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A UNIQUENESS LEMMA WITH APPLICATIONS TO REGULARIZATION

AND INCOMPRESSIBLE FLUID MECHANICS.

GUILLAUME LÉVY1

Abstract. In this paper, we extend our previous result from [24]. We prove that transport
equations with rough coefficients do possess a uniqueness property, even in the presence of
viscosity. Our method relies strongly on duality and bears a strong resemblance with the well-
known DiPerna-Lions theory first developed in [13]. This uniqueness result allows us to reprove
the celebrated theorem of J. Serrin [28] in a novel way. As a byproduct of the techniques, we
derive an L

1 bound for the vorticity in terms of a critical Lebesgue norm of the velocity field.
We also show that the zero solution is unique for the 2D Euler equations on the torus under
a mild integrability assumption. TODO : chercher diverses équations classiques où les

idées d’unicité s’appliquent

1. Introduction

In their seminal paper [13], R. J. DiPerna and P.-L. Lions proved the existence and uniqueness
of solutions to transport equations on R

d. We recall here a slightly simplified version of their
statement.

Theorem 1 (DiPerna-Lions). Let d ≥ 1 be an integer. Let 1 ≤ p ≤ ∞ and p′ its Hölder con-

jugate. Let a0 be in Lp(Rd). Let v be a fixed divergence free vector field in L1
loc(R+, Ẇ

1,p′(Rd)).

Then there exists a unique distributional solution a in L∞(R+, L
p(Rd)) of the Cauchy problem

(1)

{
∂ta+∇ · (av) = 0

a(0) = a0,

with the initial condition understood in the sense of C0(R+,D
′(Rd)). We recall that a is a

distributional solution of the aforementioned Cauchy problem if and only if, for any ϕ belonging

to D(R+ × R
d) and any T > 0, there holds

(2)∫ T

0

∫

Rd

a(t, x) (∂tϕ(t, x) + v(t, x) · ∇ϕ(t, x)) dxdt =

∫

Rd

a(T, x)ϕ(T, x)dx −

∫

Rd

a0(x)ϕ(0, x)dx.

Beyond this theorem, many authors have since proved similar existence and (non-)uniqueness
theorems, see for instance [1], [2], [4], [5], [6], [12], [20], [21], [23] and references therein. In
particular, the papers [4], [5] and [6] use a duality method which is close in spirit to our results.
Our key result, which relies on the maximum principle for the adjoint equation, is both more
general and more restrictive than the DiPerna-Lions theorem. The generality comes from the
wider range of exponents allowed, along with the affordability of additional scaling-invariant
and/or dissipative terms in the equation. We thus extend the result from [24], where the setting
was restricted to the L2

t,x case and no right-hand side was considered. On the other hand, we
do not fully extend the original theorem, since we are unable to prove the existence of solutions
in the uniqueness classes. Here is the statement.

Theorem 2. Let d ≥ 1 be an integer. Let ν ≥ 0 be a positive parameter. Let 1 ≤ p, q ≤ ∞ be

real numbers with Hölder conjugates p′ and q′. Let v = v(t, x) be a fixed, divergence free vector

field in Lp′(R+, Ẇ
1,q′(Rd)). Given a time T ∗ > 0, let a be in Lp([0, T ∗], Lq(Rd)). Assume that

a is a distributional solution of the Cauchy problem

(3) (C)

{
∂ta+∇ · (av)− ν∆a = 0

a(0) = 0,
1
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with the initial condition understood in the sense of C0([0, T ∗],D′(Rd)). That is, we assume

that, for any function ϕ in D(R+ × R
d) and any T > 0, there holds

(4)

∫

R+×Rd

a(t, x) (∂tϕ(t, x) + v(t, x) · ∇ϕ(t, x) + ν∆ϕ(t, x)) dxdt =

∫

Rd

u(T, x)ϕ(T, x)dx.

Then a is identically zero on [0, T ∗]× R
d.

Though one may fear that the lack of existence might render the theorem unapplicable in
practice, it does not. For instance, when working with the Navier-Stokes equations, the vorticity
of a Leray solution only belongs, a priori, to

L∞(R+, Ḣ
−1(Rd)) ∩ L2(R+ × R

d).

In particular, the only Lebesgue-type space to which this vorticity belongs is L2(R+×R
d). Our

theorem is well suited for solutions possessing a priori no integrable derivative whatsoever.
As such, our theorem appears a regularization tool. The philosophy is that, if an equation

has smooth solutions, then any sufficiently integrable weak solution is automatically smooth.
We illustrate our theorem with an application to the regularity result of J. Serrin [28] and
subsequent authors [3], [8], [9], [14], [15], [16], [19], [29], [32].

We warn the reader that we did not prove that the Leray solutions are unique in their class
and will not claim so. Indeed, the uniqueness stated in Theorem 4 is purely linear. In particular,
it does not use the link between the vorticity and the exterior fields. It does not rely either on
the divergence freeness of the vorticity. The key point in our proof is the maximum principle of
the adjoint equation. The validity of the maximum principle partially depends on the vorticity
equation having only differential operators rather than pseudodifferential ones.

Another standpoint on this theorem, which we owe to a private communication from N.
Masmoudi, is that we now have two ways to recover the vorticity field Ω from the velocity. We
may either we use the defining identity

Ω := ∇∧ u

or that Ω is the unique solution of the linear problem

(NSV )

{
∂tΩ+∇ · (Ω⊗ u)−∆Ω = ∇ · (u⊗ Ω)

Ω(0) = ∇∧ u0.

