
HAL Id: hal-01415415
https://hal.science/hal-01415415

Submitted on 16 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Robust Methodology for Performance Analysis on
Hybrid Embedded Multicore Architectures

Romain Saussard, Boubker Bouzid, Marius Vasiliu, Roger Reynaud

To cite this version:
Romain Saussard, Boubker Bouzid, Marius Vasiliu, Roger Reynaud. A Robust Methodology for
Performance Analysis on Hybrid Embedded Multicore Architectures. 10th International Symposium
on Embedded Multicore/Many-core Systems-on-Chip (MCSoC 2016), , Sep 2016, Lyon, France. pp.77
- 84, �10.1109/MCSoC.2016.35�. �hal-01415415�

https://hal.science/hal-01415415
https://hal.archives-ouvertes.fr

A Robust Methodology for Performance Analysis
on Hybrid Embedded Multicore Architectures

Romain Saussard∗† Boubker Bouzid∗ Marius Vasiliu† Roger Reynaud†
∗Renault S.A.S. (Guyancourt, France)

Email: {romain.saussard, boubker.bouzid}@renault.com
†SATIE, ENS Cachan, Université Paris Saclay (Orsay, France)

Email: {romain.saussard, marius.vasiliu, roger.reynaud}@u-psud.fr

Abstract—Today’s vehicles increasingly embed software in-
telligence in order to be safer for the driver, and to achieve
autonomous driving in a close future. To answer the computa-
tional needs of these algorithms, system-on-chip (SoC) suppliers
propose heterogeneous architectures. With such complex SoCs,
embedding applications in vehicle becomes more and more com-
plex for car manufacturers. Indeed, it is not trivial to find the best
suited SoC for a given application, and to define load balancing
strategies when working with heterogeneous architectures. These
difficulties can be overcome by using performance prediction,
based on computing architectures models. To build these models,
we provide a set of test vectors which automatically extract key
characteristics of tested architectures. Our methodology is able
to perform a complete computing architecture model, by using 3
different levels of tests, each one characterizing a specific situation
representative of real applications. We aim to obtain performance
prediction for different applications, for any embedded SoCs
based on models performed with this methodology. In this paper,
we describe our characterization methodology, and show results
obtained with embedded SoCs used for automotive applications.

I. INTRODUCTION

Computational needs for vehicles are increasing with the
emergence of advanced driver assistance systems (ADAS) and
autonomous driving systems. Indeed, vehicles increasingly use
sensors and complex algorithms to sense the environment.
Thus, automotive industry uses more and more computational
powerful systems-on-chip (SoCs), especially to embed image
processing algorithms. Image processing algorithms process
high amounts of data, so they need high computational re-
sources. Most of state-of-the-art image processing algorithms
for ADAS are designed to be executed on powerful computer,
sometimes not in real time. Nevertheless, they often can be
easily parallelized, so they can be accelerated by massively
parallel architectures. This implies an effort from automotive
actors to bridge the gap between prototypes on computer and
embedded SoCs on vehicles.

Semiconductor companies are moving into the market of
ADAS with heterogeneous SoCs. These systems provide dif-
ferent kind of processors to bring more computational per-
formance and energy efficiency. We can cite Nvidia (Tegra
K1 and X1), Texas Instruments (TDA2x), Renesas (R-Car H2
and R-Car H3). In [1], we show that computational intensive
image processing algorithms, such as lane detection, can be
embedded and executed in real time on heterogeneous SoCs.

When embedding software applications on vehicle, two
challenges need to be addressed. First, one needs to guess the
best suited SoC for a given application, then one needs to find
how to partition the computational load on the different pro-
cessors of the heterogeneous SoC. In [2], [3] we present a way
to address these challenges, by using performance prediction.
However, performance prediction models need architecture
characteristics to proceed, and this information is not always
provided by suppliers.

In this paper, we propose a generic methodology to auto-
matically extract key features of heterogeneous SoCs. Char-
acteristics extracted show few raw performance indicators for
the measured architectures, and can be used in a performance
prediction model. First, in section II, we briefly present some
heterogeneous SoCs used for ADAS applications. Then, in
section III, we present existing work on architecture char-
acterization, followed by our novel approach description in
section IV. Finally, we show some results obtained with our
methodology in section V, and we discuss about future work
and conclude in section VI.

II. HETEROGENEOUS SOCS FOR ADAS

In order to meet automotive industry needs for embedding
computational intensive ADAS applications, semiconductor
companies such as Nvidia, Renesas, or Texas Instruments
propose heterogeneous SoCs. These architectures are often
composed of ARM processors, for general processing, and of
one or few hardware accelerators to handle computationally
intensive operations such as image processing. In this paper,
we propose a generic methodology to characterize computing
architectures, including modern computers and any of these
SoCs. Architectures characteristics are summarized in table I.

