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THE FUNDAMENTAL GROUP OF COMPACT KÄHLER

THREEFOLDS

BENOÎT CLAUDON AND ANDREAS HÖRING

Abstract. Let X be a compact Kähler manifold of dimension three. We
prove that there exists a projective manifold Y such that π1(X) ≃ π1(Y ).

1. Introduction

1.A. Main results. Compact Kähler manifolds arise naturally as generalisations
of complex projective manifolds, and Kodaira’s problem asked if every compact
Kähler manifold is deformation equivalent to a projective manifold. A positive an-
swer to this problem trivially implies that the larger class of Kähler manifolds re-
alises the same topological invariants. The classification of analytic surfaces [Kod63]
implies a positive answer to Kodaira’s problem (cf. also [Buc08] for a different ap-
proach). However, Voisin’s counterexamples [Voi04, Voi06] show that there exist
compact Kähler manifold of dimension at least four that do not deform to projec-
tive ones. Nevertheless it is interesting to study Kodaira’s problem at the level of
some specific topological invariants, like the fundamental group:

1.1. Conjecture. Let X be a compact Kähler manifold. Then the fundamen-
tal group π1(X) is projective, i.e. there exists a projective manifold M such that
π1(X) ≃ π1(M).

Let us note note that in general dim(X) and dim(M) might not coincide. Moreover,
unlike other problems on fundamental groups, it does not reduce to the case of
surfaces: while, by the Lefschetz hyperplane theorem, the fundamental group of
any projective manifold is realised by a projective surface, it is a priori not clear
if the same holds in the Kähler category. Several partial results on Conjecture 1.1
have been obtained in the last years [CCE15], [CCE14, Théorème 0.2] and [Cla16,
Corollary 1.3]. In this paper we give a complete answer in dimension three:

1.2. Theorem. Let X be a smooth compact Kähler threefold. Then π1(X) is a
projective group.

The proof of the result comes in several steps: if X is covered by rational curves,
then its MRC-fibration/rational quotient X 99K Z induces an isomorphism π1(X) ≃
π1(Z) [Kol93, Corollary 5.3] [BC15, Corollary 1], so we are done. If X is not covered
by rational curves, we make a case distinction based on the algebraic dimension,
i.e. the transcendence degree of the field of meromorphic functions on X . The case
a(X) = 0 has been solved in [CC14] (see also [Gra16, Corollary 1.8]), and for the
case a(X) = 1 we can describe in detail the structure of the fundamental group in
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terms of the natural fibration onto a curve X → C. The most difficult case is when
a(X) = 2, where the algebraic reduction defines an elliptic fibration X → S over
a surface. Here the structure of the fundamental group is not known, even for a
projective threefold. The main contribution of this paper is to use the global theory
of elliptic fibrations developed by Nakayama [Nak02a] to show that, modulo some
reduction steps and changing to a bimeromorphic singular, not necessarily Kähler
model of X , the elliptic fibration is deformation equivalent over S to a Moishezon
fibration. This will then imply our main result:

1.3. Theorem. Let X be a smooth compact Kähler manifold of dimension n and
algebraic dimension a(X) = n− 1. Then π1(X) is a projective group.

1.B. Algebraic approximation. Voisin’s examples [Voi06] show that there exist
compact Kähler manifolds of dimension at least eight such that any smooth bimero-
morphic model does not deform to a projective one. However, the philosophy of
the minimal model program is that in higher dimension, the most natural bimero-
morphic models have mild singularities. In this spirit Peternell and independently
Campana proposed a more flexible version of Kodaira’s problem:

1.4. Conjecture. Let X be a compact Kähler manifold that is not uniruled. Then
there exists a bimeromorphic map X 99K X ′ to a normal compact Kähler space X ′

with terminal singularities that admits an algebraic approximation (cf. Definition
2.3).

Algebraic approximation provides an explicit way to prove that a Kähler group is
projective: since X ′ has terminal singularities, the fundamental group is invariant
under the bimeromorphic map X 99K X ′ [Tak03]. If we can always choose the
algebraic approximation X → ∆ to be a locally trivial deformation in the sense of
[FK87, p.627] [Ser06], then Conjecture 1.4 implies Conjecture 1.1. The proof of The-
orem 1.3 is very close to this strategy, but the spaces we deform are not Kähler with
terminal singularities. In a forthcoming extended version of this preprint we will
prove algebraic approximation for elliptic compact Kähler threefolds. Hsueh-Yung
Lin has also announced a proof of algebraic approximation for Kähler threefolds
of Kodaira dimension one. Taken together with [Gra16], this would give a positive
answer to Conjecture 1.4 in dimension three.
Acknowledgements. We would like to thank J. Cao, A. Dimca, P. Graf and
N. Nakayama for very helpful communications on the various technical problems
related to this project.

2. Notation and basic definitions

All complex spaces are supposed to be of finite dimension, a complex manifold
is a smooth irreducible complex space. A fibration is proper surjective morphism
with connected fibres between complex spaces. A fibration ϕ : X → Y is locally
projective if there exists an open covering Ui ⊂ Y such that ϕ−1(Ui) → Ui is
projective, i.e. admits a relatively ample line bundle.
We refer to [Gra62, Fuj79, Dem85] for basic definitions about (p, q)-forms and Käh-
ler forms in the singular case.

2.1. Definition. Let ϕ : X → Y be a fibration. A relative Kähler form is a smooth
real closed (1, 1)-form ω such that for every ϕ-fibre F , the restriction ω|F is a Kähler
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form. A class α ∈ N1(X) is a relative Kähler class if it can be represented by a
relative Kähler form.

If ϕ admits a relative Kähler class we say that ϕ is a Kähler fibration.

2.2. Remark. If ϕ is a Kähler fibration over a Kähler base Y , then XU := ϕ−1(U)
is Kähler for every relatively compact open set U ⊂ Y . In fact if ωX is a relative
Kähler form on X and ωY is a Kähler form on Y , then for all m ≫ 0 the form
ωX +mϕ∗ωY is Kähler [Bin83, Proposition 4.6 (2)], [Fuj79].

2.3. Definition. Let X be a normal compact Kähler space. We say that X admits
an algebraic approximation if there exists a flat fibration π : X → ∆ such that
the scheme-theoretic fibre π−1(0) is isomorphic to X and there exists a sequence
(tn)n∈N converging to 0 such that π−1(tn) is a projective variety.

In general a flat deformation does not preserve the fundamental group, this holds
however for deformations that are locally trivial in the sense of [FK87, p.627]. For
the case of elliptic fibrations we will work with an even more restricted class of
deformations:

2.4. Definition. Let ϕ : X → S be a fibration between normal compact complex
spaces. A locally trivial deformation of (X,ϕ) is a pair of fibrations

π : X → ∆, Φ : X → S ×∆

such that π = pS ◦ Φ, where pS : S ×∆ → ∆ is the projection on the first factor
and the following holds:

• The fibration π has integral reduced fibres and X ≃ π−1(0).
• We have ϕ = Φ|π−1(0).
• There exists an open cover (Ui)i∈I of S such that (up to replacing ∆ by a

smaller disc) we have

Φ−1(Ui ×∆) ≃ ϕ−1(Ui)×∆

for all i ∈ I.