The second choice makes a strong use of the peculiar algebra of the Navier-Stokes equations,
while the first one is general and requires no other assumption on u than the divergence-free
condition. Thus, we may hope to garner more information from the vorticity uniqueness, even
though it may seem circuitous. Embodied by Theorem 5 is our new approach to the Serrin-type
regularity results, relying on finer algebraic properties of the equation than its belonging to the
semilinear heat equations family.

2. Results

Let us comment a bit on the strategy we shall use. First, because a lies in a low-regularity
class of distributions, energy-type estimates seem out of reach. Thus, a duality argument is
much more adapted to our situation. Given the assumptions on a, which for instance imply
that ∆a is in Lp(R+, Ẇ

−2,q(Rd)), we need to prove the following existence result.

Theorem 3. Let ν ≥ 0 be a positive real number. Let v = v(t, x) be a fixed, divergence free

vector field in Lp′(R+, Ẇ
1,q′(Rd)). Let ϕ0 be a smooth, compactly supported function in R

d.

There exists a function ϕ in L∞(R+ × R
d) solving

(5) (C ′)

{
∂tϕ−∇ · (ϕv) − ν∆ϕ = 0

ϕ(0) = ϕ0

in the sense of distributions and satisfying the estimate

‖ϕ(t)‖L∞(Rd) ≤ ‖ϕ0‖L∞(Rd).
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Picking some positive time T > 0 and considering ϕ(T − ·) instead of ϕ, Theorem 3 amounts
to build, for T > 0, a solution on [0, T ]× R

d of the Cauchy problem

(6) (−C ′)

{
−∂tϕ−∇ · (ϕv)− ν∆ϕ = 0

ϕ(T ) = ϕ0.

This theorem is a slight generalization of the analogue theorem in the Note [24]. The proof we
provide here follows the same lines but retains only the key estimate, which is the boundedness
of the solution. The additional estimate in the Note was inessential and had the inconvenient
to degenerate when the viscosity coefficient is small. In contrast, the boundedness is unaffected
by such changes. The techniques used in the proof of Theorem 3 are robust. This robustness is
encouraging for future work, as many generalizations are possible depending on the needs. We
will not try to list them all ; instead, we give some examples of possible adaptations to other
contexts. The most direct one is its analogue for diagonal systems, for uniqueness in this case
reduces to applying the scalar case to each component of the solution. Alternatively, one may
add various linear, scaling invariant terms on the right hand side, or any dissipative term (such
as a fractional laplacian) on the left hand side. Also, in view of application to compressible fluid
mechanics, the main theorems remain true without the divergence freeness of the transport field
provided that the negative part of its divergence belongs to L1(R+, L

∞(Rd)). This extension
was already present in the original paper [13] from R.J. DiPerna and P.-L. Lions.

Among these numerous variants, a particular one stands out. It applies to a restricted family
of equations, which are essentially the Navier-Stokes equations with frozen coefficients. These
equations are obtained from (C) by adding a linear, non diagonal term on the right-hand side,
of a peculiar form. The purpose of this variant is to provide a different proof of the renowned
Serrin theorem. We now state it.

Theorem 4. Let d ≥ 3 be an integer. Let ν > 0 be a positive real number. Let 2 ≤ p <∞ and

d < q ≤ ∞ be real numbers satisfying 2
p
+ d

q
= 1. Let v be a fixed divergence free vector field in

L2(R+, Ḣ
1(Rd)). Let w be a fixed vector field in L2(R+, Ḣ

1(Rd))∩Lp(R+, L
q(Rd)). Let a be in

L2(R+ ×R
d). Assume that a is a distributional solution of the Cauchy problem

(7) (CNS)

{
∂ta+∇ · (a⊗ v)− ν∆a = ∇ · (w ⊗ a)

a(0) = 0,

with the initial condition understood in the sense of C0([0, T ],D′(Rd)). Then a is identically

zero on R+ × R
d.

This time, the addition of a non diagonal – though scaling invariant – term induces some
notable changes, because of two algebraic facts which we wish to emphasize. The first one relates
to the divergence freeness of the solution when dealing with the Navier-Stokes equations. Indeed,
we have in this case the equality

∇ · (w ⊗ Ω) = Ω · ∇w

and both sides make sense as distributions. However, since we forget the divergence freeness
of a when we compute the adjoint equation, it is of utmost importance to write the equation
with the right-hand side written in its divergence form ∇ · (w⊗ a). This divergence form is the
only one with which we are able to get a essential bound (or generalized maximum principle)
for the adjoint equation, an absolutely crucial feature of our proof. The second one stems from
the vectorial nature of the solution a, which complexifies the integration by parts of the term
|a|r−2a∆a. As it is well-known, adding a laplacian term in a partial differential equation has
a smoothing effect on solutions. However, when r grows, the smoothing effect concentrates
mostly on |a|2 and not on the full solution a. While this may look like a trivial observation
to the accustomed reader, it is precisely what prevents us from removing the scale-invariant
assumption that w belongs to Lp(R+, L

q(Rd)). If we were able to lift it – which we believe we
cannot, owing to the numerical results of J. Guillod and V. V. Šverák in [17] –, then a linear
uniqueness statement for Leray solutions would hold.
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Remark. Theorem 4 also holds in the limit case (p, q) = (d,∞), provided that w satisfies the

smallness condition

‖w‖L∞(R+,Ld(Rd)) <
2ν

C
,

where C is the Sobolev constant associated to the embedding Ḣ1(Rd) →֒ L
2d
d−2 (Rd).

To prove Theorem 4, we will need, as for Theorem 2, a dual existence result, which we state.