A. Nvidia Tegra K1 and X1

Nvidia has released two embedded architectures for ADAS
applications: the Tegra K1 and the Tegra X1. Both are com-
posed of ARM processors, GPUs and Image Signal Processors
(ISPs). The Tegra K1 consists of a quad-core ARM Cortex
A15 CPU providing ARMv7 instruction set and a Kepler
GPU, composed of one streaming multiprocessor (SMX) of
192 cores. The development platform is known as Nvidia
Jetson TK1. The Tegra X1 is composed of a quad-core ARM
Cortex A57, a quad-core ARM Cortex A53 providing ARMv8

TABLE I: Summary of hardware configurations.

SoC Processors Parallel Units Classification Parallel Degree Memory
Bandwidth Tools

Tegra K1 4×A15 with NEON 1 SMX Kepler
GPU SIMT 192 CUDA cores 17 GB/s GCC, CUDA, Visionworks

(OpenVX)

Tegra X1 4×A57, 4×A53 with
NEON

2 SMX Maxwell
GPU SIMT 2×128 CUDA

cores 26.5 GB/s GCC, CUDA, Visionworks
(OpenVX)

R-Car H2 4×A15, 4×A7 with
NEON IMP-X4 MIMD Under NDA 6.4 GB/s GCC

TDA2x 2×A15 with NEON,
2×C66x DSPs 4×EVE SIMD 512 bits vector

size n.a. GCC, cl6x, TI Vision SDK

instruction set, and a Maxwell GPU composed of two SMX
of 128 cores. The development platform for autonomous cars,
DrivePX, provides 2 Tegra X1.

ARM processors provide out-of-order speculative issue su-
perscalar execution pipeline. Each core handles SIMD in-
structions with a NEON unit and has a FPU unit. GPU
are well known for accelerating image processing application
execution time [4]. CUDA framework [5] is used for kernel
implementation on the GPU of Tegra K1 and Tegra X1. The
ISP provides fast and specific image processing kernels such as
delayering, noise reduction, etc. This unit is very fast, but user
can only control a limited set of parameters and the chaining
order of kernels is restricted.

B. Renesas R-Car

Renesas has released two embedded architectures for ADAS
applications: the R-Car H2 and the R-Car H3. Both are
composed of ARM processors, programmable hardware ac-
celerators to handle image processing kernels, and ISPs.

The R-Car H2 provides a quad-core ARM A15 and a quad-
core ARM A7. It is composed of a programmable hardware
accelerator, the high performance real-time image recognition
processor (IMP-X4).

C. Texas Instruments TDA2x

The TDA2x [6] is composed of four different types of
programmable units. First, it provides a 750 MHz dual-core
ARM A15 and a dual-Cortex-M4. These computing units
do not bring that much computing capability (A15 core on
TDA2x is 4 times less powerful than the one in K1), but
they can be used for data management, video acquisition
control/rendering, high level decision making, etc.

To handle heavy image processing tasks, TDA2x pro-
vides a mix of Texas Instruments fixed and floating point
TMS320C66x DSP (Digital Signal Processor) and up to four
EVE (Embedded Vision Engine) cores. TMS320C66x is the
most recent DSP from Texas Instruments, it can handle up to
32 multiply accumulate operations per cycle. Each EVE is a
650 MHz core, optimized for image processing, composed of
one specific RISC processor and one 512-bit vector coproces-
sor.

D. Software Environment

Each SoCs manufacturer has its own software environment
to develop on its platform. For example Nvidia provides

the CUDA API for GPU programming, Texas Instruments
proposes cl6x (DSP compiler), specific tools to program EVE
processors, and TI Vision SDK [7]. Thus, a user who wants
to work on different platforms has to learn different software
API, languages, etc. In addition, porting an algorithm from PC
to an embedded SoC, with a specific API, is not trivial.

To facilitate portability and genericity, the Khronos Group
has released the OpenVX standard. OpenVX [8] is an open,
royalty-free standard for cross platform acceleration of com-
puter vision applications. It enables performance and power-
optimized computer vision processing, it is based on the
implementation of image processing kernels designed by SoC
manufacturers, beneficing from hardware acceleration of the
architecture.

Nvidia, Renesas and Texas Instruments take parts to the
OpenVX specification definition. In addition, Nvidia has re-
leased an OpenVX implementation to address Tegra K1 and
Tegra X1: VisionWorks. To our knowledge, Texas Instruments
and Renesas has not released yet an OpenVX implementation
for their platforms.

E. Kernel Mapping Optimization

When working with heterogeneous architectures, a chal-
lenge needs to be addressed: how to partition the different
tasks (or kernels) of the algorithm to embed on the different
processors of the heterogeneous architecture. That is what we
call the kernel mapping problem, introduced in [1]–[3].

