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Semidefinite programming has been widely studied for the last two decades. Semidefinite programs are linear programs with semidefinite constraint generally studied with deterministic data. In this paper, we deal with a stochastic semidefinte programs with chance constraints, which is a generalization of chance-constrained linear programs. Based on existing theoretical results, we develop a new sampling method to solve these chance constraints semidefinite problems. Numerical experiments are conducted to compare our results with the state-of-the-art and to show the strength of the sampling method.

INTRODUCTION

It is well known that optimization models are used for decision making. In the traditional models, all the parameters are assumed to be known, which conflicts with many real world problems. For instance, in portfolio problems, the return of assets are uncertain. Further, real world problems almost invariably include some unknown parameters. Therefore, the deterministic optimization models are inadequate and a new optimization model is needed to tackle the uncertainty. In this case, stochastic programming is proposed to handle the uncertainty.

As a branch of stochastic programming, chanceconstrained problem (CCP) which is called probabilistic problem as well, was first proposed in [START_REF] Charnes | Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil[END_REF] to deal with an industrial problem. The authors considered a special case of CCP where the probabilistic constraints are imposed individually on each constraint. Latter, [START_REF] Prékopa | On probabilistic constrained programming[END_REF] generalized the model of CCP with joint probabilistic constraints and dependant random variables. See [START_REF] Dentcheva | Concavity and efficient points of discrete distributions in probabilistic programming[END_REF][START_REF] Prékopa | Probabilistic programming[END_REF][START_REF] Henrion | Convexity of chance constraints with independent random variables[END_REF] for a background of CCP and some convexity theorems. In order to circumvent CCP, we usually consider tractable approximation.

For instance, convex approximation (Nemirovski and Shapiro, 2006a;[START_REF] Nemirovski | On safe tractable approximations of chance constraints[END_REF] is a way which analytically generates deterministic convex problems which can be solved efficiently. However, it requires the known structure of the distribution and structural assumptions on the constraints. Another way is simulation-based approach based on Monte-Carlo sampling, for example the well-known scenario approach [START_REF] Calafiore | Uncertain convex programs: randomized solutions and confidence levels[END_REF][START_REF] Calafiore | The scenario approach to robust control design[END_REF][START_REF] Nemirovski | Scenario approximations of chance constraints[END_REF]. As the sampling number N is large enough, we can ensure the feasibility of the solution. In [START_REF] Campi | A sampling-anddiscarding approach to chance-constrained optimization: feasibility and optimality[END_REF], the authors developed a sampling-anddiscarding approach which removes some sampling constraints in the model. They gave theoretical proofs where discarding suitable number of constraints in the sampling model, the result remains feasible and intact. A greedy algorithm to select the constraints to be removed was mentioned and some numerical results are shown in [START_REF] Pagnoncelli | Risk-return trade-off with the scenario approach in practice: a case study in portfolio selection[END_REF]. Recent work of [START_REF] Garatti | Modulating robustness in control design: Principles and algorithms[END_REF] presented a precise procedure of this algorithm on control design.

The probabilistic problem that we work on is the minimum-volume invariant ellipsoid problem in control theory which can be formulated as semidefinite program with chance constrains (CCSDP). In [START_REF] Cheung | Linear matrix inequalities with stochastically dependent perturbations and applications to chance-constrained semidefinite optimization[END_REF], authors proposed a convex safe tractable approximation to solve this problem. In our work, we develop a simulation-based method base on [START_REF] Campi | A sampling-anddiscarding approach to chance-constrained optimization: feasibility and optimality[END_REF]. For the related work to CCSDP, we refer the reader to [START_REF] Yao | LQ Control without Riccati Equations: Stochastic Systems[END_REF][START_REF] Ariyawansa | Chance-constrained semidefinite programming[END_REF][START_REF] Zhu | Semidefinite programming under uncertainty[END_REF].

The paper is organised as follows. In section 2, we present mathematical formulation of the chance constrained semidefinite problem. In section 3, we present simulation-based methods applied on semidefinite program with chance constraints and introduce our method of sampling. In section 4, we show numerical results on the problem in control the-ory. Finally, a conclusion is given in section 5.

