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Kinematic properties of passive scalar gradient predicted by a stochastic
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A modeled equation for the gradient of a passive scalar is derived consistently with the approach of
Chevillard and Meneveau for the velocity gradient tensor �Phys. Rev. Lett. 97, 174501 �2006�� and
its predictions are analyzed in three-dimensional, isotropic turbulence. General features of scalar
gradient kinematics, namely, production of scalar gradient norm and alignment with respect to strain
principal axes and vorticity are rather well described. A strain persistence parameter defined for tight
alignment of vorticity with a strain eigenvector is used to bring further insight into geometric
properties of the scalar gradient. In particular, the model results lend support to the existence of
special alignments of the scalar gradient which are determined by local strain persistence and are
different from the directions of strain principal axes as already shown in two-dimensional
turbulence. © 2009 American Institute of Physics. �DOI: 10.1063/1.3140004�

I. INTRODUCTION

The need of a precise understanding of stirring and mix-
ing in turbulent flows has given rise to a number of studies
focusing on the small-scale structure of scalar fields.1–4 The
overall mixing mechanism including production of small
scales of the scalar field and, eventually, smoothing down by
molecular diffusion can be tackled through the behavior of
the scalar gradient. In this view, mixing of scalar patches
within the fluid medium finds expression in the rise of the
scalar gradient caused by stretching �stirring� followed by
diffusive damping �molecular mixing�. In fact, the very pro-
cess of micromixing makes stirring and molecular diffusion
act together over a significant range of scales.

Micromixing efficiency is represented by the mean dis-
sipation rate of the energy of scalar fluctuations, ����, which
is proportional to the variance of the fluctuating scalar gra-
dient. Analysis of its equation5 shows that ���� production—
and thus sustained micromixing—is only ensured by the ac-
tion of strain which results in the positive mean stretching
term, �−G�S��G��, where the Gi’s and Sij’s are the compo-
nents of the scalar gradient, G, and strain tensor, S, respec-
tively. Enhancement of scalar gradient promoting stirring
thus rests on both strain intensity and orientation of scalar
gradient with respect to strain principal axes which is ex-
pressed by

− G�S��G�

= − �G�2��1 cos2�G,e1� + �2 cos2�G,e2� + �3 cos2�G,e3�� ,

�1�

where the �i’s are the strain eigenvalues with �3��2��1,
�1�0, and �3�0. As a consequence of incompressibility,
�1+�2+�3=0. Vectors ei’s are the strain eigenvectors. Equa-
tion �1� clearly shows that scalar gradient production is a
matter of intensity of strain components through the �i’s val-

ues and of scalar gradient orientation in the strain basis
through the director cosines. Clearly, production is promoted
by alignment with the compressional direction, e3.

Even for the gradient of a passive scalar, the mechanisms
underlying production are not as simple as Eq. �1� may sug-
gest. Orientation of scalar gradient in the strain basis4—see
also Ref. 6 for the case of the material line—results from the
complex combination of strain, vorticity, strain basis rota-
tion, and molecular diffusion; through the equation for the
strain tensor, strain basis rotation itself depends on strain,
vorticity, pressure, and viscous effects4,6,7 and so do the
strain eigenvalues. Moreover interaction between strain and
vorticity makes this picture most intricate.

Accounting for such detailed mechanisms in small-scale
mixing predictions needs devising models which, instead of
being developed from the moment approach,5,8 are directly
based on the behavior of the scalar gradient. In the present
study this way was examined by extending the recent sto-
chastic model of Chevillard and Meneveau9 for the velocity
gradient tensor to the gradient of a passive scalar. The work
is a first step that is chiefly focused on geometric properties
underlying the production mechanisms of the scalar gradient.
The main features of the model and the numerical method
are given in Sec. II. Section III is devoted to results and
analysis. Properties of scalar gradient predicted by the model
such as alignments with strain eigenvectors and vorticity as
well as production of gradient norm are reported. Then
the model is used to get further insight into statistical
alignment of the scalar gradient. Conclusion is drawn in
Sec. IV.

