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Abstract: Semidefinite programming has been widely studied for the last two decades. Semidefinite programs are linear
programs with semidefinite constraint generally studied with deterministic data. In this paper, we deal with
a stochastic semidefinte programs with chance constraints, which is a generalization of chance-constrained
linear programs. Based on existing theoretical results, we develop a new sampling method to solve these
chance constraints semidefinite problems. Numerical experiments are conducted to compare our results with
the state-of-the-art and to show the strength of the sampling method.

1 INTRODUCTION

It is well known that optimization models are used
for decision making. In the traditional models, all the
parameters are assumed to be known, which conflicts
with many real world problems. For instance, in
portfolio problems, the return of assets are uncertain.
Further, real world problems almost invariably
include some unknown parameters. Therefore, the
deterministic optimization models are inadequate and
a new optimization model is needed to tackle the
uncertainty. In this case, stochastic programming is
proposed to handle the uncertainty.

As a branch of stochastic programming, chance-
constrained problem (CCP) which is called prob-
abilistic problem as well, was first proposed in
(Charnes et al., 1958) to deal with an industrial
problem. The authors considered a special case of
CCP where the probabilistic constraints are imposed
individually on each constraint. Latter, (Prékopa,
1970) generalized the model of CCP with joint prob-
abilistic constraints and dependant random variables.
See (Dentcheva et al., 2000; Prékopa, 2003; Henrion
and Strugarek, 2008) for a background of CCP and
some convexity theorems.
In order to circumvent CCP, we usually consider
tractable approximation. For instance, convex
approximation (Nemirovski and Shapiro, 2006a;
Nemirovski, 2012) is a way which analytically
generates deterministic convex problems which
can be solved efficiently. However, it requires the
known structure of the distribution and structural
assumptions on the constraints. Another way is
simulation-based approach based on Monte-Carlo

sampling, for example the well-known scenario
approach (Calafiore and Campi, 2005; Calafiore and
Campi, 2006; Nemirovski and Shapiro, 2006b). As
the sampling number N is large enough, we can
ensure the feasibility of the solution. In (Campi and
Garatti, 2011), the authors developed a sampling-and-
discarding approach which removes some sampling
constraints in the model. They gave theoretical proofs
where discarding suitable number of constraints in
the sampling model, the result remains feasible and
intact. A greedy algorithm to select the constraints
to be removed was mentioned and some numerical
results are shown in (Pagnoncelli et al., 2012).
Recent work of (Garatti and Campi, 2013) presented
a precise procedure of this algorithm on control
design.

The probabilistic problem that we work on is
the minimum-volume invariant ellipsoid problem in
control theory which can be formulated as semidef-
inite program with chance constrains (CCSDP). In
(Cheung et al., 2012), authors proposed a convex safe
tractable approximation to solve this problem. In our
work, we develop a simulation-based method base
on (Campi and Garatti, 2011). For the related work
to CCSDP, we refer the reader to (Yao et al., 1999;
Ariyawansa and Zhu, 2000; Zhu, 2006).

The paper is organised as follows. In sec-
tion 2, we present mathematical formulation of the
chance constrained semidefinite problem. In section
3, we present simulation-based methods applied on
semidefinite program with chance constraints and in-
troduce our method of sampling. In section 4, we
show numerical results on the problem in control the-



ory. Finally, a conclusion is given in section 5.

2 CHANCE CONSTRAINED
SEMIDEFINITE PROGRAM

Conic optimization problems with chance constraints
can be generalized as

(CCP) min{ f (x) : Pr{F(x,ξ) ∈ K} ≥ 1− ε,x ∈ X}

where x ⊆ Rn is a vector of decision variables, X is
a deterministic feasible region, ξ is a random vec-
tor supported by a distribution Ξ ⊆ Rd , K ⊂ Rl is
a closed convex cone, F : Rn,Rd → Rl is a random
vector-valued function and ε is a risk parameter given
by a decision maker.
In this article, the probabilistic problem in our nu-
merical tests is a bilinear semidefinite program with
chance constraints. K is a positive semidefinite cone
and F is a linear matrix inequality (LMI):

F(x,ξ) = A0(x)+
m

∑
i=1

ξiAi(x)+ ∑
1≤ j≤k≤m

ξ jξkB jk(x)

where Ai,B jk are symmetric matrix.
Therefore, the chance constrained semidefinite pro-
gram can be presented as:

(CCSDP) min{ f (x)x∈X : Pr{F(x,ξ)� 0} ≥ 1− ε}

3 SIMULATION-BASED
APPROXIMATION

3.1 Scenario Approach

The simplest method of simulation-based approxi-
mation is scenario approach. The approximation of
CCSDP is:

(CCP−SA) min{ f (x)x∈X : F(x,ξi)� 0,∀i = 1, ...,N}

where N is the number of sampling, ξi is a ran-
dom sample. CCP− SA yields a feasible solution to
CCSDP with probability of at least 1−β for

N ≥ 2
ε

log(
1
β
)+2n+

2n
ε

log(
2
ε
).