CHANCE CONSTRAINED SEMIDEFINITE PROGRAM

Conic optimization problems with chance constraints can be generalized as 

(CCP) min{ f (x) : Pr{F(x, ξ) ∈ K} ≥ 1 -ε, x ∈ X} where x ⊆ R n is a vector of decision variables, X is a deterministic feasible region, ξ is a random vec- tor supported by a distribution Ξ ⊆ R d , K ⊂ R l is a closed convex cone, F : R n , R d → R l is
F(x, ξ) = A 0 (x) + m ∑ i=1 ξ i A i (x) + ∑ 1≤ j≤k≤m ξ j ξ k B jk (x)
where A i , B jk are symmetric matrix. Therefore, the chance constrained semidefinite program can be presented as:

(CCSDP) min{ f (x) x∈X : Pr{F(x, ξ) 0} ≥ 1 -ε} 3 SIMULATION-BASED APPROXIMATION 3.1 Scenario Approach
The simplest method of simulation-based approximation is scenario approach. The approximation of CCSDP is:

(CCP -SA) min{ f (x) x∈X : F(x, ξ i ) 0, ∀i = 1, ..., N}
where N is the number of sampling, ξ i is a random sample. CCP -SA yields a feasible solution to CCSDP with probability of at least 1β for

N ≥ 2 ε log( 1 
β ) + 2n + 2n ε log( 2 ε ).
( [START_REF] Calafiore | The scenario approach to robust control design[END_REF] 

Big-M Semidefinite Sampling Approach

In [START_REF] Luedtke | A sample approximation approach for optimization with probabilistic constraints[END_REF], the authors proposed a simulation-based method which adds a sample average constraint involving expectations of indicator functions. They showed that their simulation-based approximation method yields a feasible solution to the chance constrained problem with high confidence.

If we choose "big-M" function with integer variables to be the indicator function, we have the following tractable approximation of CCSDP:

(CCP -BM) min f (x) s.t F(x, ξ i ) + y i MI 0, ∀i ∈ 1, ..., N N ∑ i=1 y i ≤ ε × N x ∈ X, y ∈ {0, 1} N
where I is an identity matrix, M is a large constant. We see that if y i = 1, the constraint i is satisfied for any candidate solution x including those x ∈ {x|F(x, ξ i ) 0, x ∈ X} discarded by scenario approach (CCP-SA). This "big-M" method is less conservative than CCP -SA, but it introduces the binary variables which increases the computation effort. The advantage of this method is that it gives a less conservative solution.

Combination of Big-M and Constraints Discarding

In order to have a less conservative solution than the scenario approach and reduce the computation effort, our sampling method starts by solving a relaxed CCP -BM model. As we suppose that the relaxed values of y could help select the constraints to be removed in sampling-and-discarding approach proposed by [START_REF] Campi | A sampling-anddiscarding approach to chance-constrained optimization: feasibility and optimality[END_REF].

In our method, we suppose that the relaxed value of y i ∈ [0, 1] obtained by the relaxed CCP -BM indicates the probability of discarding the constraint i. Therefore, we develop a new sampling method which combines the "big-M" approximation and samplingand-discarding method. The main procedure is that we solve the relaxed CCP -BM at first and then according to the sorted value of y i , remove the corresponding constraints in CCP -SA and solve the new reduced problem.

We apply our method to a minimum-volume invariant ellipsoid problem in control theory [START_REF] Cheung | Linear matrix inequalities with stochastically dependent perturbations and applications to chance-constrained semidefinite optimization[END_REF] and compare the performance with scenario approach, sampling-and-discarding approach with greedy procedure [START_REF] Pagnoncelli | Risk-return trade-off with the scenario approach in practice: a case study in portfolio selection[END_REF].

Control System Problem

First of all, we state out the problem and its mathematical model. Supposed that we have the following discrete-time controlled dynamical system:

x(t + 1) = Ax(t) + bu(t) t = 0, 1, ... x(0) = x
where A ∈ R n×n and b ∈ R n are system specifications, t is the index of discrete time, x is the initial state, and u(t) is the control at time t. In order to keep the system stable for any A, b and possible u(t), the safe region for x could be an invariant ellipsoid. An ellipsoid is expressed by:

E(Z) = {x ∈ R n : x T Zx ≤ 1}
where Z is a symmetric positive definite matrix.