II. STOCHASTIC MODEL FOR THE GRADIENT
OF A PASSIVE SCALAR

A. Derivation of a modeled equation for the scalar
gradient

The model for the passive scalar gradient is directly de-
rived from the stochastic model for the velocity gradient de-
veloped by Chevillard and Meneveau.9 The latter model is
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based on an Eulerian–Lagrangian change in variables and the
recent fluid deformation closure leading to the following
modeled equation for the velocity gradient, A:

dA = �− A2 +
Tr�A2�
Tr�C�	

−1�
C�	

−1 −
Tr�C�	

−1�

3T
A	dt + � 2

T
	1/2

dW . �2�

Stretching is exactly accounted for by the first term on right-
hand side, while the second and third ones model the pres-
sure Hessian and viscous effects, respectively. They both in-
clude tensor C�	

which is a model for the Cauchy–Green
tensor; the latter is assumed to evolve in a frozen velocity
gradient field during a time considered to be of the order of
the Lagrangian decorrelation time scale of A that is, of the
order of the Kolmogorov time scale, �	. The modeled
Cauchy–Green tensor, then, is expressed in terms of matrix
exponentials as C�	

=exp��	A�exp��	AT�. The time scale
used for modeling the viscous term is the integral time scale,
T; in the following, time is normalized by T. Tensorial noise
dW represents the effects which are discarded by the previ-
ous models such as large-scale effects or the action of neigh-
boring eddies. It is assumed to be Gaussian and white in time
and is written as dW=dt1/2�, where � is a tensorial, Gaussian
delta-correlated noise with �
ij�=0 and �
ij
kl�=2�ik� jl

−1 /2�ij�kl−1 /2�il� jk, which ensures that dW is consistent
with a traceless, isotropic tensor. This model has been shown
to retrieve a number of geometric properties and anomalous
scalings of turbulent flows; its predictions have been exten-
sively compared to direct numerical simulation data.10

The exact equation for the gradient, G, of a scalar is

dG

dt
= − ATG + D�2G , �3�

where D is the molecular diffusivity of the scalar in the fluid.
Provided that the velocity gradient is known—for instance,
through Eq. �2�—the stretching term �first on right-hand
side� does not need to be modeled. A model, however, has to
be devised for the molecular diffusion term. This is done
consistently with the approach that Chevillard and
Meneveau9 developed to model the velocity gradient
equation.

The method thus essentially consists in modeling the
Lagrangian Laplacian of G by a linear damping term. First,
the Eulerian and Lagrangian Hessian’s of G are related as

�2G

�xi � xj
=

�X�

�xi

�X�

�xj

�2G

�X� � X�

,

neglecting the spatial variations of �X /�x. In the mapping
between Eulerian and Lagrangian coordinates x�X , t� is the
position at time t of a fluid particle that was initially located
at x�X , t0�=X at time t0. The Eulerian molecular diffusion
term is therefore written as

D
�2G

�x� � x�

=
�X�

�x�

�X�

�x�
�D

�2G

�X� � X�
	 .

Second, the Lagrangian Hessian of G is assumed to be iso-
tropic and is modeled by a linear damping term

D
�2G

�Xi � Xj
= −

1

T�

�ij

3
G ,

in which T� is the relaxation time scale. The modeled Eule-
rian molecular diffusion term, then, is

D�2G = −
1

3T�

�X�

�x�

�X�

�x�

G .