2.5. Remark. In the situation above, suppose that KX is a Q-Cartier. Then
KX ≃ OX(KX + X) is Q-Cartier and X has terminal/canonical/klt singularities
if and only if X has terminal/canonical/klt singularities. Indeed these properties
can be checked locally analytically, so it is sufficient to show the statement in the
trivial case of a product

Φ−1(Ui ×∆) ≃ ϕ−1(Ui)×∆.

Note however that X might not be Q-factorial, even if this holds for X .

Let us recall some basic definitions on geometric orbifolds introduced in [Cam04b].
They are pairs (X,∆) where X is a complex manifold and ∆ a Weil Q-divisor;
they appear naturally as bases of fibrations to describe their multiple fibres: let
ϕ : X → Y be a fibration between compact Kähler manifolds and consider |∆| ⊂ Y
the union of the codimension one components of the ϕ-singular locus. If D ⊂ |∆|,
we can write

ϕ∗(D) =
∑

j

mjDj +R,

where Dj is mapped onto D and ϕ(R) has codimension at least 2 in Y .
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The integer m(ϕ,D) = gcdj(mj) is called the classical multiplicity of ϕ above D
and we can consider the Q-divisor

(1) ∆ =
∑

D⊂|∆|

(1 −
1

m(ϕ,D)
)D.

The pair (Y,∆) is called the orbifold base of ϕ.

2.6. Remark. In Campana’s work [Cam04a] both the classical and the non-
classical multiplicities infj(mj) play an important role. Let us note that for elliptic
fibrations, these multiplicities coincide: the problem is local on the base, moreover
we can reduce to the case of a relatively minimal elliptic fibration. Then it is suf-
ficient to observe that in Kodaira’s classification of singular fibres which are not
multiple [Kod60], [BHPVdV04, Chapter V, Table 3], there is always at least one
irreducible component of multiplicity one.

Let us recall what smoothness means for a geometric orbifold.

2.7. Definition. A geometric orbifold (X/∆) is said to be smooth if the underlying
variety X is a smooth manifold and if the Q-divisor ∆ has only normal crossings.
If in a coordinate patch, the support of ∆ can be defined by an equation

r∏

j=1

zj = 0,

we will say that these coordinates are adapted to ∆.

In the category of smooth orbifolds, there is a good notion of fundamental group.
It is defined in the following way : if ∆ =

∑
j∈J (1 −

1
mj

)∆j , choose a small loop
γj around each component ∆j of the support of ∆. Consider now the fundamental
group of X⋆ = X\Supp(∆) and its normal subgroup generated by the loops γ

mj

j :

〈〈γ
mj

j , j ∈ J〉〉 ≤ π1(X
⋆).

2.8. Definition. The fundamental group of (X/∆) is defined to be:

π1(X/∆) := π1(X
⋆)/〈〈γ

mj

j , j ∈ J〉〉.

2.9. Remark. By definition the loops γj define torsion elements in π1(X/∆). Thus
we see that if π1(X/∆) is torsion-free, the natural surjection π1(X/∆) ։ π1(X) is
an isomorphism.

3. Elliptic fibrations

The structure of elliptic fibrations and their deformation theory has been described
in detail in the landmark paper of Kodaira [Kod60] and its generalisation to higher
dimension by Nakayama [Nak02b, Nak02a]. For the convenience of the reader we
review this theory and explain some additional properties that will be important
in the proof of Theorem 1.3.
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3.A. Definitions and local structure.

3.1. Definition. A fibration f : X → S is elliptic if the general fibre Xs is
isomorphic to an elliptic curve. The elliptic fibration is relatively minimal if KX is
Q-Cartier and there exists a line bundle L on S such that

mKX ≃ f∗L

for some m ∈ N∗.

We say that f has a meromorphic section in a point s ∈ S if there exists an analytic
neighbourhood s ∈ U ⊂ S and a meromorphic map s : U 99K X such that ϕ ◦ s
identifies to the identity on the open set U0 ⊂ U where s is holomorphic.

The theory of elliptic fibrations is based on the use of Weierstraß fibrations:

3.2. Definition. Let S be a complex manifold.

(a) A Weierstraß fibration over S consists in a line bundle L on S and two sections
α ∈ H0(S,L(−4)) and β ∈ H0(S,L(−6)) such that 4α3 + 27β2 is a non zero
section of H0(S,L(−12)). With these data, we can associate a projective family
of elliptic curves:

W := W(L, α, β) =
{
Y 2Z = X3 + αXZ2 + βZ3

}
⊂ P

where

P := P(OS ⊕ L2 ⊕ L3)

and X, Y and Z are canonical sections of OP(1) ⊗ L(−2), OP(1) ⊗ L(−3) and
OP(1) respectively. The restriction of the natural projection P → S to W

gives rise to a flat morphism pW : W → S whose fibres are irreducible cu-
bic plane curves. This elliptic fibration is endowed with a distinguished section
{X = Z = 0}.

(b) A locally Weierstraß fibration is an elliptic fibration f : X → S such that
there exists an open covering (Ui)i∈I of S such that the restriction of f to
Xi := f−1(Ui) is a Weierstraß fibration.

3.3. Remark. Since the total space of the Weierstraß fibration pW : W → S is by
definition a hypersurface in a manifold, the complex space W is Gorenstein, so the
canonical sheaf is locally free. In case the divisor div(4α3 +27β2) is simple normal
crossings, we know by [Nak88, Corollary 2.4] that W has rational, hence canonical,
singularities (and it holds of course for the total space of a locally Weierstraß fi-
bration). Since pW is flat and the restriction of KW to every fibre is trivial, we have
KW ≃ p∗

W
L for some line bundle L on S. Thus a locally Weierstraß fibration is

relatively minimal.

It is well-known that smooth elliptic fibrations with a section are always Weierstraß:

3.4. Theorem. [Kod63] [Nak02b, Proposition 1.2.4] Let S be a complex manifold,
and let f : X → S be a smooth elliptic fibration admitting a section s : S →
X. Then there exists a canonically defined isomorphism X → W over S to some
Weierstraß fibration W → S sending s onto the distinguished section.

For non-smooth fibrations we can only hope to work with bimeromorphic models:
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3.5. Definition. Let f : X → S be an elliptic fibration admitting a meromorphic
section s : S 99K X. Denote by f⋆ : X⋆ → S⋆ the restriction to a non-empty Zariski
open subset S⋆ ⊂ S such that f is smooth. A Weierstraß model is a bimeromorphic
morphism X 99K W to some Weierstraß fibration W → S such that the restriction
to X⋆ identifies to the isomorphism from Theorem 3.4.

Let f : X → S be an elliptic fibration having meromorphic sections in every point.
A local Weierstraß model is a bimeromorphic morphism X 99K W over S such
that for some open covering (Ui)i∈I the restriction to Xi := f−1(Ui) and some
bimeromorphic section si : Ui 99K Xi is a Weierstraß model for every i ∈ I.