Let P be the vector of the processing units of a given
heterogeneous architecture, K be the vector of the kernels
of a given algorithm, the matrix M constitutes the mapping
of K on P , given by P =M.K. Let ϕ be the spatiotemporal
dependency matrix: a kernel instance Ki(t) may depends
on the execution of another kernel Kj(t), and its previous
instance Ki(t − 1); ϕ is used to find possible execution
pipelines. Let τ(M) be the execution function (returning
the execution time for each kernel), δ(M) be the transfer
function (returning the transfer delay needed for each kernel),
η(M) be the occupancy function (returning the occupancy for
each computing unit) and f(P,K,ϕ, τ(M), δ(M), η(M)) be
the cost function (returning the global execution time of the
algorithm). The aim of the kernel mapping optimization is to
find M minimizing f :

argmin
M

[f (P,K,ϕ, τ(M), δ(M), η(M))] . (1)

As discussed in [2], [3], the parameters of the function f
can be predicted for different M . In these papers we have
presented a methodology to estimate the execution τ(M) and
transfer δ(M) times with little knowledge of target architec-
tures.

Our performance prediction approach is based on two levels
of accuracy. The first one builds an architecture model based
on basic information provided by manufacturers; but this level
cannot deal with cache effects, compiler optimizations, mem-
ory latency, concurrent memory access, resources starvation,
etc. Thus the second level overcomes these limitations by
using a generic test vector set which automatically extracts
features, for any architectures and compilers in order to build a
more precise model for the association architecture + compiler.
In this paper, we explain our methodology for extracting
some features of the tested architectures and their software
environment.

III. EXISTING WORK ON ARCHITECTURE
CHARACTERIZATION

A. Legacy Metrics

One of the most well-known metrics to characterize archi-
tecture performance is the FLOPS (Floating-point Operations
Per Second). It only measures floating point operations, unlike
the MIPS (Millions of Instruction per second) which measures
all type of instruction (moving, computing, comparing, etc.)
executed in a second. However, MIPS cannot be used to
compare different instruction sets for the same workload (e.g.
CISC vs RISC).

The Dhrystone benchmark [9] was created to be represen-
tative of CPU performance. It does not use floating point op-
erations, the output corresponds to the number of Dhrystones
per second (the number of iterations of the main code loop
per second), measured in D-MIPS.

B. Benchmarks for Computing

The benchmark consists in measuring execution time of
workloads for a given computing architecture. Then, bench-
mark results can be compared for many architectures. How-
ever, results are strongly dependent on workloads (parallelism
degree, operations used, etc.).

1) Serial CPU: The SPEC [10] benchmark is made of a set
of 49 compute-intensive workloads. It can only measure per-
formance for CPU (no parallelism), it is based on integer and
floating-points operations[11]. The Embedded Microprocessor
Benchamark Consortium (EMBC) [12] uses the CoreMark
benchmark [13]. This benchmark outputs only one scalar, rep-
resenting computing architecture capability. It is based on non-
contiguous memory operations, matrix operations (to illustrate
hardware acceleration like MAC, or SIMD instructions), and
state machine processing (to illustrate branch prediction per-
formance).

2) Parallel Computing: Some benchmarks are defined to
characterize parallel architecture. For example, SPLASH-2
benchmark [14] aims to characterize multi-processor archi-
tecture. For different workloads, it measures computing load

repartition between all processors, communication/computing
ratio, impact of dataset size, etc.

3) Heterogeneous Computing: The famous Rodinia bench-
mark [15] is composed of multi-core CPU and GPU kernels
(using OpenMP and CUDA). Workloads are inspired by
Berkeley’s dwarf taxonomy [16]. It characterizes communi-
cation between processing units, synchronization techniques,
power consumption, etc. Parboil [17] is quite similar, but
only based on few kernels. Scalable Heterogeneous computing
(SHOC) [18] uses OpenCL and CUDA implementation to
target CPU+GPU architectures. It is based on two different
types of test: Level zero (low level characteristics of the
architecture, e.g. PCIe Bus speed, Memory Bandwith, Kernel
Compilation, Peak FLOPS, etc.), and Level One (based on
parallel kernels, e.g. FFT, matrix multiplication, etc.).

C. Benchmarks for Memory

Some benchmarks aim to characterize memory perfor-
mance. For example the STREAM benchmark [19] measures
performance for 4 different kernels: Copy a[i] = b[i], Scale
a[i] = q × b[i], Sum a[i] = b[i] + c[i], and Triad a[i] =
b[i] + q × c[i]. The Low level architectural characterization
benchmark suite (LLCBench) [20] characterizes architecture
with a set of 3 benchmarks: MPBench for MPI messaging,
BLASBench for computing performance based on BLAS
routines, and CacheBench for memory performance. It only
outputs raw data and graphs.