From the definition of the Cauchy–Green tensor,9 C,
�X� /�x� ·�X� /�x�=Tr�C−1� in which, as previously ex-
plained, tensor C is modeled by C�	

. Finally, the model for
the Eulerian molecular diffusion term is derived as

D�2G = −
Tr�C�	

−1�

3T�

G ,

and Eq. �3� for the gradient, G, of a passive scalar is modeled
as

dG = − �ATG +
Tr�C�	

−1�

3T�

G	dt + � 2

T�
	1/2

dWG. �4�

In Eq. �4� stretching by the velocity gradient �first term on
right-hand side� is exact. Molecular diffusion is modeled by
the second term and the third term represents random forc-
ing. The latter is written as dWG=dt1/2�, where � is a vecto-
rial, Gaussian noise such that �i�=0 and �i j�=�ij; this forc-
ing is independent from the forcing of the velocity gradient.
The relaxation time scale used to model molecular diffusion
of the scalar gradient is based on the assumptions that �i� it
coincides with the transfer time scale, T�, of the scalar vari-
ance and �ii� the scalar-to-velocity time scale ratio, T� /T, is
constant. The latter assumption has been widely
discussed,5,11–14 but is reasonable in a number of flows; in
particular, the numerical simulations by Eswaran and Pope12

showed that in stationary, isotropic turbulence T� /T tends
toward a constant value. Note that in the isotropic case the
value of T� /T is connected to the scalar-to-velocity micro-
scale ratio through T� /T=5 /3 Sc ��

2 /�2, where Sc is the
Schmidt number, � is the Taylor microscale, and �� is the
scalar microscale. Finally, assuming T� being proportional to
the integral time scale is consistent with Schmidt number of
order unity or smaller; accounting for large Schmidt number
would need making T� Reynolds number dependent through
the Kolmogorov time scale.15

B. Numerical solution

The model is used by solving Eqs. �2� and �4� which
generate stationary, velocity gradient and scalar gradient time
signals. With the integral time scale, T, set to unity running
the model needs to prescribe two parameters, namely, �	 and
T� or in other words, the Reynolds number and the scalar-to-
velocity time scale ratio. Time scale �	 is given the value 0.1
which corresponds to a Taylor Reynolds number close to
150.10 The scalar-to-velocity time scale ratio is T�=0.4, a
standard value for this kind of flow and near-unity Schmidt
number.12 It has been found that increasing T� makes the
convergence of scalar gradient statistics difficult. This prob-
lem is most likely to be ascribed to the linear model for the
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molecular diffusion of the scalar gradient which uses the
global, mean time scale T� as a relaxation time scale and may
thus not correctly represent the way in which the actual dis-
sipation balances production by instantaneous stretching. A
more refined model should probably use a more “local” re-
laxation time scale, but the present model gives reliable re-
sults for moderate values of T�.

The numerical procedure consists in using a second-
order predictor-corrector scheme16 to solve Eqs. �2� and �4�.
The calculation is run for 2�105T with time step 10−2 and
statistics of variables under study are derived from their re-
spective time signals.

III. STATISTICS AND KINEMATICS
OF SCALAR GRADIENT

A. Comparison with previous studies

Statistics of both velocity gradient and scalar gradient
confirm isotropy. In particular, the results show that the even
moments of the different components of G up to fourth order
are equal, while odd moments and covariances are negli-
gible. In addition, �A11G1

2� / �G�S��G��
0.127 which is
close to the isotropic value, 2/15,17 within 5%.

The probability density functions �p.d.f’s� of scalar gra-
dient components �Fig. 1� display the super-Gaussian tails
reported by a number of authors.1,2,18,19 The normalized flat-
ness of scalar gradient components, �Gi

4� / �Gi
2�2, is about

7.30, a somewhat underestimated value; according to the ex-
perimental data gathered by Warhaft,2 it should rather be
around 10 for the present Reynolds number.