Theorem 5. Let d ≥ 3 be an integer. Let ν > 0 be a positive real number. Let 2 ≤ p <∞ and

d < q ≤ ∞ be real numbers satisfying 2
p
+ d

q
= 1. Let v be a fixed divergence free vector field

in L2(R+, Ḣ
1(Rd)). Let w be a fixed vector field in L2(R+, Ḣ

1(Rd)) ∩ Lp(R+, L
q(Rd)). There

exists a solution ϕ to the following Cauchy problem

(8) (C ′

NS)

{
∂tϕ−∇ · (ϕ⊗ v)− ν∆ϕ = −t∇ϕ · a

ϕ(0) = ϕ0 ∈ D(Rd)

satisfying in addition, for almost every t > 0,

(9) ‖ϕ(t)‖L∞(Rd) ≤ ‖ϕ0‖L∞(Rd) exp

[
Cp

pνp−2

∫ t

0
‖w(s)‖p

Lq(Rd)
ds

]
.

Above, C denotes a constant depending only on the dimension d.

In the right hand side of the main equation, the quantity −t∇ϕ · a is a shorthand for

−∇(ϕ · a) +t ∇a · ϕ

and this last expression makes sense in L2(R+, Ḣ
−1
loc (R

d)) + L2(R+ × R
d) provided that ϕ is

bounded in space-time. Using coordinates, the different terms expand respectively as

(t∇ϕ · a)i =
d∑

j=1

∂iϕjaj ;

(∇(ϕ · a))i =

d∑

j=1

∂i(ϕjaj);

(t∇a · ϕ)i =

d∑

j=1

∂iajϕj .

Although the left-hand sides of (CNS) and its adjoint equation (C ′

NS) are almost identical,
their right-hand sides are different. This discrepancy has striking consequences on their global
behaviour, in that (C ′

NS) does possess a generalized maximum principle, while (CNS) does not.
That fact is the core of our paper, without which no conclusion on the Navier-Stokes and Euler
equations could have been drawn. Conversely, we are able to prove a uniqueness result for
(CNS) while we do not expect any analogous result for (C ′

NS), at least at the present time.
As a consequence of Theorem 4, we give an alternative proof of the Serrin theorem in most

cases. This new proof has the advantage of making a stronger use of the algebra of the Navier-
Stokes equations than the previous one. To avoid technical details which would only obscure
the proof, we choose to present it in the case of the three dimensional torus. An analogue exists
when the regularity assumption is written on the whole space R3, or a subdomain thereof, with
a similar proof and some minor adjustments. We recall the theorem of J. Serrin in its improved
form by Y. Giga in [16], written with integrability assumptions on the Leray solution.

Theorem 6 (J. Serrin). Let u = u(t, x) be a Leray solution of the Navier-Stokes equations

(NS)





∂tu+∇ · (u⊗ u)−∆u = −∇p
div u = 0

u(0) = u0 ∈ L2(T3)

on R+ × T
3. Assume the existence of times T2 > T1 > 0 and exponents 2 ≤ p < ∞, 3 < q ≤ ∞

such that u belongs to Lp(]T1, T2[, L
q(T3)). Then u belongs to C∞(]T1, T2[×T

3).
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Besides reproving in a novel way the results of J. Serrin and his continuators, an immediate
corollary of Theorem 5 is the following.

Theorem 7. Let d ≥ 3 be an integer. Let ν and T be strictly positive real numbers. Let u be a

strong solution of the Navier-Stokes equations
{
∂tu+∇ · (u⊗ u)− ν∆u = −∇p

div u = 0

on ]0, T [×R
d. Then, there exists a constant C depending only on d such that for any 0 < t < T

and any 2 ≤ p <∞, d < q ≤ ∞ satisfying 2
p
+ d

q
= 1, there holds

(10) ‖Ω(t)‖L1(Rd) ≤ ‖Ω(0)‖L1(Rd) exp

[
Cp

pνp−2

∫ t

0
‖u(s)‖p

Lq(Rd)
ds

]
.

Finally, applying Theorem 2 to the 2D Euler equations on the torus, one gets the following
statement.

Theorem 8. Let p ≥ 2 be a real number. Let u be a weak solution of the Euler equations

starting from zero initial data




∂tu+∇ · (u⊗ u) = −∇p
div u = 0
u(0) = 0

and assume that ω := curl u belongs to L∞(R+, L
p(T2)). Then u is identically zero on R+×T

2.

3. Proofs

We state here a commutator lemma, similar to Lemma II.1 in [13], which we will use in the
proof of Theorem 2.

Lemma 1. Let T > 0. Let v be a fixed, divergence free vector field in Lp′(R+, Ẇ
1,q′(Rd)). Let

a be a fixed function in Lp(R+, L
q(Rd)). Let ρ = ρ(x) be some smooth, positive and compactly

supported function on R
d. Normalize ρ to have unit norm in L1(Rd) and define ρε := ε−dρ

(
·

ε

)
.

Define the commutator Cε by

Cε(t, x) := v(t, x) · (∇ρε ∗ a(t))(x) − (∇ρε ∗ (v(t)a(t)))(x).

Then, as ε→ 0,
‖Cε‖L1(R+×Rd) → 0.

Proof. For almost all (t, x) in R+ × R
d, we have

Cε(t, x) =

∫

Rd

1

εd
a(t, y)

v(t, x) − v(t, y)

ε
· ∇ρ

(
x− y

ε

)
dy.

Performing the change of variable y = x+ εz yields

Cε(t, x) =

∫

Rd

a(t, x+ εz)
v(t, x) − v(t, x+ εz)

ε
· ∇ρ(z)dz.

Using the Taylor formula

v(·, x + εz)− v(·, x) =

∫ 1

0
∇v(·, x + rεz) · (εz)dr,

which is true for smooth functions and extends to Ẇ 1,q′(Rd) thanks to the continuity of both
sides on this space and owing to Fubini’s theorem to exchange integrals, we get the nicer formula

Cε(t, x) = −

∫ 1

0

∫

Rd

a(t, x+ εz)∇v(t, x + rεz) : (∇ρ(z) ⊗ z)dzdr,
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where : denotes the contraction of rank two tensors. Because q and q′ are dual Hölder exponents,
at least one of them is finite. We assume for instance that q < ∞, the case q′ < ∞ being
completely similar.