IV. OUR METHODOLOGY

Most of the state-of-the-art benchmarks focus on specific
applications, or focus on one type of operation (floating-point
or integer). In order to obtain low level characteristics of tested
architectures, we developed a novel methodology which is
based on a set of performance test vectors. Our approach
is generic in the sense that it can target any programmable
architectures (software meaning), including PC and any of the
heterogeneous SoCs listed in section II. Our methodology is
composed of 3 levels: low level, mid level, and high level test
vectors. Test vectors are all

A. Low Level Test Vectors

These test vectors aim to extract low level characteristics
of the tested architecture. It is divided into two parts com-
puting test vectors (extracting computing capability of the
architecture) and memory test vectors (extracting bandwidth
and latency).

1) Memory: To start with, let us define memory operation
that we want to characterize:

• Read - Read: 2 consecutive reading on the same data.
• Read - Write: 1 reading, then 1 writing on the same data.
• Write - Read: 1 writing, then 1 reading on the same data.
• Write - Write: 2 consecutive writing on the same data.
• Mcpy: memcopy with @src 6= @dst.
• Trsf : memory transfer from a computing unit to another.
The tests consist in measuring time needed to execute one

of the six memory operation for different sizes. Two strategies

are used: in one test, allocated data size is fixed and we vary
the numbers of memory operations; in the other test, we vary
the allocated memory size. In all the tests, we use contiguous
memory access in order to obtain maximum bandwidth and to
be close to image processing use-case. However, it is possible
to apply the same methodology with non-contiguous access.

2) Computing: We want to characterize a computing oper-
ation (e.g. sum, multiplication, multiply accumulate, bitwise
operators, etc.) for different data type (int32, int16, int8,
float64, float32). Thus, for a given operator, for each data
type, we measure the execution time of a known number of
operations while varying the arithmetic intensity (IA). The IA
is the ratio of computing operations to memory operations.

So, we obtain an execution time depending on the IA as
described in the Boat Hull Model[21]:

• Execution time is constant when the IA is low, perfor-
mance is limited by memory bandwidth and latency.

• Execution time is proportional to the IA when the IA
is high enough, memory bandwidth and latency are
hidden by computing operations. The slope represents the
throughput of the processor for the tested operation and
the variable type used.

Note that the limit between a low and a high IA is specific
for each processor, it depends on its memory bandwidth and
computing capabilities. These tests are based on few loops
with a known size at compilation time. So they also highlight
compiler capabilities, illustrating the auto-vectorization and
loop-unrolling performances.

These tests are designed to achieve high parallelism degree,
to fully exploit massively parallel processors such as GPU,
or multi-core CPU with SIMD instructions. In order to char-
acterize sequential execution, we also run these tests without
parallelism acceleration (e.g. for CPU, by using only 1 core
without SIMD instructions).

3) Conflict Management: Conflict management ensure iso-
lation of shared data from concurrent threads, while causing
performance decrease when two or more thread simultane-
ously try to operate on the same data. These test vectors
study the behavior of these specific mechanisms for different
architectures (e.g Mutex for CPU, or Atomic instructions for
GPU).

B. Mid Level Test Vectors

Mid level test vectors consist in characterizing concurrency
execution on a processor, i.e. the impact of executing few
independent tasks at the same time on the same processor.
We use the previously defined low level test vectors, running
two or more low level tests concurrently (e.g. multiplication
and addition, or addition and memory, etc.) in two different
configurations on the same processor:

• Concurrent execution on different cores: the tests may
only share few cache levels, so it only impacts memory
access delay.

• Concurrent execution on the same core: the tests share
all resources, execution time is fully impacted.

TABLE II: Configurations of tested architectures.

SoC GCC Compiler flags CUDA

K1 4.8 -O3 -mtune=cortex-a15 -mfpu=neon-vfpv4
-funroll-loops -fopenmp 7.0

X1 4.9 -O3 -mtune=cortex-a57 -funroll-loops -
fopenmp 7.5

R-Car 4.8 -O3 -mtune=cortex-a15 -mfpu=neon-vfpv4
-funroll-loops -fopenmp /

These tests highlight some hazards on performance due to
concurrency, that are not described in datasheets. Results are
integrated in the architecture model, to achieve more accurate
performance prediction.

C. High Level Test Vectors

High Level testing uses as vectors real-time programs (e.g.
ADAS applications) built from full known source code or
using some binary libraries. The last case is the most difficult
to evaluate or to predict, because binary blocks must be treated
as “black-boxes”.

We aim to use characteristics extracted by the low level
tests to predict the “black-box” behavior through different
architectures. A typical example are applications using the
new standard OpenVX. As discussed in section II-D, this new
standard enables to execute the same code on different het-
erogeneous platforms. For example, with VisionWorks (Nvidia
implementation of OpenVX), it is possible to compile and run
the same code on PC with Nvidia GPU, Jetson and DrivePX
platforms without any software adaptation.

