to a single-peak FMR
spectrum. In our earlier papers29,30 we have demon-
strated that in the SI model critical SWR corresponds to
the surface pinning parameter value Asurf ≡ 1 in such a
particular (critical) configuration; as a consequence, and
as implied also by equation (3.4) cited in the present pa-
per, the resonance intensities of all the spin-wave modes
vanish in this case, with the exception of the intensity
of the fundamental mode k = 0 (see also Appendix A).
The SWR study by Liu et al. shows that at least one
critical angle ϑc for which Asurf ≡ 1 should exist in any
out-of-plane configuration. Thus, we can expect to de-
termine experimentally three such angles, one for each of
the out-of-plane configurations considered above. Let us
denote these critical angles as ϑc[11̄0], ϑc[110] and ϑc[100].
Conditions (4.2), (4.3) and (4.4) lead to the respective
equations:

A
[11̄0]
out−of−plane

(

ϑc[11̄0]

)

= 1, (5.1)

A
[110]
out−of−plane

(

ϑc[110]

)

= 1, (5.2)

A
[100]
out−of−plane

(

ϑc[100]

)

= 1. (5.3)

The experiment by Liu et al. indicates also the existence
of two critical angles, ϕc1 and ϕc2, in the in-plane configu-
ration. If these angles can be determined experimentally,
then for each of them we can write:

Ain−plane (ϕc1) = 1, (5.4)

Ain−plane (ϕc2) = 1, (5.5)

using (4.1) in both equations.

Thus, we have already five equations with eight un-
known pinning coefficients. We need three more equa-
tions, which will be provided by SWR studies of the sec-
ond type. In these experiments it is necessary to deter-

mine the surface pinning parameter from the SWR spec-
trum measured in a specific angular configuration. (For
the idea and details of the method for the conversion of an
SWR spectrum into the corresponding value of the sur-
face pinning parameter please refer to papers30–32 .) We
propose to measure the SWR spectrum and determine
the corresponding surface pinning parameter in extreme

orientations in each of the three out-of-plane configura-
tions considered above. Thus, for the orientation with
ϑ = 0, which we will henceforth refer to as the perpen-

dicular configuration, we obtain (see Eq. (3.13)):

A⊥ = 1 + aiso −
1

2
a[001]1 −

1

4
a[001]2 . (5.6)

For the orientations with ϑ = π
2 , henceforth referred to

as the parallel configurations, conditions (4.3) and (4.4)
imply:

A
[110]
‖ −A

[11̄0]
‖ =

1

2
a[110], (5.7)

A
[100]
‖ = 1 + aiso −

1

4
a[110]. (5.8)

Note that two of all eight pinning coefficients, a[110] and
aiso, can be determined unambiguously from the lat-
ter two equations alone. Thus, for the determination
of the other six pinning coefficients it is enough to add
Eq. (5.6) to the five equations (5.1)–(5.5) obtained previ-
ously from critical angle measurements. To sum up, the
complete set of pinning coefficients figuring in the general
formula (3.13) for the surface pinning parameter can be
determined by measuring (1) the SWR spectrum in four
special configurations: the perpendicular configuration
(along the [001] axis) and three parallel configurations
(along the [100], [110] and [11̄0] axes), and (2) five criti-
cal angles: three polar critical angles, ϑc[100], ϑc[110] and
ϑc[11̄0], and two azimuthal critical angles, ϕc1 and ϕc2.
Now, let us see what interesting information can

be acquired from pinning coefficient values determined
in this way. For example, let us consider the coeffi-
cient a[110], determined from Eq. (5.7). Its experimental

value, as established in the SWR study by Liu et al.,14

is a[110] = −0.054. Now, let us refer to the defini-
tion (3.14) of a pinning coefficient, from which it follows
that:

a[110] =
2d2

MDex

(

Ksurf
[110] −Kbulk

[110]

)

. (5.9)

The determined negative value of a[110] implies:

Ksurf
[110] < Kbulk

[110], (5.10)

which means that the diagonal in-plane uniaxial
anisotropy on the surface of the sample is weaker than
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in its bulk. Moreover, if we knew the bulk value of the
anisotropy constant, then (knowing the numerical value
of a[110]) from Eq. (5.9) we could estimate also the value
of this constant on the surface.
Obviously, the same procedure can be applied to all

the other surface anisotropy coefficients determined from
SWR spectra taken in (at least) eight angular configura-
tions. However, we suggest to seek first of all the critical
angles, since the determination of the surface pinning pa-
rameter from the relative intensities of peaks in an SWR
spectrum measured in a non-critical angular configura-
tion is subject to some error, which is substantially re-
duced when the measurement is aimed at a critical angle.

VI. OUTLOOKS

To date, measurements of the surface pinning parame-
ter based on experimental SWR spectra of (Ga,Mn)As
thin films in various angular configurations have only
been reported by Liu et al.14 For analyzing the SWR
spectra obtained in the out-of-plane configuration the au-
thors of that experimental study use the phenomenolog-
ical formula for the free energy density of the sample:

F
[11̄0]
out−of−plane (M) =

(

2πM2 −K2⊥

)

cos2 ϑ

− 1

2
K4⊥ cos4 ϑ− 1

4
K4‖ sin

4 ϑ−K2‖ sin
2 ϑ; (6.1)

note that the term 2πM2 cos2 ϑ, related to the shape
anisotropy, does not figure in our equation (2.3). Now,
if we compare Eq. (6.1) with Eq. (2.3) for ϕ = −45◦,
assuming an additive constant F0 = − 1

2K4‖, we find the
following relations between the anisotropy constants fig-
uring in (6.1) and the anisotropy constants we have de-
fined in (2.1):

K4‖ ≡ Kc1, K[001]2 ≡ K4⊥ −K4‖, (6.2)

K2⊥ ≡ K[001]1 , K2‖ ≡ K[110]. (6.3)

This implies that Eq. (6.1) does not include the second-
and third-order cubic anisotropy terms Kc2 and Kc3;
neither does it contain the uniaxial in-plane anisotropy
described by K[100]. (Considerations similar to those
above, leading to an identical conclusion, can be found
in the paper [18].) In our earlier studies33,36 we analyzed
SWR measurements reported by Liu et al.,14 assuming,
by Eq. (6.1), that the only types of surface anisotropy
in a (Ga,Mn)As thin film are those figuring in this for-
mula; however, it turned out that the model of surface
anisotropy in (Ga,Mn)As thin films needs to be enhanced
by the addition of other types of anisotropy, not yet pos-
tulated in Eq. (6.1). We leave this issue for in-depth
consideration in another paper, since the procedure of
determination of the pinning coefficients that we propose
in Section V still requires careful modification to be used
for analyzing the measurements reported by Liu et al.14.
Before closing, let us remark that the above-discussed

SWR studies proposed for the determination of surface

anisotropy will actually provide information on more
than just the surface, because of the existing certain cor-
relation between surface and bulk properties of a thin
film. Specifically, if some type of anisotropy is found in
the bulk, the same type can be anticipated on the surface;
and vice versa, if an anisotropy of a type not yet observed
in the bulk is found on the surface, it should be expected
that thorougher studies will reveal it also in the bulk
(this property may be called a surface-bulk anisotropy

affinity). Although in our considerations here we have
referred to (Ga,Mn)As thin films magnetically homoge-
neous throughout the bulk (and therefore described by
the surface inhomogeneity model), we believe that the
expected correspondence between bulk and surface in
terms of magnetocrystalline anisotropy applies as well to
volume-inhomogeneous (Ga,Mn)As thin films in which
SWR is observed. This is the case of the samples stud-
ied by Goennewein et al.4,7,8 and Khazen37, which use
the volume inhomogeneity model for the interpretation
of their results; we believe that also their SWR spectra
bear a significant imprint of the surface anisotropy too.
Thus, it can be expected that the surface anisotropy of
such samples can be studied also by a method similar to
that proposed in the present paper, based on SWR spec-
tra measured in various carefully chosen angular config-
urations.
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Appendix A: The Surface Inhomogeneity Model and
natural pinning conditions