The existence of local meromorphic sections is an obvious necessary condition for
the existence of a local Weierstraß model. Modulo some further geometric condi-
tions it is also sufficient:

3.6. Theorem. [Nak88, Theorem 2.1, Theorem 2.5] [Nak02b, Theorem 3.2.3,
Theorem 3.3.3] Let S be a complex manifold, and let f : X → S be an elliptic
fibration. Suppose that f is smooth over the complement of an SNC divisor in S.

(a) If f admits a (local) meromorphic section (in every point), then f has a (local)
Weierstraß model.

(b) If X is compact Kähler, then f is locally projective over S and we have

Rjf∗OX = 0 ∀ j ≥ 2.

The following example highlights the importance of the SNC condition for the
theory of elliptic fibrations:

3.7. Example. Let S be a smooth non-algebraic compact Kähler surface that
admits an elliptic fibration g : S → P1. Let F1 → P1 be the first Hirzebruch
surface, and set X := F1×P1 S. Then X is a smooth compact Kähler threefold, and
we denote by f : X → P2 the composition of the elliptic fibration X → F1 with the
blowdown F1 → P2.
Then f is not locally projective since it has a two-dimensional fibre isomorphic
to the non-projective surface S. Note however that g has at least 3 singular fibres
([Bea81, Proposition 1], cf. Proposition B.1 for a detailed proof in the Kähler case).
Thus the discriminant locus of f consists of at least 3 lines meeting in one point.
In particular it is not a SNC divisor and it is quite easy to see that R2f∗OX 6= 0
in this case.

A general elliptic fibration does not admit local meromorphic sections, a fact that is
the starting point of Nakayama’s global theory of elliptic fibration using the ∂-étale
cohomology. For our needs we can use the strategy of Kodaira [Kod63] to reduce
to this case via base change:

3.8. Proposition. Let f : X → S be a locally projective elliptic fibration onto a
projective manifold S . Suppose that f is smooth over the complement of an SNC
divisor in S. Then there exists a finite Galois cover S̃ → S by some projective
manifold S̃ such that

X ×S S̃ → S̃

has a local meromorphic section in every point. The elliptic fibration X ×S S̃ → S̃
is smooth over the complement of an SNC divisor in S̃.
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This statement is a variant of [Nak02b, Corollary 4.3.3]: in our case S is projective,
but we lose the control over the branch locus.

Proof. For every irreducible component Di of D we denote by mi ∈ N the multi-
plicity of the generic fibre over Di. By [Laz04, Proposition 4.1.12] we can choose
a covering S̃ → S ramifying with multiplicity exactly mi over Di and the ramifi-
cation divisor has simple normal crossings. By construction the elliptic fibration
X ×S S̃ → S̃ has no multiple fibre in codimension one. Up to taking another finite
cover and the Galois closure we can suppose that S̃ → S is Galois and the local
monodromies are unipotent. Since the elliptic fibration is locally projective, we can
now apply [Nak02b, Theorem 4.3.1, Theorem 4.3.2] to conclude that it has local
meromorphic sections in every point. �

3.B. Global structure and deformation theory.

3.B.1. Smooth fibrations. Let S⋆ be a complex manifold, and let f⋆ : X⋆ → S⋆ be
a smooth elliptic fibration. We associate a variation of Hodge structures H (vhs for
short in the sequel) of weight -1 over S⋆, the underlying local system being given
by the first homology group of the fibers H1(Xs,Z) ≃ Z2. A rank 2 and weight
-1 vhs over S⋆ is equivalent to the following data: a holomorphic function to the
upper half plane

τH : S̃⋆ → H

defined on the universal cover S̃⋆ → S⋆ which is equivariant under a representation

ρH : π1(S
⋆) −→ SL2(Z).

Now if γ ∈ π1(S
⋆), let us write

ρH(γ) =

(
aγ bγ
cγ dγ

)

the image of γ under ρH . It is then straightforward to check that the following
formula

((m,n), γ) · (x, z) =

(
γ(x),

z +mτH(x) + n

cγτH(x) + dγ

)

defines an action of the semi-direct product Z2 ⋊ π1(S
⋆) on S̃⋆ × C which is fixed

point free and properly discontinuous. We can then form the quotient to get a
smooth elliptic fibration

p : J(H) −→ S⋆

which is endowed with a canonical section σ : S⋆ → J(H). Following the terminol-
ogy of [Kod63, Nak02a] we call p the basic elliptic fibration (associated with H).
Note that f⋆ and p are locally isomorphic over S⋆, but their global structure can
be quite different.
Since p has a global section, its sheaf of holomorphic sections J (H) is a well-defined
sheaf of abelian groups and we have an exact sequence of sheaves

(2) 0 −→ H −→ LH −→ J (H) −→ 0

where
LH := R1p∗OJ(H) ≃ R1f⋆

∗OX⋆ .

Let us note that LH can also be interpreted as the (0, 1)-part of the Hodge filtration
of HC and thus depends only on the vhs H . Since f⋆ is smooth, it has local sections
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in every point of S⋆ and the difference of two such sections on the intersection of
their sets of definition can be seen as a section of J (H). In this way we just have
associated with f⋆ a cohomology class

η(f⋆) ∈ H1(S⋆,J (H)).

The class η(f⋆) can also constructed in a more conceptual way. Pushing forward
the exponential sequence on X⋆ by f⋆ yields a long exact sequence on S⋆:

(3) 0 −→ R1f⋆
∗ZX −→ R1f⋆

∗OX −→ R1f⋆
∗O

∗
X −→ R2f⋆

∗ZX ≃ ZS⋆ −→ 0

The class η(f⋆) is the image of 1 ∈ H0(S⋆,ZS⋆) under the connecting morphism

δ : H0(S⋆,ZS⋆) −→ H1(S⋆,J (H)).

The set of isomorphism classes of smooth elliptic fibrations over S⋆ inducing H has
the structure of a torsor over the basic elliptic fibration p:

3.9. Theorem. [Kod63, Theorem 10.1, Theorem 11.5] [Nak02b, Proposition 1.3.1,
Proposition 1.3.3] Let S⋆ be a complex manifold, and let H be a vhs of rank 2 and
weight -1 over S⋆.

(a) There is a one-to-one correspondence between the isomorphism classes of
smooth elliptic fibrations over S⋆ inducing H and elements of the cohomology
group H1(S⋆,LH).

(b) A smooth elliptic fibration f⋆ : X⋆ → S⋆ is a projective morphism if and only
if η(f⋆) is a torsion class.

The short exact sequence (2) induces an exact sequence

(4) H1(S⋆,LH)
exp
−→ H1(S⋆,J (H))

c

−→ H2(S⋆, H).