Let

C̃ε(t, x) := −

∫ 1

0

∫

Rd

a(t, x+ rεz)∇v(t, x+ rεz) : (∇ρ(z)⊗ z)dzdr.

We claim that, as ε→ 0,

‖Cε − C̃ε‖L1(R+×Rd) → 0.

Integrating both in space and time and owing to Hölder’s inequality, we have

‖Cε − C̃ε‖L1(R+×Rd) ≤
∫ 1

0

∫

Rd

∫
∞

0
‖a(t, ·+ εz)− a(t, ·+ rεz)‖Lq(Rd)‖∇v(t)‖Lq′ (Rd)|∇ρ(z)⊗ z|dtdzdr.

Since a ∈ Lp(R+, L
q(Rd)) and q <∞, for almost any t ∈ R+, for all z ∈ R

d and r ∈ [0, 1],

‖a(t, · + εz)− a(t, ·+ rεz)‖Lq(Rd) → 0

as ε→ 0. Thanks to the uniform bound

‖a(t, · + εz) − a(t, ·+ rεz)‖Lq(Rd)‖∇v(t)‖Lq′ (Rd)|∇ρ(z)⊗ z| ≤

2‖a(t)‖Lq(Rd)‖∇v(t)‖Lq′ (Rd)|∇ρ(z)⊗ z|,

we may invoke the dominated convergence theorem to get the desired claim.
From this point on, we denote by U(t, x) the quantity a(t, x)∇v(t, x). We notice that U is a

fixed function in L1(R+ × R
d) and that, by definition,

C̃ε(t, x) = −

∫ 1

0

∫

Rd

U(t, x+ rεz) : (∇ρ(z)⊗ z)dzdr.

The normalization on ρ yields the identity

−

∫

Rd

∇ρ(z)⊗ zdz =

(∫

Rd

ρ(z)dz

)
Id = Id,

where Id is the d−dimensional identity matrix. This identity in turn entails that

C̃0(t, x) = a(t, x)∇v(t, x) : Id = a(t, x) div v(t, x) = 0.

A second application of the dominated convergence theorem to the function U gives

‖C̃ε − C̃0‖L1(R+×Rd) → 0

as ε→ 0, from which the lemma follows. �

Proof of Theorem 3. Let us choose some mollifying kernel ρ = ρ(x) and denote vδ := ρδ ∗ v,
where ρδ(x) := δ−dρ(x

δ
). Let (C ′

δ) be the Cauchy problem (C ′) where we replaced v by vδ. The

existence of a (smooth) solution ϕδ to (C ′

δ) is then easily obtained thanks to, for instance, a
Friedrichs method combined with heat kernel estimates. We now turn to the L∞ bound uniform
in δ.

Let r ≥ 2 be a real number. Multiplying the equation on ϕδ by ϕδ|ϕδ|r−2 and integrating in
space and time, we get

1

r
‖ϕδ(t)‖r

Lr(Rd) + (r − 1)

∫ t

0
‖∇ϕδ(s)|ϕδ(s)|

r−2

2 ‖2
L2(Rd)ds =

1

r
‖ϕ0‖

r
Lr(Rd).

Discarding the gradient term, taking r-th root in both sides and letting r go to infinity gives

(11) ‖ϕδ(t)‖L∞(Rd) ≤ ‖ϕ0‖L∞(Rd).

Thus, the family (ϕδ)δ is bounded in L∞(R+ × R
d). Up to an extraction, (ϕδ)δ converges

weak−∗ in L∞(R+ × R
d) to some function ϕ.
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As a consequence, because vδ → v strongly in L1
loc(R+ × R

d) as δ → 0, the following conver-
gences hold :

∆ϕδ ⇀∗ ∆ϕ in L∞(R+, Ẇ
−2,∞(Rd));

ϕδvδ ⇀ ϕv in L1
loc(R+ × R

d).

In particular, such a ϕ is a distributional solution of (C ′) with the desired regularity. �

We are now in position to prove the main theorem of this paper.

Proof of Theorem 2. Let ρ = ρ(x) be a radial mollifying kernel and define ρε(x) := ε−dρ(x
ε
).

Convolving the equation on a by ρε gives, denoting aε := ρε ∗ a,

(Cε) ∂taε +∇ · (aεv)− ν∆aε = Cε,

where the commutator Cε has been defined in Lemma 1. Notice that even without any smooth-
ing in time, aε, ∂taε lie respectively in L∞(R+, C

∞(Rd)) and L1(R+, C
∞(Rd)), which is enough

to make the upcoming computations rigorous. In what follows, we let ϕδ be a solution of the
Cauchy problem (−C ′

δ), where (−C ′

δ) is (−C ′) (defined in Theorem 5) with v replaced by vδ.

Let us now multiply, for δ, ε > 0 the equation (Cε) by ϕ
δ and integrate in space and time. After

integrating by parts (which is justified by the high regularity of the terms we have written), we
get

∫ T

0

∫

Rd

∂taε(s, x)ϕ
δ(s, x)dxds = 〈aε(T ), ϕ0〉D′(Rd),D(Rd) −

∫ T

0

∫

Rd

aε(s, x)∂tϕ
δ(s, x)dxds.