(Calafiore and Campi, 2006)

3.2 Big-M Semidefinite Sampling
Approach

In (Luedtke and Ahmed, 2008), the authors proposed
a simulation-based method which adds a sample av-
erage constraint involving expectations of indicator
functions. They showed that their simulation-based
approximation method yields a feasible solution to
the chance constrained problem with high confidence.
If we choose ”big-M” function with integer variables
to be the indicator function, we have the following
tractable approximation of CCSDP:

(CCP−BM) min f (x)
s.t F(x,ξi)+ yiMI � 0,∀i ∈ 1, ...,N

N

∑
i=1

yi ≤ ε×N

x ∈ X ,y ∈ {0,1}N

where I is an identity matrix, M is a large con-
stant. We see that if yi = 1, the constraint i is sat-
isfied for any candidate solution x including those
x ∈ {x|F(x,ξi) 6� 0,x ∈ X} discarded by scenario ap-
proach (CCP-SA). This ”big-M” method is less con-
servative than CCP−SA, but it introduces the binary
variables which increases the computation effort. The
advantage of this method is that it gives a less conser-
vative solution.

3.3 Combination of Big-M and
Constraints Discarding

In order to have a less conservative solution than
the scenario approach and reduce the computation
effort, our sampling method starts by solving a
relaxed CCP− BM model. As we suppose that the
relaxed values of y could help select the constraints
to be removed in sampling-and-discarding approach
proposed by (Campi and Garatti, 2011).

In our method, we suppose that the relaxed value
of yi ∈ [0,1] obtained by the relaxed CCP−BM in-
dicates the probability of discarding the constraint i.
Therefore, we develop a new sampling method which
combines the ”big-M” approximation and sampling-
and-discarding method. The main procedure is that
we solve the relaxed CCP−BM at first and then ac-
cording to the sorted value of yi, remove the corre-
sponding constraints in CCP− SA and solve the new
reduced problem.



4 NUMERICAL EXPERIMENTS

We apply our method to a minimum-volume invariant
ellipsoid problem in control theory (Cheung et al.,
2012) and compare the performance with scenario
approach, sampling-and-discarding approach with
greedy procedure (Pagnoncelli et al., 2012).

4.1 Control System Problem

First of all, we state out the problem and its mathe-
matical model. Supposed that we have the following
discrete-time controlled dynamical system:

x(t +1) = Ax(t)+bu(t) t = 0,1, ...
x(0) = x̄

where A∈Rn×n and b∈Rn are system specifications,
t is the index of discrete time, x̄ is the initial state, and
u(t) is the control at time t. In order to keep the sys-
tem stable for any A,b and possible u(t), the safe re-
gion for x could be an invariant ellipsoid. An ellipsoid
is expressed by:

E(Z) = {x ∈ Rn : xT Zx≤ 1}

where Z is a symmetric positive definite matrix.
An invariant ellipsoid means that if x ∈ E(Z),
then A(x) + b ∈ E(Z). (Nemirovski, 2001)
has shown that the ellipsoid E(Z) is invariant
if and only if there exists a λ ≥ 0 such that[

1−bT Zb−λ −bT ZA
−AT Zb λZ−AT ZA

]
� 0, ||A|| < 1. For

this problem, we prefer to have a smaller safe region
for x to ensure the stability. Thus, this control prob-
lem is equivalent to finding the minimum-volume of
an invariant ellipsoid which could be formulated as
a bilinear semidefinite programming problem. If we
considered the chance constrained case, the model
should be : {CCMV IE(λ),λ ∈ D}(Cheung et al.,
2012).

CCMV IE(λ) :
max w
s.t w≤ (detZ)1/n)

Pr
{ [

1−bT Zb−λ −bT ZA
−AT Zb λZ−AT ZA

]
� 0
}
≥ 1− ε

Z � 0

where D = {0.00,0.01, ...,0.99,1.00} is a finite set.
We assume that the system could be disturbed by
some random noise. Like the design of numerical ex-
periment in (Cheung et al., 2012), b is corrupted and

bi = b̄i +ρξi,∀i = 1, ...,N where b̄ ∈ RN is the nom-
inal value, ρ ≥ 0 is a fixed parameter to control the
level of perturbation, ξi is a standard Gaussian ran-
dom variable of sample i.