The vector space H1(S⋆,LH) appears as the deformation space of smooth elliptic
fibrations over S⋆:

3.10. Theorem. [Kod63]

(a) Let f⋆
1 : X⋆

1 → S⋆ and f⋆
2 : X⋆

2 → S⋆ be two smooth elliptic fibration over S⋆

inducing H. Then f⋆
1 can be deformed into f⋆

2 over S⋆ if and only if c(η(f⋆
1 )) =

c(η(f⋆
2 ))

(b) Let f⋆ : X⋆ → S⋆ be a smooth elliptic fibration such that X⋆ is Kähler. Then
c(η(f⋆)) is torsion and f⋆ can be deformed to a projective fibration.

Proof of (b). The fact that c(η(f⋆)) is torsion when the total space is Kähler is
an easy consequence of the degeneracy of the Leray’s spectral sequence (see for
instance [Cla16, Proposition 2.5]). �

3.B.2. Elliptic fibrations with local meromorphic sections. In this subsection we
always work under the following

3.11. Assumption. Let S be a complex manifold, and let f : X → S be an
elliptic fibration having local meromorphic sections in every point. We denote by
j : S⋆ ⊂ S a Zariski open subset such that X⋆ := f−1(S⋆) → S⋆ is smooth. Denote
by H the vhs on S⋆ induced by the smooth elliptic fibration X⋆ → S⋆.

We suppose that the complement D := S \ S⋆ is a SNC divisor.
8



Let p : J(H) → S⋆ be the basic elliptic fibration associated with H . By [Nak88,
Theorem 2.5] we can extend p to a unique Weierstraß model

pW : W → S.

We also denote by p : B(H) → S the composition of pW with a desingularisation
B(H) → W. Since pW has a canonical section, the elliptic fibration p has a global
meromorphic section. We call p a basic elliptic fibration associated with H [Nak02a,
p.549].

Let W# ⊂ W be the Zariski open set of points in which pW is smooth. The image of
the canonical section σ is contained in W# and defines a relative group structure on
W# → S [Nak02a, Lemma 5.1.1]. The image of any local section of pW is contained
in W#, so its sheaf of sections J (H)W has an abelian group structure. Denote by
LH/S → S the line bundle defining the Weierstraß model W. By [Nak02a, p.550]
we have an exact sequence

0 → j∗H → LH/S → J (H)W → 0

which extends the exact sequence (2) defined on S⋆ ⊂ S. The following observation
is crucial:

3.12. Lemma. [Nak02a, Lemma 5.1.4] The sheaf J (H)W is isomorphic to the
sheaf of germs of automorphisms ϕ : W → W over S such that ϕ∗|S⋆ induces the
identity on H.

Thus we can associate with a cohomology class η ∈ H1(S,J (H)W) an elliptic
fibration [Nak02a, p.550]:

3.13. Construction. Fix an open cover (Uj)j∈N of S such that the class η is
represented by a cocycle (ηij)i<j where ηij ∈ H0(Ui ∩ Uj,J (H)W). By the lemma
above we can identify the ηij to automorphisms of W|Ui∩Uj

over S. The cocycle
condition assures that we satisfy the condition of the glueing lemma [Har77, Chapter
II, Exercise 2.12], so we can glue the elliptic fibrations WUi

→ Ui to an elliptic
fibration pη : Wη → S. Since the glueing morphisms act by identity on the vhs,
the vhs induced by pη on S⋆ is H.

The cohomology group H1(S,J (H)W) is thus a parameter set of elliptic fibrations
over S with vhs H , but for classification purposes it is too small. We denote by
J (H)mer the sheaf of meromorphic sections of a basic elliptic fibration p : B(H) →
S. Since two basic elliptic fibrations are bimeromorphically equivalent the sheaf
J (H)mer does not depend on the choice of the model. Moreover, since p has a
global meromorphic section, we see that J (H)mer has a group structure [Nak02b,
p. 243-244]. There is a trivial inclusion of sheaves of abelian groups

(5) J (H)W ⊂ J (H)mer

which is an isomorphism on S⋆: since W is smooth over S⋆ we have J(H) ≃
B(H)|S⋆ ≃ W|S⋆ , moreover any meromorphic section is holomorphic over S⋆

[Nak02b, Lemma 1.3.5]. In particular the quotient sheaf

QH := J (H)mer/J (H)W

9



is supported on D = S \ S⋆. By [Nak02a, Theorem 5.4.9] we have a commutative
diagram
(6)

0

��
0 // j∗H // LH/S

// J (H)W

��

// 0

0 // J (H)mer

Ψf
//

��

R1f∗O
∗
X/VX

//

��

ZS
//

��

0

0 // QH
//

��

R2f∗ZX/VX
// ZS

// 0

0

where
VX := Ker

(
R1f∗O

∗
X −→ j∗((R

1f∗O
∗
X)|S⋆)

)

and Ψf is constructed from the local meromorphic sections of f .

3.14. Definition. We define

η(f) ∈ H1(S,J (H)mer)

to be the image of 1 ∈ H0(S,ZS) under the connecting morphism of the long exact
sequences associated with the second line of Diagram (6).

By [Nak02a, Proposition 5.5.1] we have an injection

E0(S,D,H) →֒ H1(S,J (H)mer),

where E0(S,D,H) is the set of bimeromorphic equivalence classes of elliptic fibra-
tions X → S having meromorphic sections in every point that are smooth over
S⋆ := S \D and induce the vhs H on S⋆. By Construction 3.13 we have

H1(S,J (H)W) → E0(S,D,H) →֒ H1(S,J (H)mer)

but contrary to the smooth case it is not clear if the images coincide. If S is a curve
the skyscraper sheaf QH has no higher cohomology so the map

H1(S,J (H)W) −→ H1(S,J (H)mer)

is surjective. For a higher-dimensional base the Kähler property is crucial (cf.
[Nak02a, Proposition 7.4.2] for a more general statement):

3.15. Lemma. In the situation of Assumption 3.11, suppose also that X is
bimeromorphic to a compact Kähler manifold. Then the image of the class
η(f) ∈ H1(S,J (H)mer) is torsion in H1(S,QH). In particular there exists an
integer m ≥ 1 such that

m · η(f) ∈ H1(S,J (H)W).
10



Proof. Since the class η(f) depends only on the bimeromorphic equivalence class
of X → S we can suppose that X is a compact Kähler manifold.
Let ω ∈ H2(X,R) be a Kähler class on X . By density, there exists a class α ∈
H2(X,Q) (in general not of type (1, 1)) such that α · F 6= 0 where F is a general
f -fibre. The class α defines a global section of R2f∗QX and we can cancel the
denominators in such a way that α defines a section of R2f∗ZX and thus a non-zero
element ᾱ ∈ H0(S,R2f∗ZX/VX). The third line of (6) induces an exact sequence

H0(S,R2f∗ZX/VX)
τ
→ H0(S,ZS)

δ
→ H1(S,QH)

and is straightforward to check that τ(ᾱ) = F · α. It is then a positive multiple
of the class 1 ∈ H0(S,ZS) and it proves δ(1) is a torsion class in H1(S,QH). A
diagram chase in (6) shows that δ(1) is the image of η(f) in H1(S,QH). �

We can now generalise1 Theorem 3.10 (cf. also [Nak02a, Proposition 7.4.2]):

3.16. Theorem. In the situation of Assumption 3.11, let us assume also that X
is bimeromorphic to a compact Kähler manifold. Suppose also that η(f) is in the
image of H1(S,J (H)W). Denote by

c : H1(S,J (H)W) → H2(S, j∗H)

the morphism defined by the first line of the exact sequence (6). Then the class
c(η(f)) is torsion in H2(S, j∗H).