From this identity, it follows that

〈aε(T ), ϕ0〉D′(Rd),D(Rd) =

∫ T

0

∫

Rd

ϕδ(s, x)Cε(s, x)dxds

−

∫ T

0

∫

Rd

aε(s, x)
(
−∂tϕ

δ(s, x)−∇ · (v(s, x)ϕδ(s, x))− ν∆ϕδ(s, x)
)
dxds.

From Lemma 1, we know in particular that Cε belongs to L1(R+ × R
d) for each fixed ε > 0.

Thus, in the limit δ → 0, we have, for each ε > 0,
∫ T

0

∫

Rd

ϕδ(s, x)Cε(s, x)dxds →

∫ T

0

∫

Rd

ϕ(s, x)Cε(s, x)dxds.

On the other hand, the definition of ϕδ gives

−∂tϕ
δ −∇ · (vϕδ)− ν∆ϕδ = ∇ · ((vδ − v)ϕδ).

Thus, the last integral in the above equation may be rewritten, integrating by parts,

−

∫ T

0

∫

Rd

ϕδ(vδ − v) · ∇aε(s, x)dxds.

For each fixed ε, the assumption on a entails that ∇aε belongs to L
p(R+, L

q(Rd)). Furthermore,
it is an easy exercise to show that

‖vδ − v‖Lp′ (R+,Lq′(Rd)) ≤ δ‖∇v‖Lp′ (R+,Lq′(Rd))‖| · |ρ‖L1(Rd).

Now, taking the limit δ → 0 while keeping ε > 0 fixed, we have

〈aε(T ), ϕ0〉D′(Rd),D(Rd) =

∫ T

0

∫

Rd

ϕ(s, x)Cε(s, x)dxds.

Taking the limit ε→ 0 and using Lemma 1, we finally obtain

〈a(T ), ϕ0〉D′(Rd),D(Rd) = 0.

This being true for any test function ϕ0, a(T ) is the zero distribution and finally a ≡ 0. �
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Proof of Theorem 5. The proof of this Theorem is very similar to that of Theorem 3.1 in [29].
We nevertheless reproduce it in our cse for the sake of completeness. For simplicity, we reduce
to the case ν = 1. Let ρ = ρ(x) be a radial mollifying kernel and let us denote ρδ(x) = δ−dρ(x

δ
).

Let wδ = ρδ ∗ w and vδ = ρδ ∗ v. Let (C ′

δ) be the Cauchy problem (C ′) with w, v replaced by

wδ, vδ respectively. The existence of a smooth solution ϕδ to the Cauchy problem (C ′

δ) is easy
and thus omitted. We focus on the the relevant estimates. Let r ≥ 2 be a real number. We
first take the scalr product of the equation on ϕδ by ϕδ and carefully rearrange the laplacian
term to get the following equation on |ϕδ |2

(12)
1

2
∂|ϕδ |2 +

1

2
vδ · ∇|ϕδ |2 −

ν

2
∆|ϕδ|2 + ν|∇ϕδ|2 = ϕδ · (t∇ϕδ · wδ).

For notational convenience, we let ψ(δ) := |ϕδ|2 in the sequel. Now, multiplying this new
equation by |ϕδ |r−2 and integrating in space and time, we get

1

r
‖ϕδ(t)‖r

Lr(Rd) +
r − 2

4
ν

∫ t

0
‖(ψ(δ))

r−4

4 ∇ψ(δ)‖2
L2(Rd)ds+ ν

∫ t

0
‖∇ϕδ(s)|ϕδ(s)|

r−2

2 ‖2
L2(Rd)ds

=
1

r
‖ϕ0‖

r
Lr(Rd) −

∫ t

0

∫

Rd

|ϕδ |r−2ϕδ · (t∇ϕδ · wδ)dxds.

Denote by I(t) the integral on the right hand side. Rewriting

I(t) =

∫ t

0

∫

Rd

(ψ(δ))
r
4 |ϕδ|

r−4

2 ϕδ · (t∇ϕδ · wδ)dxds,

the Hölder inequality yields

|I(t)| ≤

∫ t

0
‖∇ϕδ(s)|ϕδ(s)|

r−2

2 ‖L2(Rd)‖(ψ
(δ))

r
4 (s)‖Lq̃(Rd)‖wδ(s)‖Lq(Rd)ds,

where q̃ is defined by 1
2 + 1

q
+ 1

q̃
= 1. By the Sobolev embedding Ḣ1− 2

p (Rd) →֒ Lq̃(Rd), there

exists a constant C = C(p, d) such that

‖(ψ(δ))
r
4 (s)‖Lq̃(Rd) ≤ C‖(ψ(δ))

r
4 (s)‖

Ḣ
1− 2

p (Rd)
.

Since d ≥ 3 and 0 ≤ 1− 2
p
< 1, we may choose C uniformly in p for fixed d. Interpolating Ḣ1− 2

p

between L2 and Ḣ1 gives

‖(ψ(δ))
r
4 (s)‖

Ḣ
1− 2

p (Rd)
≤ ‖(ψ(δ))

r
4 (s)‖

2

p

L2(Rd)
‖∇(ψ(δ))

r
4 (s)‖

1− 2

p

L2(Rd)

= ‖ϕδ(s)‖
r
p

Lr(Rd)
‖∇(ψ(δ))

r
4 (s)‖

1− 2

p

L2(Rd)
.

As ∇(ψ(δ))
r
4 = r

4(ψ
(δ))

r−4

4 ∇ψ(δ), we may now bound |I(t)| from above by

C

∫ t

0
‖∇ϕδ(s)|ϕδ(s)|

r−2

2 ‖L2(Rd)

(r
4
‖(ψ(δ))

r−4

4 (s)∇ψ(δ)(s)‖L2(Rd)

)1− 2

p
‖ϕδ(s)‖

r
p

Lr(Rd)
‖wδ(s)‖Lq(Rd)ds.