V. RESULTS

Our methodology is applicable for any heterogeneous archi-
tectures. Nonetheless, in this paper, we focus on three SoCs:
K1, X1, and R-Car H2. Software configurations for our tests
are summarized in table II.

A. Computing

For each architecture, we present our test results for the
ARM processor in 4 different configurations: 1 core, 1 core
with handwritten SIMD instructions (NEON), 4 cores using
OpenMP, and 4 cores with NEON; plus the results for the
massively parallel processors (except for the R-Car H2 SoC
due to a NDA).

In this paper, we only show results for int32 addition
and multiplication, and float64 multiplication. Results are
illustrated in Fig. 1. As predicted by the Boat Hull model
[21], we observe a constant execution time for low IA, and
a linear execution time for high IA. In this linear part, the
slope can be directly exploited to obtain throughput for a given
configuration (operation and variable type).

In addition, results also highlight some compiler effects: for
some ARM configurations there is break in the line (IA=5 for
integer), this is due to auto-vectorization and loop-unrolling.
Actually, after this threshold, compiler stops auto-vectorizing
and loop-unrolling.

Some extracted throughputs are given in table III, compared
to throughputs given by manufacturers, obtained values are

close to those provided by datasheets. The gaps between
measurements and datasheets for some throughputs can be
explained by our test design. In fact in our tests, the operation
that we want to characterize is followed by some data transfer
instructions. So the instruction pipeline is not fully exploited,
but it is more representative of what happened in reality.

Then, in Fig. 2, we show results of concurrent executions
on ARM relative to single threaded execution (Fig. 1): in one
case we run two processes concurrently on different cores, in
the other case we run two processes concurrently on the same
core. Running two instances of the same test on different cores
on the ARM seems to have no impact on the execution time.
However, the execution time of two tasks executed on the same
core is 2 times greater than single execution. About K1, the
execution time on the same core is bigger than 2 times for IA
≤ 1, where performance is limited by memory bandwidth and
latency. So we deduce it is due to memory/cache management.
To strengthen the K1 model, we take into account this behavior
when working with concurrent operations on different cores.

B. Memory

In this paper, we choose to focus on transfer (CPU to GPU,
GPU to CPU), and memcopy operations. In Fig. 3, we give the
delay needed to transfer different data size from one processor
to another. Note that for all measures, data size allocated in
memory is fixed to 4096 kB. Transfer delay is piecewise linear,
non-linearities are due to cache effects. X1 transfer bandwidth
seems to be about 1.7 times faster than K1 transfer bandwidths.

In Fig. 4, we give characterization of memcopy operations
for K1, X1, and R-Car SoCs. Two consecutive operations on
the same data do not have the same behavior, the second one
being faster than the first one. Regarding GPU results, there is
a static delay due to the latency of kernel execution on GPU;
this delay depends on different parameters (e.g. size of kernel).

In Fig. 5, we show behaviors of concurrent memcopy
operations on ARM using 2, 3 or 4 concurrent processes
on different cores relative to single threaded execution (Fig.
4). In the 4 cores configuration, both X1 and K1 have a
relative execution time lower than ×4, whereas we operate
4 times more memory operations than single core test. It
means that, in single core configuration, performance is limited
by cache bandwidth, while in 2 or more cores configuration,
performance is limited by memory bandwidth. According to
these results, K1 memory bandwidth is about 1.33 times
greater than cache bandwidth, and X1 memory bandwidth is
about 2 times greater than cache bandwidth.

C. OpenVX / VisionWorks

One of the high level test vectors we choose to analyze
in this paper is a feature tracker algorithm. Its VisionWorks
implementation is composed of 4 kernels: color to gray con-
version, Gaussian pyramid construction, Lukas Kanade optical
flow, and Harris feature tracker. We focus on color to gray
conversion and Harris feature tracker kernels for three different
architectures: K1, X1 and a PC equipped with a GTX 970M
Nvidia GPU.

In Fig.6, we give execution time of the two kernels versus
the number of Mpixels to process, for K1, X1, and PC
architectures. Fig.7 shows histograms of execution times for
K1. As far as we know, VisionWorks mainly uses GPU for
image processing kernels. We observe that execution time
increases linearly with image size, with an offset due to kernel
launch latency, like what we obtained with memory low level
test vectors on GPU (Fig. 4).