General results on production and geometric statistics
agree well with previous studies. Figures 2 and 3 clearly
show the positive skewness of the production of scalar gra-
dient norm.4,17,20 In particular, the normalized production
rate �Fig. 3� is very similar to that derived by Brethouwer et
al.4 from numerical simulation. Moreover, the usual statistics

of scalar gradient alignment in strain basis are retrieved
�Fig. 4�. As expected,3,17,21 the scalar gradient aligns better
with the most compressional direction �i=3� than with the
other strain directions �i=1, extensional direction; i=2, “in-
termediate” direction�. Because the scalar gradient is kine-
matically attracted by the compression axis, this result is
actually not surprising. Note that the scalar gradient aligns
slightly better with the extensional than with the intermediate
strain eigenvector which seems to be a special feature of
Navier–Stokes turbulence—when compared to synthetic
Gaussian flow.22

More detailed results on alignment statistics are given in
Figs. 5–7. As what Gulitski et al.17 did, these statistics are
conditioned on ��2�, �S2�, and �G2�—with �2=����,
S2=S��S��, and G2=G�G�. Conditional alignments of G
with the strain eigenvectors �Figs. 5 and 6� show the right
trends. In particular, the results clearly display more marked
alignments for larger scalar gradient magnitude. However, in
comparison to the data of Gulitski et al.,17 this effect is mag-
nified by the model. In the plots of the latter authors the
maxima in the p.d.f of cos�G ,e1� �Fig. 6� are also much
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FIG. 1. p.d.f of component G1 of scalar gradient; dashed line is the Gaussian
law with the same variance.
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FIG. 2. p.d.f of the production term of scalar gradient norm.
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FIG. 3. p.d.f of the normalized production term of scalar gradient norm.
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smaller. Finally, as shown in Fig. 7, the trend of the scalar
gradient to align normally to vorticity is retrieved by the
model and conditioned p.d.f’s of cos�G ,�� agree rather well
with those derived by Gulitski et al.17

B. Further analysis of scalar gradient alignment

When vorticity aligns close to a strain eigenvector a
strain persistence parameter can be defined and used to de-
termine rigorously whether the flow is locally strain or rota-
tion dominated.23 If vorticity is aligned with e1 the strain
persistence parameter is defined as

r1 = −
�1�

�2 − �3

with �1�= �̂1−�1, where �1=−2�̂23 / ��2−�3� is a compo-
nent of the rotation rate of strain principal axes; � is the
pressure Hessian tensor defined by �ij = �1 /���2p /�xi�xj,
where � and p represent density and pressure, respectively.
Hatted quantities indicate components in the strain basis.
Note that accounting for effective rotation—i.e., the sum of
vorticity and rotation rate of strain basis—in strain persis-
tence was proposed by Dresselhaus and Tabor6 and that a
strain persistence criterion including effective rotation has
been defined by Tabor and Klapper24 and Lapeyre et al.25 in
two-dimensional flows.

Analysis shows that the scalar gradient tends toward the
plane normal to e1.23 If r1

2�1 strain dominates and there is a
stable, equilibrium orientation, eeq, in the plane �e2 ,e3� for
the scalar gradient which depends only on r1 through 
eq

=−arccos r1; 
eq=2�eq−� /2, where �eq is the angle between
e3 and eeq. The smaller �r1�, the closer this orientation to the
compressional direction, e3; both directions coincide for
r1=0. If r1

2�1 effective rotation dominates and there is no
stable orientation for the scalar gradient in the plane �e2 ,e3�,
but a most probable one, eprob, depending on r1 through

prob= �1−sign�r1��� /2, where 
prob=2�prob−� /2 and �prob is
the angle between e3 and eprob. The scenario is almost the

same for vorticity aligned with e2. The difference is that in
the case of dominating strain the scalar gradient does not
tend unconditionally toward the plane normal to e2, but only
if �1−r2

2�1/2+3�2 / ��1−�3��0, where r2 is the strain persis-

cos(G,ei)

P
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i = 2i = 3

FIG. 4. p.d.f’s of scalar gradient director cosines in strain basis; i=1, ex-
tensional direction; i=2, intermediate direction; i=3, compressional
direction.
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FIG. 5. p.d.f’s of cos�G ,ei� conditioned on �2� ��2� �dashed�, S2� �S2�
�dot-dashed�, and G2� �G2� �dot-dot-dashed�; solid line: whole field; i=1,
extensional direction; i=2, intermediate direction; i=3, compressional
direction.
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tence parameter, r2=�2� / ��1−�3�, with �2�= �̂2−�2 and �2

=2�̂13 / ��1−�3�.23 The analysis can be done for vorticity
aligned with e3 as well.