The Young inequality for real numbers yields, with p̃ defined in the same way as q̃,

|I(t)| ≤
ν

2

∫ t

0
‖∇ϕδ(s)|ϕδ(s)|

r−2

2 ‖2L2(Rd)ds+
rν

4p̃

∫ t

0
‖(ψ(δ))

r−4

4 (s)∇ψ(δ)(s)‖2L2(Rd)ds

+
Cp

pνp−2

∫ t

0
‖ϕδ(s)‖rLr(Rd)‖wδ(s)‖

p

Lq(Rd)
ds.

Absorbing the first two terms in the left-hand side of the inequality gives

1

r
‖ϕδ(t)‖rLr(Rd) ≤

1

r
‖ϕ0‖

r
Lr(Rd) +

Cp

pνp−2

∫ t

0
‖ϕδ(s)‖rLr(Rd)‖wδ(s)‖

p

Lq(Rd)
ds.
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By Grönwall’s inequality,

‖ϕδ(t)‖Lr(Rd) ≤ ‖ϕ0‖Lr(Rd) exp

(
Cp

pνp−2

∫ t

0
‖wδ(s)‖

p

Lq(Rd)
ds

)
.

Letting r go to infinity and using the trivial bound ‖wδ(s)‖Lq(Rd) ≤ ‖w(s)‖Lq(Rd) yields

(13) ‖ϕδ(t)‖L∞(Rd) ≤ ‖ϕ0‖L∞(Rd) exp

(
Cp

pνp−2

∫ t

0
‖w(s)‖p

Lq(Rd)
ds

)
.

It only remains to take the limit δ → 0. As the family (ϕδ)δ is a bounded subset in L∞(R+×R
d),

up to an extraction, there exists ϕ in L∞(R+ × R
d) such that

ϕδ ⇀∗ ϕ in L∞(R+ × R
d) as δ → 0.

By Fatou’s lemma, the bound

(14) ‖ϕ(t)‖L∞(Rd) ≤ ‖ϕ0‖L∞(Rd) exp

(
Cp

pνp−2

∫ t

0
‖w(s)‖p

Lq (Rd)
ds

)

follows. On the other hand, since v and w belong to L2(R+, Ḣ
1(Rd)), it is clear that

vδ, wδ −→ v,w strongly in L2(R+, Ḣ
1(Rd)) as δ → 0.

Hence, taking the limit δ → 0 in the equation on ϕδ , we see that ϕ indeed satisfies the adjoint
equation and the proof is over. �

We now turn to the proof of the uniqueness theorem.

Proof of Theorem 4. Let ρ = ρ(x) be a radial mollifying kernel and define ρε(x) := ε−dρ(x
ε
).

Convolving the equation on a by ρε gives, denoting aε := ρε ∗ a,

(Cε) ∂taε +∇ · (aε ⊗ v)− ν∆aε = ∇ · (w ⊗ aε) + Cε +Dε,

where the commutator Cε has been defined in Lemma 1. The second commutator is defined by

Dε := ρε ∗ ∇ · (a⊗ w)−∇ · (w ⊗ aε).

Similarly to what we proved for Cε, we have

‖Dε‖L1(R+×Rd) → 0 as ε→ 0.

Notice that even without any smoothing in time, aε, ∂taε lie respectively in L∞(R+, C
∞(Rd))

and L1(R+, C
∞(Rd)), which is enough to make the upcoming computations rigorous. In what

follows, we let ϕδ be a solution of the Cauchy problem (−C ′

δ), with (−C ′

δ) being (−C ′) where v

and a are replaced by vδ and aδ. Let us now multiply, for δ, ε > 0 the equation (Cε) by ϕ
δ and

integrate in space and time. After integrating by parts (which is justified by the high regularity
of the terms we have written), we get

∫ T

0

∫

Rd

∂taε(s, x)ϕ
δ(s, x)dxds = 〈aε(T ), ϕ0〉D′(Rd),D(Rd) −

∫ T

0

∫

Rd

aε(s, x)∂tϕ
δ(s, x)dxds.

From this identity, it follows that

〈aε(T ), ϕ0〉D′(Rd),D(Rd) =

∫ T

0

∫

Rd

ϕδ(s, x)(Cε +Dε)(s, x)dxds +

∫ T

0

∫

Rd

aε(s, x)
(
∂tϕ

δ(s, x) +∇ · (v(s, x)ϕδ(s, x)) + ν∆ϕδ(s, x)−t ∇ϕδ(s, x) · w(s, x)
)
dxds.

From Lemma 1, we know in particular that Cε belongs to L1(R+×R
d) for each fixed ε > 0 and

the same goes for Dε. Thus, in the limit δ → 0, we have, for each ε > 0,
∫ T

0

∫

Rd

ϕδ(s, x)(Cε +Dε)(s, x)dxds →

∫ T

0

∫

Rd

ϕ(s, x)(Cε +Dε)(s, x)dxds.

On the other hand, the definition of ϕδ gives

−∂tϕ
δ −∇ · (vϕδ)− ν∆ϕδ +t ∇ϕδ · w = ∇ · ((vδ − v)ϕδ) +t ∇ϕδ · (w − wδ).
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Thus, the last integral in the above equation may be rewritten, integrating by parts,

−

∫ T

0

∫

Rd

ϕδ(vδ − v) · ∇aε(s, x)dxds +

∫ T

0

∫

Rd

ϕδ(s, x)∇ · ((w − wδ)(s, x)⊗ aε(s, x))dxds.