Proof. By Theorem 3.10 we already know that c(η(f))|S⋆ is torsion, say of order
m ∈ N. Fibrewise multiplication by m defines a natural morphism X⋆ → (X⋆)(m)

where (X⋆)(m) → S⋆ is the smooth elliptic fibration corresponding to mη(f)|S⋆ . By
[Nak02a, Proposition 6.3.7] we can extend this map to a finite morphism X → X(m)

where X(m) → S is a representative of the class mη(f). By Varouchas’s theorem
[Var84] the complex space X(m) is bimeromorphic to a compact Kähler manifold.
Thus, up to replacing X by (some blowup of) X(m), we can assume X is Kähler
and c(η(f))|S⋆ vanishes.
Now we look at the piece of exact sequence given by the Leray spectral sequence
of the inclusion j : S⋆ →֒ S (for the sheaf H):

(7) H1(S⋆, H) → H0(S,R1j∗H) → H2(S, j∗H) → H2(S⋆, H).

Since we know that c(η(f))|S⋆ = 0, there exists a class β ∈ H0(S,R1j∗H) mapped
onto c(η(f)). Let us remind the reader how this class β is constructed. If U is a
small ball in S, we note U⋆ := U ∩ S⋆ and, due to the SNC assumption on S \ S⋆,
we can assume that U⋆ is a product of discs and punctured discs. In particular we
have π2(U

⋆) = 0 and the homotopy exact sequence yields (E being the fiber of f):

(8) 1 −→ π1(E) −→ π1(XU⋆ := f−1(U⋆)) −→ π1(U
⋆) −→ 1.

It is classically known that abelian extension are classified by the group
H2(π1(U

⋆), π1(E)) = H2(U⋆, H) and the corresponding class is nothing but
c(η(f))|U⋆ . By the vanishing of the latter, the sequence (8) is split and such an
extension gives rise to an extension class βU ∈ H1(π1(U

⋆), π1(E)) = H1(U⋆, H).
The collection (βU )U⊂S provides us with the sought element in H0(S,R1j∗H).

1For simplicity of notation we identify η(f) ∈ H1(S,J (H)mer) with a class of H1(S,J (H)W)
mapping onto it.
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On the other hand, the Kähler assumption can be used once more: the fundamental
group of the fiber E injects in the whole open set X⋆ := f−1(S⋆) (see [Cla10, Lemme
2.3]). We have thus a short exact sequence

1 −→ π1(E) −→ π1(X
⋆) −→ π1(S

⋆) −→ 1

whose extension class vanishes. With this split extension we can associate a global
class α ∈ H1(π1(S

⋆), π1(E)) = H1(S⋆, H). By construction the class α is mapped
onto β in the sequence (7). The latter being an exact sequence, this shows that
c(η(f)) vanishes. �

3.17. Remark. The last result gives a direct proof of a phenomenon which was
observed by Kodaira in the case dimS = 1: he first proved that the cohomology
group H2(S, j∗H) is finite if the vhs is not trivial. He then computed the first Betti
number of an elliptic surface when H is trivial and obtained in [Kod63, Theorem
11.9] that this quantity is even for the basic member (here a product S ×E where
E is the fixed elliptic curve) and odd else. A posteriori we can conclude that an
elliptic surface f : X → S (without multiple fibres) is Kähler if and only if c(η(f))
is torsion in H2(S, j∗H).

For classes in H1(S,J (H)W) the deformation theory is analogous to the smooth
case:

3.18. Proposition. Under the Assumption 3.11, let η, θ be cohomology classes in
H1(S,J (H)W) such that c(η) = c(θ). Then the elliptic fibrations pη : Wη → S
and pθ : Wθ → S can be deformed from one to each other by a deformation that is
locally trivial over the base (cf. Definition 2.4).

Proof. Since c(η) = c(θ), we can write

η = θ + exp(ξ)

for some ξ ∈ H1(S,L). This defines a normal complex space X with canonical
singularities and morphisms

π : X −→ S × C −→ C

such that the fibre π−1(t) is isomorphic to the elliptic fibration

pη+exp(tξ) : Wη+exp(tξ) → S.

In particular Wη = π−1(0) and Wθ = π−1(1), so this defines a flat deformation
from Wη to Wθ.

More precisely, we fix an open covering (Ui)i∈I of S such that the cohomology classes
are represented by Čech cocycles (ηij), (θij) and (ξij) defined on the intersections
Ui∩Uj. The complex space X is then obtained by gluing the families Wi×C using
the automorphisms corresponding to ηij + exp(tξij). Let U ⊂ S be an open subset
such that the H1(U,L|U ) = 0 (say U is a polydisc). Then the class of

(η + exp(tξ))|U ∈ H1(U,J (H)W)

does not depend on t. Thus the deformation is trivial over U . �
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3.C. Proof of Theorem 1.3. The algebraic reduction defines an elliptic fibration
X 99K A(X), so up to blowing up X and A(X) we can suppose without loss of
generality that we have an elliptic fibration

f : X → S

that is smooth over S⋆ and D := S \ S⋆ is a SNC divisor. Our goal is to apply the
deformation theory from Subsection 3.B. For this purpose we must reduce ourselves
to the case where f has local meromorphic sections, moreover we must deal with
the problem that the class η(f) might not be in the image of H1(S,J (H)W).

By Theorem 3.6 the fibration f is locally projective. Thus we can apply Proposition
3.8 to see that there exists a Galois cover S̃ → S with Galois group G such that the
induced elliptic fibration X×S S̃ → S̃ has local meromorphic sections in every point.
Let X̃ be a G-equivariant resolution of singularities, then we obtain a G-equivariant
elliptic fibration f̃ : X̃ → S̃ with local meromorphic sections. The complex manifold
X̃ is Kähler, since it is a resolution of the Kähler space X×S S̃ ⊂ X×S. Moreover
f̃ is smooth over j̃ : S̃⋆ →֒ S̃, the complement of a SNC divisor, since this holds
already for X ×S S̃ → S̃ by Proposition 3.8. We denote by H̃ the vhs induced by
f̃ on S̃⋆, and by W̃ the Weierstraß model (H̃ is nothing but the pull-back of H to
S̃⋆).

By Lemma 3.15 there exists an integer m such that mη(f̃) comes from the coho-
mology group H1(S̃,J (H̃)W̃). The group acts equivariantly on the fibration f̃ ,
so it acts on the Weierstraß model and on the cohomology groups involved. By
construction the class η(f̃) is G-invariant, so the class mη(f̃) is G-invariant. Hence
G acts equivariantly on the normal complex space Wmη(f̃) (cf. Construction 3.13),
and we denote by Wmη(f) := Wmη(f̃)/G the quotient2. We also denote by

pmη(f) : Wmη(f) → S

the induced elliptic fibration, and by f (m) : X(m) → S the composition of pmη(f)

with a desingularisation. Over the open set S⋆ ⊂ S we have a natural map

X |S⋆ → X(m)|S⋆

given by multiplication by m on the fibres. Up to replacing X by some blowup this
maps extends to a surjective map µm : X → X(m) which is étale over S⋆.