As seen in the results for computing test vectors (Fig. 1),
GPU needs a very high IA to be computing bound, so we
assume performance is limited by memory bandwidth. Thus,
for architecture a, and kernel k, execution time is given by:

tk,a = αa · γk,a · x+ βk,a. (2)

Where βk,a denotes the kernel launch latency, αa the memory
bandwidth (in µs/Byte) obtained with our low level tests, x
the number of pixels, and γk,a the number of memory access
for each pixels. By deriving the previous equation, we obtain:

dtk,a
dx

/αa = γk,a. (3)

As the source code is identical for each architectures (only the
VisionWorks library binary is specific for each architecture),
each implementation should have the same amount of memory
access, so γk should be constant. With measured dtk,a

dx , and
αa obtained from our low level tests, we have for:

• Color kernel: γ1,PC = 3.2; γ1,X1 = 8.6; γ1,K1 = 8.7.
• Track kernel: γ2,PC = 5.3; γ2,X1 = 15.3; γ2,K1 = 15.9.
For K1 and X1, γk are close enough to consider them as

similar. Thus, a known execution time on K1 can be directly
extrapolated on X1 and vice versa. However, γk for PC is not
equal but roughly proportional for different kernels. This can
be explained by different memory access strategies, specific
compiler optimizations, etc.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a novel methodology
for characterizing computing architectures. Our test vectors
are based on 3 levels. Low level vectors extract some key
features of the tested architecture, mid level vectors study
behaviors in concurrency conditions, and high level vectors
analyze performances of real applications.

We are currently working on applying our methodology for
other architectures, like TDA2x, R-Car H3, or the hardware
accelerator of the R-Car H2 (IMP-X4). We are also studying
behaviors of other “black box” kernels, in order to validate
our approach with the high level test vectors (e.g. OpenVX /
VisionWorks) and performance prediction.

The characteristics extracted with our approach can be di-
rectly used to strengthen a model of a computing architecture,
in order to be applied for performance prediction. Actually, our
main goal is to define a global methodology to help in finding
the best suited SoC for a given application, and defining load
balancing strategies for heterogeneous architectures, by using
performance prediction.

TABLE III: Computing throughputs extracted from our test vectors compared to theoretical values. Throughputs are given in
operation per cycle for ARM-A15 1 core, the GPU of the K1, and the GPU of the X1. The “∗” denotes multiple instructions.

Throughput→
Operation↓

A15
(datasheet)

A15
(measured)

GPU K1
(datasheet)

GPU K1
(measured)

GPU X1
(datasheet)

GPU X1
(measured)

int8 add n.a. 1 n.a. 124 n.a. 200
int16 add n.a. 1 n.a. 124 n.a. 200
int32 add 2 2 160 128 256 225
float32 add 0.25 0.22 192 128 256 225
float64 add 0.25 0.22 8 8 8 8
int8 mult n.a. 0.22 n.a. 30 n.a. 60
int16 mult n.a. 0.22 n.a. 30 n.a. 60
int32 mult 0.5 0.4 32 32 ∗ 84
float32 mult 0.2 0.18 192 128 256 225
float64 mult 0.2 0.18 8 8 8 8

 10

 100

 1000

 10000

 100000

 1x10
6

 0.5 1 2 4 8 16 32 64 128

T
im

e
 i
n
 µ

s

Arithmetic Intensity in ops/byte

Integer add

1 core
1 core neon

4 cores
4 cores neon

GPU

(a) K1 additions on integers.

 10

 100

 1000

 10000

 100000

 1x10
6

 0.5 1 2 4 8 16 32 64 128

T
im

e
 i
n
 µ

s

Arithmetic Intensity in ops/byte

Integer add

1 core
1 core neon

4 cores
4 cores neon

GPU

(b) X1 additions on integers.

 10

 100

 1000

 10000

 100000

 1x10
6

 0.5 1 2 4 8 16 32 64 128

T
im

e
 i
n
 µ

s

Arithmetic Intensity in ops/byte

Integer add

1 core
1 core neon

4 cores
4 cores neon

(c) R-Car H2 additions on integers.

 10

 100

 1000

 10000

 100000

 1x10
6

 0.5 1 2 4 8 16 32 64 128

T
im

e
 i
n
 µ

s

Arithmetic Intensity in ops/byte

Integer mult

1 core
1 core neon

4 cores
4 cores neon

GPU

(d) K1 multiplications on integers.

 10

 100

 1000

 10000

 100000

 1x10
6

 0.5 1 2 4 8 16 32 64 128

T
im

e
 i
n
 µ

s

Arithmetic Intensity in ops/byte

Integer mult

1 core
1 core neon

4 cores
4 cores neon

GPU

(e) X1 multiplications on integers.

 10

 100

 1000

 10000

 100000

 1x10
6

 0.5 1 2 4 8 16 32 64 128

T
im

e
 i
n
 µ

s

Arithmetic Intensity in ops/byte

Integer mult

1 core
1 core neon

4 cores
4 cores neon

(f) R-Car H2 multiplications on integers.

 10

 100

 1000

 10000

 100000

 1x10
6

 0.5 1 2 4 8 16 32 64 128

T
im

e
 i
n
 µ

s

Arithmetic Intensity in ops/byte

Double mult

1 core
4 cores

GPU

(g) K1 multiplications on doubles.