The concept of surface pinning is related to the de-
scription of the energy status of surface spins, specifi-
cally to the degree of freedom of their precession. In
a simplified image besides the effective magnetic field
present throughout the sample an additional magnetic

field K
surf
eff , referred to as the effective surface anisotropy

field, acts on the surface spins. As we have shown in
Refs.29,30 the boundary conditions to be fulfilled by the
precession of the surface spins can be expressed by the
surface pinning parameter defined by the equation (3.2).
Note that a complete lack of anisotropy field on the sur-
face corresponds to the surface parameter value one; the
freedom of the surface spins in this situation will be re-
ferred to as the natural freedom. As already we have il-
lustrated in Fig. 2 in the case of nonzero anisotropy field
three situations, substantially different from the physical
point of view, may occur depending on the angle be-
tween the magnetization M and the surface anisotropy

field K
surf
eff . If the surface spins are aligned perpendicu-

larly to K
surf
eff , their freedom remains natural (A = 1);
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otherwise, the surface spins are pinned (and A < 1) or
unpinned (and A > 1) for the above-mentioned angle
acute or obtuse, respectively. Note now that in the spe-
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FIG. 3. Profiles of the lowest spin-wave resonance modes
(top) and the corresponding SWR spectra (bottom) depicted
separately for various values of the surface pinning parame-
ter A (i.e. for various pinning of the surface spins) within
the Surface Inhomogeneity (SI) Model. The spectra only ex-
hibit peaks corresponding to symmetric modes of odd number,
n = 1, 3, 5, 7. The calculations are performed for the case of
L = 75 (seventy five layers in the film); UM denotes uniform
mode, and SM - surface mode. Two very peculiar effects are
observed: firstly, the multi-peak SWR spectrum reduces to a
single-peak FMR spectrum at A = 1, secondly, for A > 1 the
spectrum includes a surface-localized resonance peak.

cial case in which the bulk and surface values of the free-
energy density are equal (see equation (3.8)) the surface
pinning parameter is equal to one, which corresponds to
the natural pinning. This case is special enough to de-
serve a separate discussion.

From equation (3.5) for A = 1 we obtain the following
set of allowed wavenumbers k of symmetric modes:

k = 0, 2
π

L
, 4

π

L
, . . . , (L − 1)

π

L
; (A1)

for convenience we have assumed above that L is an odd
number.
On the other hand, the surface amplitude of a sym-

metric mode is expressed by the equation:29

usurf (k) =
√
2

(

L+
sinLk

sin k

)−1/2 (

cos
L− 1

2
k

)

. (A2)

Now, if we substitute equations (3.5) and (A2) into (3.4),
we obtain the following expression for the resonance in-
tensity of symmetric modes:

I(k) ∼
(

L+
sinLk

sin k

)−1 ( sin 1
2Lk

sin 1
2k

k

)2

, (A3)

from which it follows that for all nonzero wavenumbers in
the set (A1) the resonance intensity is zero, whereas for
k = 0 (uniform mode) (A3) becomes a 0/0 type undefined
expression. However, its limit for k → 0 is nonzero:

lim
k→0

I(k) = L. (A4)

Thus, the natural pinning excludes a multipeak reso-
nance excitation, and the SWR spectrum in this case
only consists of a single peak corresponding to the exci-
tation of the symmetric uniform mode k = 0 (see Fig. 3).
In the literature this is referred to as the critical reso-
nance, and the angles ϑ and ϕ for which this kind of
resonance occurs are known as the critical angles ( ϑc

and ϕc , respectively).
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