We will prove in Corollary A.3 that the map

(µm)∗ : π1(X) −→ π1(X
(m))

is injective and the image has finite index. Assuming this for the time being, let us
see how to conclude: note first that we can suppose that m = 1. Indeed if π1(X

(m))
is a projective group, let Z be a projective manifold such that π1(Z) ≃ π1(X

(m)).
The finite index subgroup π1(X) →֒ π1(X

(m)) defines an étale cover Z̃ → Z such
that π1(Z̃) ≃ π1(X). Thus π1(X) is projective.

2We did not define the cohomology class η(f) for an elliptic fibration that does not have
local meromorphic sections. Nakayama’s ∂-étale cohomology group H1(S,SH/S) allows such a

definition [Nak02a, §6.3], the space Wmη(f) represents the ∂-étale cohomology class mη(f).
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With this reduction step in mind, let us draw a diagram explaining the path we are
going to follow:

(9) X̃

f̃

��

��>
>
>
>
>
>
>
>

∼

bim.
// Wη(f̃)

deform
//

��

Wθ

��
X

f

��

∼

bim.
// Wη(f)

deform
// Wθ/G

S̃ // S

By Theorem 3.16 we know that the class c(η(f̃)) is torsion. From the exact sequence

H1(S̃,LH̃/S̃)
exp

// H1(S̃,J (H̃)W̃)
c // H2(S̃, j̃∗H̃) ,

we can write kη(f) = exp(ξ) for some integer k ≥ 1 but the cohomology class ξ is
not necessarily G-invariant. Using the fact that H1(S̃,LH̃/S̃) is a vector space, we
can consider

ζ :=
1

| G |

∑

g∈G

g∗ξ

and it is straightforward to check that

| G | exp(ζ) =| G | kη(f).

The class θ := η(f)− exp(
1

k
ζ) is then torsion and G-invariant.

We can apply Proposition 3.18 and produce a one-parameter deformation X̃ → C

from Wη(f̃) to Wθ that is locally trivial over the base. The group G acts holomor-
phically on the total space X̃ in a fibrewise manner: the morphism

π̃ : X̃ −→ S̃ × C

is G-equivariant (for the trivial action on C). We can mod out by G to get a flat
family of elliptic fiber spaces over S, moreover this deformation is locally trivial
over S in the sense of Definition 2.43.
Since the deformation is locally trivial, it is locally on the base topologically trivial
(this is Thom’s first isotopy Lemma [Mat12, Proposition 11.1]) and we have:

π1(W
η(f)) ≃ π1(W

θ/G).

By Remark 3.3 the local Weierstraß models Wη(f̃) and Wθ have canonical singu-
larities. By [KM98, Proposition 5.20 (4)] this implies that their finite quotients
Wη(f) = Wη(f̃)/G and Wθ/G have klt singularities. Thus we can apply [Tak03,
Theorem 1] to see that the fundamental group does not change under a resolution
of singularities. Thus π1(W

θ/G) can be realised as the fundamental group of a
projective manifold and, X being bimeromorphic to Wη(f), we also have:

π1(X) ≃ π1(W
η(f)).

This finishes the proof of Theorem 1.3. �

3We can mimic the proof of Proposition 3.18 and observe that the deformation X̃ is trivial over
Ũ := p−1(U): a finite cover of a Stein manifold is still Stein and H1(Ũ , p∗L) = 0. This provides
us with a G-equivariant trivialization of X̃ over Ũ .
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4. Proof of Theorem 1.2

Let X be a compact Kähler manifold, and let g : X → Y be a fibration onto a
compact Kähler manifold Y . If F is a general fibre, denote by π1(F )X the image
of the morphism π1(F ) → π1(X). Up to blowing up X and Y we can suppose
that the fibration g is neat in the sense of [Cam04b, Definition 1.2]. By [Cam11,
Corollary 11.9] we then have an exact sequence

(10) 1 → π1(F )X → π1(X) → π1(Y,∆) → 1.

where ∆ is the orbifold divisor defined in (1).

Let us also recall that by [Cam94, Kol93] every compact Kähler manifold X ad-
mits a (unique up to bimeromorphic equivalence of fibrations) almost holomorphic
fibration

g : X → Γ(X)

with the following property: let Z be a subspace with normalisation Z ′ → Z passing
through a very general point x ∈ X . Then Z is contained in the fibre through x
if and only if the natural map π1(Z

′) → π1(X) has finite image. This fibration is
called the Γ-reduction of X (Shafarevich map in the terminology of [Kol93]). Up
to replacing γ by some neat holomorphic model we thus obtain a fibration such
that π1(F )X is finite and such that the dimension of the base is minimal among all
fibrations with this property. We call γ dim(X) := dim(Γ(X)) the γ-dimension of
X .

In geometric situations it is often necessary to replace X by some étale cover. The
following remark allows to control the extensions appearing in these covers.

4.1. Remark. Let 1 → K → H → G → 1 be an exact sequence of groups. It
is well known that this extension determines a morphism ϕH : G → Out(K) to
the group of outer automorphisms of K (induced by the conjugation in H). To
recover the extension, it is needed to prescribe an additional information: the class
cH ∈ H2(G,Z(K)) (see [Bro82, Chapter IV, §6] for details).

On the reverse direction, when G is a finite group acting by homeomorphisms on
a topological space X , we also have an induced morphism ϕX : G → Out(π1(X)).
But in this case, there is a unique extension

1 −→ π1(X) −→ H −→ G −→ 1

induced by the action of G on X . It can be explicitly constructed in the following
way. By [Ser58] there exists a projective simply connected manifold P on which G
acts freely and look at the natural projection X ×P → (X ×P )/G. This is a finite
étale cover of Galois group G and the homotopy exact sequence is:

(11) 1 −→ π1(X) ≃ π1(X × P ) −→ π1((X × P )/G) −→ G −→ 1.

This is the sought exact sequence. To see that this extension is unique, it is enough
to compare it with the same construction using the classifying space of G and
its universal cover EG → BG. There exists then a map (unique up to homotopy)
P/G → BG inducing the identity on the fundamental groups and thus the extension
(11) are the same using P or EG. For the details we refer to [Cla16, Lemma 3.9].

Using the construction above we obtain the following technical result:
15



4.2. Lemma. Let H be a Kähler group and K ⊳H be finite index normal subgroup
with quotient G := H/K. If K can be realized as the fundamental group of a
smooth projective variety X with a G-action such that the induced morphism G →
Out(π1(X)) is the one coming from the conjugation in H, then H is a projective
group.

4.3. Lemma. Let X be a compact Kähler manifold acted upon by a finite group
G. Then there exists a proper modification µ : X̃ → X and a holomorphic map
g : X̃ → Y such that:

(i) X̃ and Y are compact Kähler manifolds.