For each fixed ε, the assumption on a entails that ∇aε belongs to L2(R+ × R
d). Furthermore,

it is an easy exercise to show that

‖vδ − v‖L2(R+×Rd) ≤ δ‖∇v‖L2(R+×Rd)‖| · |ρ‖L1(Rd)

and

‖∇ · ((w − wδ)⊗ aε)‖L1(R+×Rd) → 0 as δ → 0, for any fixed ε.

Now, taking the limit δ → 0 while keeping ε > 0 fixed, we have

〈aε(T ), ϕ0〉D′(Rd),D(Rd) =

∫ T

0

∫

Rd

ϕ(s, x)(Cε +Dε)(s, x)dxds.

Taking the limit ε→ 0 and using Lemma 1, we finally obtain

〈a(T ), ϕ0〉D′(Rd),D(Rd) = 0.

This being true for any test function ϕ0, a(T ) is the zero distribution and finally a ≡ 0. �

Proof of Theorem 6. Let Ω := ∇∧ u and Ω0 := ∇∧ u0. The equation on Ω writes

(NSV )

{
∂tΩ+∇ · (Ω⊗ u)−∆Ω = ∇ · (u⊗ Ω)

Ω(0) = Ω0.

Let χ = χ(t) be a smooth cutoff in time supported inside ]T1, T2[. Let ϕ = ϕ(t) be another
smooth cutoff such that

supp χ ⊂ {ϕ ≡ 1}.

Denoting Ω′ = χΩ and u′ = ϕu, we have

(NSV ′)

{
∂tΩ

′ +∇ · (Ω′ ⊗ u)−∆Ω′ = ∇ · (u′ ⊗ Ω′) + Ω∂tχ
Ω′(0) = 0.

Following the same lines as for Theorem 5, we sketch a way to build a solution Ω′′ of
{
∂tΩ

′′ +∇ · (Ω′′ ⊗ u)−∆Ω′′ = ∇ · (u′ ⊗ Ω′′) + Ω∂tχ
Ω′′(0) = 0.

belonging to

L∞(R+, L
2(T3)) ∩ L2(R+, Ḣ

1(T3)).

For δ > 0, let uδ, u
′

δ and Ωδ be smooth space mollifications of u, u′ and Ω respectively. By the
Friedrichs method and heat kernel estimates, there exists a smooth solution Ω′′

δ of

{
∂tΩ

′′

δ +∇ · (Ω′′

δ ⊗ uδ)−∆Ω′′

δ = ∇ · (u′δ ⊗ Ω′′

δ ) + Ωδ∂tχ

Ω′′

δ (0) = 0.

Performing an energy estimate in L2(T3) gives

1

2
‖Ω′′

δ (t)‖
2
L2(T3) +

∫ t

0
‖∇Ω′′

δ (s)‖
2
L2(T3)ds

=

∫ t

0

∫

T3

Ω′′

δ (x, s) ·
(
∇ ·

(
u′δ(x, s)⊗Ω′′

δ (x, s)
)
+Ωδ(x, s)∂tχ(s)

)
dxds.
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The right-hand side decomposes in two terms, which we estimate separately. For the first one,
we integrate by parts and use Hölder inequality to get

∫ t

0

∫

T3

Ω′′

δ (x, s) ·
(
∇ ·

(
u′δ(x, s)⊗Ω′′

δ (x, s)
))
dxds

= −

∫ t

0

∫

T3

∇Ω′′

δ (x, s) :
(
u′δ(x, s)⊗ Ω′′

δ (x, s)
)
dxds

≤

∫ t

0
‖∇Ω′′

δ (s)‖L2(T3)‖u
′

δ(s)‖Lq(T3)‖Ω
′′

δ (s)‖Lq̃(T3)ds,

where q̃ is defined by
1

q̃
=

1

2
−

1

q
.

The Sobolev embedding Ḣ
3

q (T3) →֒ Lq̃(T3) gives

‖Ω′′

δ (s)‖Lq̃(T3) . ‖∇Ω′′

δ (s)‖
3

q

L2(T3)
‖Ω′′

δ (s)‖
2

p

L2(T3)
.

Hence,

∫ t

0

∫

T3

Ω′′

δ (x, s) ·
(
∇ ·

(
u′δ(x, s)⊗Ω′′

δ (x, s)
))
dxds

.

∫ t

0
‖∇Ω′′

δ (s)‖
1+ 3

q

L2(T3)
‖u′δ(s)‖Lq(T3)‖Ω

′′

δ (s)‖
2

p

L2(T3)
ds.

Young inequality entails the existence of a constant C depending only on q such that

‖∇Ω′′

δ (s)‖
1+ 3

q

L2(T3)
‖u′δ(s)‖Lq(T3)‖Ω

′′

δ (s)‖
2

p

L2(T3)

≤
1

2
‖∇Ω′′

δ (s)‖
2
L2(T3) +

C

2
‖u′δ(s)‖

p

Lq(T3)
‖Ω′′

δ (s)‖
2
L2(T3)

The second term is easier to bound. Indeed, thanks to the Cauchy-Schwarz inequality,

∫ t

0

∫

T3

Ω′′

δ (x, s) · Ωδ(x, s)∂tχ(s)ds ≤

∫ t

0
‖Ω′′

δ (s)‖L2(T3)‖Ωδ(s)‖L2(T3)|∂tχ(s)|ds

≤
1

2

∫ t

0
‖Ω′′

δ (s)‖
2
L2(T3)ds +

1

2
‖∂tχ‖

2
L∞(R+)

∫ t

0
‖Ωδ(s)‖

2
L2(T3)ds.

Gathering these estimates, we have shown that, for some constant C depending only on q,

‖Ω′′

δ (t)‖
2
L2(T3) +

∫ t

0
‖∇Ω′′

δ (s)‖
2
L2(T3)ds

≤

∫ t

0

(
1 + C‖u′δ(s)‖

p

Lq(T3)

)
‖Ω′′

δ (s)‖
2
L2(T3)ds+ ‖∂tχ‖

2
L∞(R+)‖Ωδ‖

2
L2(R+×T3).

Since u′δ and Ωδ are mollifications of u′ and Ω respectively, for any s ∈ R+ and any δ > 0, there
holds

‖u′δ(s)‖Lq(T3) ≤ ‖u′(s)‖Lq(T3)

and

‖Ωδ(s)‖L2(T3) ≤ ‖Ω(s)‖L2(T3).