Since the above definition of strain persistence param-

eter, ri, is valid in the three-dimensional case provided that
vorticity tightly aligns with strain eigenvector ei,

23 the con-
dition for computing ri has been defined as �cos�� ,ei��
�0.99 which is denoted by � / /ei. In so far as vorticity does
statistically align with strain eigenvectors,21,26 such an analy-
sis is relevant to turbulent flow structure. It is also relevant to
the vortex model approach27,28 in which vorticity is assumed
to be fully aligned with a straining direction.

Figure 8 displays the p.d.f’s of strain persistence param-
eters ri�i=1,2 ,3� computed in samples where � / /ei. The
p.d.f’s of r1 and r2 strongly peak around �1 and 1 which
suggests that strain and effective rotation mostly balance
each other in regions where vorticity aligns close to e1 or e2.
For � / /e1, however, a larger part of the sample corresponds
to dominating effective rotation. More precisely, strain- and
rotation-dominated regions amount to 39% and 61%, respec-
tively, when � / /e1 and 49% and 51% when � / /e2. Interest-
ingly, cases in which � / /e3 are the most rotation dominated.
Within the samples � / /ei cases � / /e2 are the most prob-
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FIG. 6. p.d.f’s of cos�G ,ei� conditioned on �2�3��2� �dashed�, S2�3�S2�
�dot-dashed�, and G2�3�G2� �dot-dot-dashed�; solid line: whole field; i=1,
extensional direction; i=2, intermediate direction; i=3, compressional
direction.
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FIG. 7. p.d.f of cos�G ,��; �a� conditioned on �2� ��2� �dashed�, S2� �S2�
�dot-dashed�, and G2� �G2� �dot-dot-dashed�; solid line: whole field; �b�
conditioned on �2�3��2� �dashed�, S2�3�S2� �dot-dashed�, and G2�3�G2�
�dot-dot-dashed�; solid line: whole field.
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able, 78%, while cases � / /e1 and � / /e3 amount to 14% and
8%, respectively. The following analysis is restricted to cases
� / /e1 and � / /e2.

Figures 9 and 10 show the strain- and rotation-
dominated samples for � / /e1 and � / /e2—determined
by parameters r1 and r2, respectively—in the �R� ,Q��
plane where Q�=−1 /2A��A�� / �S��S��� and R�

=−1 /3A��A��A�� / �S��S���3/2 are the second- and third-
order invariants of the velocity gradient tensor, respectively.
Because strain eigenvalue �1 is positive, while �2 may be
either positive or negative, rotation-dominated data represent
only stretched vorticity—R��0 and Q��0; “stable
focus/stretching”29—in the � / /e1 case and both stretched
and compressed vorticity—R��0 and Q��0; “unstable
focus/compressing”29—in the � / /e2 case; in the latter case,
stretched vorticity, however, is more probable than com-
pressed vorticity as a result of the well-established feature
that positive values of �2 are more probable than negative
ones.21,26 It is worth noting that Chevillard et al.10 found that
their model for the pressure Hessian does not retrieve the
actual dynamics of R� and Q� in quadrants R��0;Q��0
and R��0;Q��0, which might indirectly affect the pre-
dicted behavior of the scalar gradient.