(ii) G acts on X̃ and Y .
(iii) µ and g are G-equivariant for these actions.
(iv) g is a neat model [Cam04b, Definition 1.2] of the Γ-reduction of X.

Proof. Let us consider S the (normalisation of the) irreducible component of the
cycle space C(X) which parametrizes the fibres of the Γ-reduction. By uniqueness
of the latter, the group G acts on S and the natural meromorphic map X 99K S
is G-equivariant. Now it is enough to perform G-equivariant resolution of singu-
larities for S and G-equivariant blow-ups on X in order to make the latter map
holomorphic, neat and G-equivariant. �

Let us recall that a group G is virtually torsion-free if there exist a subgroup H ⊂ G
of finite index that is torsion free.

4.4. Lemma. Let X be a compact Kähler manifold admitting a fibration onto a
curve f : X → C such that the fundamental group π1(F ) of a general fibre F is
abelian. Then the group π1(X) is virtually torsion-free.

Proof. Applying [Cam98, Appendix C] we can take a finite étale cover such that
π1(F )X coincides with K := ker(f∗ : π1(X) → π1(C)) and the latter is thus finitely
generated. If C ≃ P1 we obtain that π1(X) ≃ π1(F )X is abelian, so virtually
torsion-free. We can thus suppose that g(C) ≥ 1. By [Ara11, Theorem 5.1] the
cohomology class e ∈ H2(π1(C),K) corresponding to the extension

1 −→ K −→ π1(X) −→ π1(C) −→ 1

is torsion. Then so is the class e′ ∈ H2(π1(C),K/Ktor) corresponding to the
extension

1 −→ K/Ktor −→ π1(X)/Ktor −→ π1(C) −→ 1.

Arguing as in [CCE14, §2.1] we can assume that the latter cohomology class e′

vanishes (up to replacing π1(C) with a finite index subgroup). Using the following
piece of long exact sequence of cohomology of π1(C)-modules

· · · −→ H2(π1(C),Ktor) −→ H2(π1(C),K) −→ H2(π1(C),K/Ktor) −→ · · ·

we see the cohomology class e comes from H2(π1(C),Ktor). It is then easily ob-
served4 that this class is annihilated when restricted to a finite index subgroup of

4If A is any finite π1(C)-module then there is a finite index subgroup π1(C′) of π1(C) such
that the whole of the cohomology group H2(π1(C), A) vanishes when restricted to π1(C′). This
is a consequence of the fact that a curve of positive genus admits finite étale covers of any given
degree.
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π1(C). This means that the following exact sequence of groups

1 −→ Ktor −→ π1(X) −→ π1(X)/Ktor −→ 1

splits when restricted to a finite index subgroup and it proves that π1(X) is virtually
torsion-free since π1(X)/Ktor is. �

Now we give some criteria to decide whether a Kähler group is projective.

4.5. Lemma. Let X be a compact Kähler manifold having γ dim(X) ≤ 1. Its
fundamental group is then projective.

Proof. If γ dim(X) = 0 its fundamental group is finite so [Ser58] applies. If
γ dim(X) = 1 we know from [Cla10, Théorème 1.2] (which is just a rephrase of
[Siu87]) that there exists a finite étale Galois cover π : X̃ → X with group G such
that the Γ-reduction of X̃ is a fibration g̃ : X̃ → C onto a curve inducing an iso-
morphism π1(X) ≃ π1(C). Since the Γ-reduction is functorial, the fibration g̃ is
G-equivariant. Thus G acts on C and we conclude by Lemma 4.2. �

4.6. Lemma. Let X be a compact Kähler manifold such that γ dim(X) = 2. If
π1(X) is virtually torsion-free it is a projective group.

Proof. Let K ⊳ π1(X) be a finite index subgroup which is normal and torsion-free,
and set G := π1(X)/K. Applying Lemma 4.3 to the finite étale cover corresponding
to G, we know that we can find X̃ → X which is a composition of a finite étale cover
and a modification such that the γ-reduction g : X̃ → Y is neat, Y is smooth Kähler
surface and g is equivariant for the natural actions of G on X̃ and Y . Consider
now the exact sequence (10): the group π1(X̃) is torsion-free and π1(F )X is finite,
so we have π1(F )X = 1. Thus π1(X̃) ≃ π1(Y,∆

∗(g)) is torsion-free, by Remark 2.9
this implies that

π1(X̃) ≃ π1(Y,∆
∗(g)) ≃ π1(Y ).

We can now argue according to the algebraic dimension of Y .

1.) If a(Y ) = 0 then by the classification of surfaces π1(Y ) is abelian. Thus
π1(X) is virtually abelian and [BR11, Theorem 1.4] applies.

2.) If a(Y ) = 1 then the algebraic reduction Y → C is an elliptic fibration
over a curve C. Since the algebraic reduction is unique, it is G-equivariant.
By [Kod63, Theorems 14.1-3-5] we know that there exists a G-equivariant
deformation of Y to an algebraic elliptic surface, so we can again conclude
by Lemma 4.2.

3.) If a(Y ) = 2 the surface Y is projective and Lemma 4.2 applies.

�

Remark. Although Lemmas 4.5 and 4.6 are stated in a very similar manner, they
are of different nature: the former is a group theoretic statement whereas the latter
is not. Indeed as a consequence of [Siu87] it is known that the property γd(X) = 1
is equivalent to having a fundamental group commensurable with the fundamental
group of a curve; this property does thus depend only on the fundamental group.
In general it is however possible to realize a given Kähler group as the fundamental
group of several manifolds having different γ-dimensions.
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Proof of Theorem 1.2. We argue according to the algebraic dimension of X , the
case a(X) = 3 being trivial since a Kähler Moishezon manifold is projective.

1.) If a(X) = 0 then X is special in the sense of Campana. Thus the funda-
mental group is virtually abelian [CC14, Theorem 1.1] and thus projective
[BR11, Theorem 1.4].

2.) If a(X) = 1, we replace X by some blowup such that the algebraic reduction
is a holomorphic fibration f : X → C onto a curve. By [CP00] the general
fibre of F is bimeromorphic to a K3 surface, torus or ruled surface over
an elliptic curve, so its fundamental group is abelian. By Lemma 4.4 the
group π1(X) is virtually torsion free. If γ dim(X) ≤ 2 we can thus apply
Lemma 4.5 and Lemma 4.6. If γ dim(X) = 3 it is shown in [CZ05, Theorem
1] that up to bimeromorphic transformations and étale cover f is a smooth
morphism. Thus we can apply [Cla16, Corollary 1.2].

3.) If a(X) = 2 the algebraic reduction makes X into an elliptic fibre space
over a projective surface and we can apply Theorem 1.3.

�

Appendix A. Topology of elliptic fibrations

A.1. Lemma. Let X be a compact Kähler manifold, and let f : X → S be a neat
[Cam04b, Definition 1.2] elliptic fibration onto a projective manifold. Denote by E
a general fibre of f . Then the natural morphism π1(E) −→ π1(X)

(i) either trivial,
(ii) or injective.