Combining these facts to Grönwall’s inequality entails the bound

‖Ω′′

δ (t)‖
2
L2(T3) +

∫ t

0
‖∇Ω′′

δ (s)‖
2
L2(T3)ds

≤ ‖∂tχ‖
2
L∞(R+)‖Ω‖

2
L2(R+×T3) exp

(
t+ C

∫ t

0
‖u′(s)‖p

Lq(T3)
ds

)
.
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It only remains to pass to the limit. From the uniform L∞(R+, L
2(T3))∩L2(R+, Ḣ

1(T3)) bound

on the (Ω′′

δ )δ, there exists some Ω′′ ∈ L∞(R+, L
2(T3)) ∩ L2(R+, Ḣ

1(T3)) such that, up to an
extraction,

Ω′′

δ ⇀ Ω′′ weakly in L∞(R+, L
2(T3)) ∩ L2(R+, Ḣ

1(T3)) as δ → 0

This weak convergence allows us to pass to the limit in the equation on Ω′′

δ , thanks to the strong
convergences

uδ, u
′

δ → u, u′ strongly in L2(R+, Ḣ
1(T3)) as δ → 0.

Such an Ω′′ thus belongs to

L∞(R+, L
2(T3)) ∩ L2(R+, Ḣ

1(T3))

and solves, as required,
{
∂tΩ

′′ +∇ · (Ω′′ ⊗ u)−∆Ω′′ = ∇ · (u′ ⊗ Ω′′) + Ω∂tχ
Ω′′(0) = 0.

Now, letting Ω̃ := Ω′ − Ω′′, we see that Ω̃ solves

(NSV 0)

{
∂tΩ̃ +∇ · (Ω̃⊗ u)−∆Ω̃ = ∇ · (u′ ⊗ Ω̃)

Ω̃(0) = 0.

We recall that u and u′ belong to L2(R+, Ḣ
1(T3)) and by assumption, u′ further belongs to

Lp(R+, L
q(Td)). Moreover, the high regularity of Ω′′ and the fact that u is a Leray solution of

the Navier-Stokes equations together entail that Ω̃ belongs to L2(R+ × T
3). These regularity

assumptions allow us to invoke Theorem 4, from which we deduce that Ω̃ ≡ 0. It follows that

Ω ∈ L∞

loc(]T1, T2[, L
2(T3)) ∩ L2

loc(]T1, T2[, Ḣ
1(T3)).

Since u is the inverse curl of Ω, the above regularity on Ω is equivalent to

u ∈ L∞

loc(]T1, T2[, Ḣ
1(T3)) ∩ L2

loc(]T1, T2[, Ḣ
2(T3)).

From here, improving again the regularity on Ω and u relies on an induction procedure, which
is tedious to write thoroughly but not difficult. We need to prove that, for all s ∈ N, we have

Ω ∈ L∞

loc(]T1, T2[, Ḣ
s(T3)) ∩ L2

loc(]T1, T2[, Ḣ
s+1(T3)),

which is equivalent to requiring

u ∈ L∞

loc(]T1, T2[, Ḣ
s+1(T3)) ∩ L2

loc(]T1, T2[, Ḣ
s+2(T3)).

The case s = 0 is exactly what we just proved. To go from the step s to the step s + 1, we
simply compute all the space derivatives of order s + 1 of the equation on Ω′. More precisely,
denoting by ∂s+1 a generic space derivative of order s+ 1, we have

∂t∂
s+1Ω′ +∇ · (u⊗ ∂s+1Ω′)−∆∂s+1Ω′ = ∇(∂s+1Ω′ ⊗ u) + (l.o.t in Ω′).

Performing an energy estimate in L2(T3) as above and using Theorem 4, we get

∂s+1Ω′ ∈ L∞

loc(]T1, T2[, L
2(T3)) ∩ L2

loc(]T1, T2[, Ḣ
1(T3)),

which is what we wanted. Time derivatives may now be handled by a similar induction argu-
ment, which we will not write. This closes the proof. �

Proof of Theorem 7. Given the assumptions we made, we compute the vorticity equation by
taking the curl on each side of the Navoer-Stokes equations. Let s < t be two real numbers in
]0, T [. Let ϕ : [0, t − s] × R

d → R
d be a solution of the adjoint equation satisfying the bound

(9). Imitating the proof of Theorem 4 for the time interval [s, t], we arrive at

(15) 〈Ω(t), ϕ0〉L1(Rd),L∞(Rd) = 〈Ω(s), ϕ(t − s)〉L1(Rd),L∞(Rd).

Thanks to the bound (9), for any ϕ0 in D(Rd), we have

(16) |〈Ω(t), ϕ0〉L1(Rd),L∞(Rd)| ≤ ‖Ω(s)‖L1(Rd)‖ϕ0‖L∞(Rd) exp

[
Cp

pνp−2

∫ t

s

‖u(s)‖p
Lq(Rd)

ds

]
.

Taking the supremum over all possible ϕ0 and letting s→ 0 yields the result. �
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[11] C. de Lellis and L. Székelyhidi, On admissibility criteria for weak solutions of the Euler equations, Arch.

Rational Mech. Anal. 195, 225–260 (2010)
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