 10

 100

 1000

 10000

 100000

 1x10
6

 0.5 1 2 4 8 16 32 64 128

T
im

e
 i
n
 µ

s

Arithmetic Intensity in ops/byte

Double mult

1 core
4 cores

GPU

(h) X1 multiplications on doubles.

 10

 100

 1000

 10000

 100000

 1x10
6

 0.5 1 2 4 8 16 32 64 128

T
im

e
 i
n
 µ

s

Arithmetic Intensity in ops/byte

Double mult

1 core
4 cores

(i) R-Car H2 multiplications on doubles.

Fig. 1: Computing characterization examples, given for K1, X1 and R-Car H2 SoCs. We only show here a small sample of
our results (integer and double variables). Note that we managed to have the same amount of memory access for all variable
types.

×1

×2

×3

 0.5 1 2 4 8 16 32 64 128

R
e
la

ti
v
e
 e

x
e
c
u
ti
o
n
 t
im

e

Arithmetic Intensity in ops/byte

Integer add

Different cores
Same core

(a) K1 concurrent additions on integers.

×1

×2

×3

 0.5 1 2 4 8 16 32 64 128

R
e
la

ti
v
e
 e

x
e
c
u
ti
o
n
 t
im

e

Arithmetic Intensity in ops/byte

Integer add

Different cores
Same core

(b) X1 concurrent additions on integers.

×1

×2

×3

 0.5 1 2 4 8 16 32 64 128

R
e
la

ti
v
e
 e

x
e
c
u
ti
o
n
 t
im

e

Arithmetic Intensity in ops/byte

Integer add

Different cores
Same core

(c) R-Car concurrent additions on integers.

Fig. 2: Concurrent operations characterization on ARM, given for K1, X1 and R-Car H2 SoCs. Even if two ARM cores share
L2 cache, running two tests concurrently on different cores seems to have no impact on the execution time. However, if the
tests are run on the same core, execution time is about 2 times greater.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
 i
n
 µ

s

Size in kB

cpu-gpu Trsf

First cpu to gpu
Second cpu to gpu

First gpu to cpu
Second gpu to cpu

(a) K1 Transfer operation.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
 i
n
 µ

s

Size in kB

cpu-gpu Trsf

First cpu to gpu
Second cpu to gpu

First gpu to cpu
Second gpu to cpu

(b) X1 Transfer operation.

Fig. 3: Transfer CPU-GPU characterization, given for K1 and X1 SoCs. Allocated size is fixed to 4096 kB for all measures.

 0

 100

 200

 300

 400

 500

 600

 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
 i
n
 µ

s

Size in kB

Mcpy

cpu: First Mcpy
cpu: Second Mcpy

gpu: First Mcpy
gpu: Second Mcpy

(a) K1 memcpy operation.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
 i
n
 µ

s

Size in kB

Mcpy

cpu: First Mcpy
cpu: Second Mcpy

gpu: First Mcpy
gpu: Second Mcpy

(b) X1 memcpy operation.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
 i
n
 µ

s

Size in kB

Mcpy

First Mcpy
Second Mcpy

(c) R-Car memcpy operation.

Fig. 4: Memcpy characterization, given for K1, X1 and R-Car H2 SoCs. Allocated size is fixed to 4096 kB for all measures.

×1

×2

×3

×4

×5

×6

×7
×8
×9

×10

 500 1000 1500 2000 2500 3000 3500 4000

R
e
la

ti
v
e
 e

x
e
c
u
ti
o
n
 t
im

e

Size in kB

Concurrent Mcpy

2 cores: First Mcpy
2 cores: Second Mcpy

3 cores: First Mcpy
3 cores: Second Mcpy

4 cores: First Mcpy
4 cores: Second Mcpy

(a) K1 concurrent memcpy.

×1

×2

×3

×4

 500 1000 1500 2000 2500 3000 3500 4000

R
e
la

ti
v
e
 e

x
e
c
u
ti
o
n
 t
im

e

Size in kB

Concurrent Mcpy

2 cores: First Mcpy
2 cores: Second Mcpy

3 cores: First Mcpy
3 cores: Second Mcpy

4 cores: First Mcpy
4 cores: Second Mcpy

(b) X1 concurrent memcpy.

×1

×2

×3

×4

×5
×6
×7

×9

 500 1000 1500 2000 2500 3000 3500 4000

R
e
la

ti
v
e
 e

x
e
c
u
ti
o
n
 t
im

e

Size in kB

Concurrent Mcpy

2 cores: First Mcpy
2 cores: Second Mcpy

3 cores: First Mcpy
3 cores: Second Mcpy

4 cores: First Mcpy
4 cores: Second Mcpy

(c) R-Car concurrent memcpy.

Fig. 5: Concurrent memcpy operations on ARM, using 2, 3 or 4 cores. Allocated size is fixed to 4096 kB for all measures.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
 i
n
 m

s

Size of image in Mpixels

Color Convert

K1
K1 linear regression

X1
X1 linear regression

PC
PC linear regression

(a) Color conversion kernel.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
 i
n
 m

s

Size of image in Mpixels

Tracking

K1
K1 linear regression

X1
X1 linear regression

PC
PC linear regression

(b) Harris feature tracker kernel.