The second case occurs if and only if f is bimeromorphically almost smooth: there
exists subset Z ⊂ S of codimension at least two such that for every s ∈ S \ Z the
fibre f−1(s) is either smooth or multiple and has an irreducible component whose
reduction is a smooth elliptic curve.

A.2. Remark. In the case where π1(E) −→ π1(X) is not trivial, the global
structure of X → S can be completely described: there is a finite étale cover
X̃ → X such that the Stein factorisation of X̃ → S is bimeromorphic to a locally
trivial elliptic fibration. Indeed it is easy to check that a bimeromorphically almost
smooth elliptic fibration is isotrivial. Thus we can apply [CP00, Proposition 6.7],
[Fuj83] to see that there exists a finite étale cover X̃ → X such that X̃ → S̃ satisfies
q(X̃) = q(S̃) + 1. In particular the relative Albanese map defines a bimeromorphic
morphism to the elliptic bundle Alb(X̃/S̃) → S̃.

Proof. Step 1. Suppose that f is bimeromorphically almost smooth. We set X◦ :=
f−1(S \Z). Since f is neat, we have π1(X) ≃ π1(X

◦). Up to replacing Z by larger
set (still of codimension two), we can suppose that X◦ has a relative minimal model
X◦ → Y ◦ → S. The fibres of Y ◦ → S are classified in Kodaira’s list and by our
assumption the singular fibres are of type mI0. Thus we can apply [Hör13, Lemma
2.2] to see that for some finite étale cover of Ỹ ◦ → Y ◦ the fibration becomes smooth,
in particular, by [Cla10, Lemme 2.3], we have an injection

π1(E) →֒ π1(Ỹ
◦) →֒ π1(Y

◦) ≃ π1(X
◦).
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Step 2. Suppose that the map π1(E) −→ π1(X) is not trivial. Since S is projective,
we can consider a general complete intersection curve C ⊂ S and its preimage
XC := f−1(C). We can choose E ⊂ XC and by our assumption this implies that
the left-hand side of the map

π1(E) −→ π1(XC) −→ π1(X)

is not trivial. By [CZ79, Lemma 1.39] this implies that XC → C has trivial local
monodromy, so by [CZ79, p.14] the relative minimal model of XC → C has only
singular fibres of type mI0, i.e. multiple smooth elliptic curves. Thus XC → C
(and hence X → S) is bimeromorphically almost smooth. By Step 1 this shows
that π1(E) −→ π1(X) is injective. �

Let X be a compact Kähler manifold admitting an elliptic fibration f : X → S onto
a projective manifold S that is smooth over S⋆, the complement of a SNC divisor.
For m ∈ N denote X(m) a compact complex manifold admitting an elliptic fibration
f (m) : X(m) → S corresponding to the class mη(f) (cf. [Nak02a, Prop.5.2.5] for
the group structure on the set of elliptic fibrations). Up to blowing up X we have a
generically finite map µm : X → X(m) that extends the multiplication by m defined
on the smooth locus X⋆ → S⋆.

A.3. Corollary. In the situation above, the induced map

π1(X) −→ π1(X
(m))

is injective.

Proof. Since X(m) is dominated by the compact Kähler manifold X , it is in the
Fujiki class. Thus, up to blowing up X and X(m), we can suppose that both
are compact Kähler manifolds and the fibrations f and f (m) are neat [Cam04b,
Definition 1.2]. Since f and f (m) induce the same vhs H , the orbifold divisors
coincide by Lemma A.4.

By [Cam11, Corollary 11.9] we have exact sequences of fundamental groups:

π1(E)
i //

·×m

��

π1(X)

(µm)∗

��

&&L
LL

LL
LL

LL
L

π1(S,∆) // 1

π1(E)
j

// π1(X
(m))

88rrrrrrrrrr

If π1(E) −→ π1(X) is trivial this already shows the claim, so suppose that this map
is not the case. By Lemma A.1 this implies that i : π1(E) −→ π1(X) is injective
and f is bimeromorphically almost smooth. Since µm : X → X(m) is generically
finite, this implies that f (m) is also bimeromorphically almost smooth. Thus we can
apply Lemma A.1 to see that j : π1(E) −→ π1(X

(m)) is also injective. In particular
the composition of j with the multiplication ×m : π1(E) →֒ π1(E) is injective. �

A.4. Lemma. Let f : X → S be a locally projective elliptic fibration between
complex manifolds and let H denote the VHS induced by f on the smooth locus
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S⋆ ⊂ S. Then the orbifold divisor ∆ defined by (1) depends only on H, and not on
(the choice of) the elliptic fibration f inducing H.

Proof. Since the orbifold divisor is determined in codimension one, we can assume
without loss of generality that S \S⋆ is a smooth divisor. Moreover, up to replacing
S by S \Z with codimSZ ≥ 2, we can suppose that there exists5 a smooth relative
minimal model X → Y → S. Since the orbifold divisor does not depend on the
choice of the bimeromorphic model, we can suppose without loss of generality that
X is relatively minimal. By [Nak02a, Theorem 6.3.6] (and its proof) we know that,
for smooth S \S⋆, each bimeromorphic equivalence class is uniquely represented by
a relative minimal model, and this model is locally isomorphic to (Gα\Bα) → Sα

where Uα → Sα is a ∂-étale covering with Galois group Gα and Bα → Uα is the
unique relatively minimal basic elliptic fibration [Nak02a, Lemma 5.3.1] determined
by the pull-back of H |S⋆

α
to U⋆

α. In particular (Gα\Bα) → Sα only depends on H ,
in particular its orbifold divisor only depends on H . �

Appendix B. Elliptic surfaces

B.1. Proposition. Let S be a non-algebraic compact Kähler surface that admits
an elliptic fibration f : S → P1. Then f has at least three singular fibres.

Proof. We can suppose without loss of generality that f is relatively minimal. Thus
we know by the canonical bundle formula [Kod63] that

KS ≃ f∗(KP1 +M +
∑

c∈P1

mcSc)

where M is the modular part defined by the j-function and
∑

c∈P1 mcSc the discrim-
inant divisor. Recall that any non-algebraic Kähler surface has a pseudoeffective
canonical bundle, so KS is nef.
Suppose first that f is isotrivial, i.e. we have M ≡ 0. Then [BHPVdV04, Chapter
V, Table 6] shows that the singular fibres are either multiples of smooth elliptic
curves or of type I∗0 . For a multiple fibre we have mc ≤ 1

2 and for a fibre of type
I∗0 we have mc =

1
2 . Since KP1 ≃ OP1(−2) we see that there are at least 4 singular

fibres.
Suppose now that f is not isotrivial. Then we can use the argument from [Bea81,
Proposition 1]: let C⋆ ⊂ P1 be the maximal open set over which f is smooth. The
j-function defines a non-constant holomorphic map C̃⋆ → H from the universal
cover C̃⋆ → C⋆ to the upper half plane H. In particular C̃⋆ is not C or P1, hence
P1 \ C⋆ has at least three points. �
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