4.2 Sampling Procedure

4.2.1 Scenario Approach

We generate N random samples and solve the follow-
ing model {CCSC(λ),λ ∈ D} :

CCSC(λ) :
max w
s.t w≤ (detZ)1/n)[

1−bT
i Zbi−λ −bT

i ZA
−AT Zbi λZ−AT ZA

]
� 0,

∀i = {1, ...,N}
Z � 0

4.2.2 Greedy Procedure for
Sampling-and-Discarding Method

For each λ ∈ D, we apply a greedy and random-
ized constraint removal procedure (Pagnoncelli et al.,
2012) to the sample counterpart (SP) of CCMV IE(λ)
(Campi and Garatti, 2011).

CCSP(λ) :
max w
s.t w≤ (detZ)1/n)[

1−bT
i Zbi−λ −bT

i ZA
−AT Zbi λZ−AT ZA

]
� 0,

∀i = {1, ...,N}−A
Z � 0

where A is the set of the indexes of the k removed
constraints.

The greedy removal procedure iteratively removes
k constraints. At each iteration i, we solve a CCSP(λ)
with Ai−1 to determine the set of ni active constraints.
Then we randomly choose one of these active con-
straints such as constraint c to have Ai = Ai−1 ∪{c}
for following iteration i+1.

4.2.3 Big-M Procedure for Sampling and
Discarding Method

Our sampling method contains two parts. First, we
solve a relaxed ”big-M” model CCRBM(λ) and ob-
tain the solution of the relaxed binary variable y:



CCRBM(λ)

max w
s.t w≤ (detZ)1/n)[

1−bT
i Zbi−λ −bT

i ZA
−AT Zbi λZ−AT ZA

]
+ yiMI � 0,

∀i = 1, ...,N
N

∑
i=1

yi ≤ ε×N

Z � 0
0≤ yi ≤ 1,∀i = 1, ...,N

We sort the elements of y in descending order and take
the first k indexes into set A = {i1, ..., ik}.
Then, we solve CCSP(λ).

Precise procedure:

1. For each λ ∈ D:

(a) Solve CCRBM(λ) and obtain the relaxation val-
ues of y,

(b) Determine the set A of removed constraints ac-
cording to y,

(c) Solve CCSP(λ), and let v(λ) be the objective
value and Z(λ) be the corresponding solution.

2. Return Z(λ∗) as the optimal solution, where λ∗ =
argmaxλ∈Dv(λ).

4.3 Design of The Experiments

4.3.1 Data

We use the same instances as (Cheung et al., 2012).
We have two group of data.

Data1 : A=

[
−0.8147 −0.4163
0.8167 −0.1853

]
, b̄=

[
1

0.7071

]
,

ε = 0.05,ρ = 0.01,β = 0.05

Data2 : A =


0 2 0 0 0
0 0 0.0028 0.0142 0
0 0 0 1 0
0 0 −0.0825 −0.4126 0
1 0 0 0 0

 ,

b̄ =


0

0.0076
0

−0.1676
0

 ,ε = 0.03,ρ = 0.001,β = 0.05

where β is a confidence parameter which is needed
to decide the sample size N and number of removal
constraints k.

4.3.2 Selecting the Sample Size and the Number
of Constraints to be Removed

For data 1, we consider four sample sizes N ranging
from 400 up to 1000. The number of constraints to be
removed is calculated as following :

k = bεN−d +1−

√
2εIn

(εN)d−1

β
c,

where d is the dimension of variable Z. It has been
proven in (Campi and Garatti, 2011) that with this
number of k, the solution obtained by CCSP(λ) (with
optimal removal) is feasible to CCMV IE(λ) with
high probability 1−β.
As choosing the optimal set of constraints to be
removed is an NP-hard problem, the solution that we
obtain with our procedure can not ensure conserva-
tiveness. Therefore, we vary the ratio of k/N from
0.03 to 0.05 to study the influence of k on the result.

For data 2, we consider three sample sizes N rang-
ing from 1000 to 1400 with k calculated as in (4.3.2).
In addition, we set the ratio of k/N to be 0.02 and 0.03
for each sample size respectively.

4.4 Numerical Results

All experiments are run under MATLAB R2012b on
a Windows 7 operating system with i7 CPU 2GHz
and 4GB of RAM. The computations are performed
using CVX 2.1 with semidefinite program solver
SeDuMi.