Fig. 6: Results of OpenVX/VisionWorks tests for two kernels, given for three different architectures. Execution time is
proportional to the number of pixels, with a static offset due to kernel launch latency on GPU.

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0

500

1000

1500

2000

2500

Time in ms

Color Convert Execution Times for K1

800x224

832x256

864x288

896x320

928x352

960x384

992x416

1024x448

1056x480

1088x512

1120x544

1152x576

1184x608

1216x640

1248x672

1280x704

Fig. 7: Histogram of execution times of Color Conversion
kernel (on K1) for different video stream resolutions.

REFERENCES

[1] R. Saussard, B. Bouzid, M. Vasiliu, and R. Reynaud, “The embeddability
of lane detection algorithms on heterogeneous architectures,” in 2015
IEEE International Conference on Image Processing (ICIP). IEEE,
2015, pp. 4694–4697.

[2] R. Saussard, B. Bouzid, M. Vasiliu, and R. Reynaud, “Towards an
automatic prediction of image processing algorithms performances on
embedded heterogeneous architectures,” in 2015 44th International
Conference on Parallel Processing Workshops (ICPPW). IEEE, 2015,
pp. 27–36.

[3] R. Saussard, B. Bouzid, M. Vasiliu, and R. Reynaud, “Optimal per-
formance prediction of ADAS algorithms on embedded parallel ar-
chitectures,” in 2015 IEEE 17th International Conference on High
Performance Computing and Communications (HPCC). IEEE, 2015,
pp. 213–218.

[4] D. Castaño-Dı́ez, D. Moser, A. Schoenegger, S. Pruggnaller, and A. S.
Frangakis, “Performance evaluation of image processing algorithms on
the gpu,” Journal of structural biology, vol. 164, no. 1, pp. 153–160,
2008.

[5] NVIDIA, “Cuda C programming guide,” 2015.
[6] J. Sankaran and N. Zoran, “TDA2X, a SoC optimized for advanced

driver assistance systems,” in 2014 IEEE Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2014, pp. 2204–2208.

[7] K. Chitnis, R. Staszewski, and G. Agarwal, “TI vision SDK,
optimized vision libraries for ADAS systems,” Web ressource.

http://www.ti.com/lit/wp/spry260/spry260.pdf, Texas Instrument, Tech.
Rep., 2014.

[8] E. Rainey, J. Villarreal, G. Dedeoglu, K. Pulli, T. Lepley, and F. Brill,
“Addressing system-level optimization with OpenVX graphs,” in 2014
IEEE Conference on Computer Vision and Pattern Recognition Work-
shops (CVPRW). IEEE, 2014.

[9] R. P. Weicker, “Dhrystone: a synthetic systems programming bench-
mark,” Communications of the ACM, vol. 27, no. 10, pp. 1013–1030,
1984.

[10] “The Standard Performance Evaluation Corporation (SPEC),” Web
ressource. http://www.spec.org.

[11] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH
Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[12] “Embedded Microprocessor Benchmark Consortium (EMBC),” Web
ressource. http://www.eembc.org.

[13] S. Gal-on and M. Levy, “Exploring coremark a bench-
mark maximizing simplicity and efficacy,” Web ressource.
http://www.eembc.org/techlit/coremark-whitepaper.pdf.

[14] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-2
programs: Characterization and methodological considerations,” in ACM
SIGARCH Computer Architecture News, vol. 23, no. 2. ACM, 1995,
pp. 24–36.

[15] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE International Symposium on Workload Characterization
(IISWC). IEEE, 2009, pp. 44–54.

[16] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams
et al., “The landscape of parallel computing research: A view from
Berkeley,” UCB/EECS-2006-183, EECS Department, University of Cal-
ifornia, Berkeley, Tech. Rep., 2006.

[17] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-M. W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput computing,”
Center for Reliable and High-Performance Computing, 2012.

[18] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous
computing (shoc) benchmark suite,” in Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics Processing Units. ACM,
2010, pp. 63–74.

[19] J. D. McCalpin, “Memory bandwidth and machine balance in current
high performance computers,” IEEE Computer Society Technical Com-
mittee on Computer Architecture (TCCA) Newsletter, pp. 19–25, 1995.

[20] P. Mucci, “Llcbench-low level architectural characterization benchmark
suite,” Web ressource. http://icl.cs.utk.edu/projects/llcbench, 2009.

[21] C. Nugteren and H. Corporaal, “The boat hull model: adapting the
roofline model to enable performance prediction for parallel computing,”
in ACM Sigplan Notices, vol. 47, no. 8. ACM, 2012, pp. 291–292.