Analysis of scalar gradient alignment can now be pushed
further using the strain persistence parameters, r1 and r2. In
particular, alignment with directions eeq and eprob can be de-
rived and compared to alignment with the compressional di-
rection, e3. Orientation statistics are significantly different
when vorticity aligns with either e1 or e2. As shown in Fig.
11, for � / /e2 and prevailing strain, the scalar gradient aligns
better with the equilibrium orientation, eeq, lying in the plane
�e1 ,e3� than with the compressional direction. When � / /e1,
by contrast, alignments with the compressional direction and
the equilibrium direction in the plane �e2 ,e3� are statistically
equivalent. In fact, the compressional and equilibrium direc-
tions are closer to each other when � / /e1 than when � / /e2

�not shown�; this may be explained by small values of r1 �in
the range ��0.7,0.7�� being slightly more probable than
small values of r2. Moreover, better alignment of scalar gra-
dient with equilibrium orientation when � / /e2 may result

from values of strain time scale, ��1−�3�−1, smaller than in
the case � / /e1 where this time scale is ��2−�3�−1. Garcia
et al.30,31 showed that in the two-dimensional case alignment
of the scalar gradient is in fact determined by the gradient
response to strain persistence fluctuations; more precisely,
good alignment with the equilibrium direction needs that the
variations of strain persistence occur on a time scale larger
than the response time scale of the scalar gradient—which is
roughly given by strain intensity. It is interesting to see that
in this turbulent, three-dimensional case alignment with the
equilibrium direction—computed for � / /e1 and � / /e2—is
strong which is reminiscent of the results of Lapeyre et al.25

in turbulent, two-dimensional flows.
Almost similar results are found when rotation prevails

�Fig. 12�. Alignment with compressional direction, e3, is

ri
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FIG. 8. p.d.f of strain persistence.
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FIG. 9. Strain-dominated regions �a� and rotation-dominated regions �b�—
for � / /e1—determined by strain persistence parameter, r1, in the plane of
second- and third-order invariants of velocity gradient; dashed line:
Q�3+27R�2 /4=0.
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slightly better than alignment with direction eprob when
� / /e1; but when � / /e2 alignment of the scalar gradient with
direction eprob determined by strain persistence is much bet-
ter than alignment with the compressional direction. These
results for both prevailing strain and prevailing rotation lend
support to the existence of special alignments with directions
depending on local strain persistence which are different
from the strain principal axes as already shown in two-
dimensional turbulence.25

IV. CONCLUSION

The stochastic model of Chevillard and Meneveau for
the velocity gradient tensor has been extended to the gradient
of a passive scalar and tested in three-dimensional, isotropic

turbulence. The concern of this work was more specifically
in the analysis of kinematic properties of the scalar gradient.

General properties such as statistics of scalar gradient
components, p.d.f’s of production of scalar gradient norm as
well as p.d.f’s of alignment with strain eigenvectors and vor-
ticity are retrieved by the model. The special features of
statistical alignment with strain eigenvectors conditioned on
the respective magnitudes of vorticity, strain or scalar gradi-
ent itself, however, seems to be magnified by the model.

The model has also been used to derive more detailed
statistics on scalar gradient alignment. This has been
achieved by using a strain persistence parameter which is
defined in the case where vorticity aligns close to a strain
eigenvector and which measures the respective influences of
strain and effective rotation—vorticity plus rotation rate of
strain basis. Model predictions suggest that the scalar gradi-
ent may take preferential alignments which are determined
by local strain persistence and depart from the directions of
strain principal axes. This behavior has already been stressed
in two-dimensional turbulence, but has not been investigated
in the three-dimensional case. These results would therefore
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deserve to be appraised by different models, numerical simu-
lation, or experimental data.

Further work should address different issues. First,
model results for the scalar gradient obviously depend on the
modeling of the velocity gradient tensor; it would therefore
be worth checking to what extent the velocity gradient model
indirectly influences the predicted scalar gradient properties.
Second, the model has been derived, as a first step, for near-
unity Schmidt number. Investigating the influence of
Schmidt number is a key issue, but needs a different model-
ing of the molecular diffusion term and may be numerically
more delicate. Finally, there is a number of experimental and
numerical results in the case where forcing of the scalar field,
instead of being isotropic, is achieved through a steady, mean
scalar gradient. Accounting for anisotropic forcing of the
scalar gradient would thus certainly give further insight into
the behavior of the model.
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