Tables [1] and [2] provide the computational
results of Data 1 and Data 2 respectively. N presents
the sampling number. k is the number of removal con-
straints and k/N is the corresponding ratio. We use
the average linear size measure, which is defined as
ALS(E(Z)) = (Voln(E(Z))1/n) (Cheung et al., 2012),
to evaluate the volume of ellipsoid. The smaller the
volume of ellipsoid is, the smaller the average linear
size of ellipsoid is. The columns SC, Greedy, BMSP
give the average linear size of ellipsoid obtained by
scenario approach (4.2.1), greedy approach (4.2.2)
and our method (4.2.3) respectively. 1−Vio shows
the satisfaction rate of each solution estimated under
100000 simulated random samples. Gap presents the
gap between the solution of the current method and
the solution of the scenario approach.
Table [3] shows the CPU time expressed in seconds.
The columns SC, Greedy, BMSP show the average
CPU time of all tests in Table [1] and [2] when
applying scenario approach, greedy approach and our



Figure 1: Comparison of average linear size for Data 1

Figure 2: Comparison of violation ratio for Data 1

method respectively.

We observe that the real violation is significantly
below 5% and 3% respectively in Tables [1] and
[2]. It is easy to see that as k increases, we obtain a
better solution both with greedy method and with our
BMSP method; and the violation of the solution is
larger. The reason is that as the more constraints we
remove, the larger feasible set of CCSP(λ) we obtain,
which involves more violated elements of CCSC(λ).

In Table [1], for each sampling number N, BMSP
obtains better solution than Greedy with smaller final
value (average linear size of ellipsoid) and a larger
violation which is below 5%. For greedy method, the
gap is between 0.5‰-10.4‰, compared with scenario
approach. While for our method, the gap is between
2.7‰-11.8‰. Figure [1] gives a precise look on the
final value obtained by Greedy and BMSP for differ-
ent values of k for 400 samples. In Figure [2], we
compare the violation of Greedy and BMSP. We ob-
serve that the increasing rate of violation is nearly the
same. Figure [3] shows the local view of ellipsoid
for Data 1 obtained by scenario approach, greedy ap-
proach and our method with N = 400 and k = 20. We
can see that the ellipsoid obtained by our method has
the smallest volume.

In Table [2], we obtain a Gap more obvious
than the previous one on Data 1. For the case
where k is chosen by (4.3.2), our method obtains a

Figure 3: Local view of chance-constrained invariant ellip-
soid of Data 1 with N = 400,k = 20.

gap better than Greedy method with 0.2% to 0.6%
improvement. While for other choices of k, their gap
are very close to each other.

The advantage of our method compared with
Greedy procedure is on the computing time. In the
Greedy procedure, we need to solve k + 1 times the
semidefinite program CCSP(λ) in order to decide re-
moval constrains, while in our method, we only need
to solve 2 semidefinite programs. Therefore, we ob-
serve from Table [3] that BMSP consumes much less
CPU time than Greedy and almost twice CPU time
than scenario approach. But as a counterpart of the
CPU time, we obtain better solution than scenario ap-
proach.

5 CONCLUSION

In this paper, we introduce a new simulation-based
method to solve stochastic chance constrained pro-
gram. This method is a combination of Big-M re-
laxation and a sampling-and-discarding method. We
apply this method to semidefinite programming prob-
lem in control theory. The numerical results show that
our method provides better solutions within a reason-
able CPU time.



Table 1: Results for Data 1 with ε = 0.05,ρ = 0.01,β = 0.05

N k k/N SC 1-Vio Greedy 1-Vio Gap(‰) BMSP 1-Vio Gap(‰)
400 - 4.1348 0.9988 - - - - - -

3 0.008 4.1328 0.9988 0.5 4.1234 0.9948 2.7
12 0.030 4.1309 0.9992 0.9 4.1090 0.9902 6.3
16 0.040 4.1190 0.9928 3.8 4.1065 0.9842 6.9
20 0.050 4.1148 0.9818 4.8 4.0988 0.9767 8.8

600 - 4.1438 0.9988 - - - - - -
9 0.015 4.1098 0.9884 8.2 4.1095 0.9892 8.3
18 0.030 4.1060 0.9829 9.1 4.1025 0.9811 10.0
24 0.040 4.1050 0.9835 9.3 4.0976 0.9744 11.2
30 0.050 4.1043 0.9799 9.5 4.0962 0.9720 11.5

800 - 4.1482 0.9998 - - - - - -
15 0.019 4.1151 0.9891 7.9 4.1138 0.9923 8.2
24 0.030 4.1106 0.9917 9.0 4.1066 0.9859 10.0
32 0.040 4.1083 0.9883 9.6 4.1028 0.9781 10.9
40 0.050 4.1047 0.9846 10.4 4.0990 0.9776 11.8

1000 - 4.1455 0.9994 - - - - - -
22 0.022 4.1228 0.9968 5.4 4.1124 0.9889 7.9
30 0.030 4.1221 0.9938 5.6 4.1066 0.9865 9.4
40 0.040 4.1144 0.9916 7.5 4.1027 0.9791 10.3
50 0.050 4.1050 0.9861 9.7 4.0974 0.9734 11.6
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