An invariant ellipsoid means that if x ∈ E(Z), then A(x) + b ∈ E(Z). [START_REF] Nemirovski | Lectures on modern convex optimization[END_REF]) has shown that the ellipsoid E(Z) is invariant if and only if there exists a λ ≥ 0 such that 1

-b T Zb -λ -b T ZA -A T Zb λZ -A T ZA 0, ||A|| < 1. For
this problem, we prefer to have a smaller safe region for x to ensure the stability. Thus, this control problem is equivalent to finding the minimum-volume of an invariant ellipsoid which could be formulated as a bilinear semidefinite programming problem. If we considered the chance constrained case, the model should be : {CCMV IE(λ), λ ∈ D} [START_REF] Cheung | Linear matrix inequalities with stochastically dependent perturbations and applications to chance-constrained semidefinite optimization[END_REF].

CCMV IE(λ) : max w s.t w ≤ (detZ) 1/n ) Pr 1 -b T Zb -λ -b T ZA -A T Zb λZ -A T ZA 0 ≥ 1 -ε Z 0
where D = {0.00, 0.01, ..., 0.99, 1.00} is a finite set. We assume that the system could be disturbed by some random noise. Like the design of numerical experiment in [START_REF] Cheung | Linear matrix inequalities with stochastically dependent perturbations and applications to chance-constrained semidefinite optimization[END_REF], b is corrupted and b i = bi + ρξ i , ∀i = 1, ..., N where b ∈ R N is the nominal value, ρ ≥ 0 is a fixed parameter to control the level of perturbation, ξ i is a standard Gaussian random variable of sample i.

Sampling Procedure

Scenario Approach

We generate N random samples and solve the following model {CCSC(λ), λ ∈ D} :

CCSC(λ) : max w s.t w ≤ (detZ) 1/n ) 1 -b T i Zb i -λ -b T i ZA -A T Zb i λZ -A T ZA 0, ∀i = {1, ..., N} Z 0

Greedy Procedure for Sampling-and-Discarding Method

For each λ ∈ D, we apply a greedy and randomized constraint removal procedure [START_REF] Pagnoncelli | Risk-return trade-off with the scenario approach in practice: a case study in portfolio selection[END_REF] to the sample counterpart (SP) of CCMV IE(λ) [START_REF] Campi | A sampling-anddiscarding approach to chance-constrained optimization: feasibility and optimality[END_REF].

CCSP(λ) : max w s.t w ≤ (detZ) 1/n ) 1 -b T i Zb i -λ -b T i ZA -A T Zb i λZ -A T ZA 0, ∀i = {1, ..., N} -A Z 0
where A is the set of the indexes of the k removed constraints.

The greedy removal procedure iteratively removes k constraints. At each iteration i, we solve a CCSP(λ) with A i-1 to determine the set of n i active constraints.

Then we randomly choose one of these active constraints such as constraint c to have A i = A i-1 ∪ {c} for following iteration i + 1.

Big-M Procedure for Sampling and Discarding Method

Our sampling method contains two parts. First, we solve a relaxed "big-M" model CCRBM(λ) and obtain the solution of the relaxed binary variable y:

CCRBM(λ) max w s.t w ≤ (detZ) 1/n ) 1 -b T i Zb i -λ -b T i ZA -A T Zb i λZ -A T ZA + y i MI 0, ∀i = 1, ..., N N ∑ i=1 y i ≤ ε × N Z 0 0 ≤ y i ≤ 1, ∀i = 1, ..., N
We sort the elements of y in descending order and take the first k indexes into set A = {i 1 , ..., i k }.

Then, we solve CCSP(λ).

Precise procedure:

1. For each λ ∈ D:

(a) Solve CCRBM(λ) and obtain the relaxation values of y, (b) Determine the set A of removed constraints according to y, (c) Solve CCSP(λ), and let v(λ) be the objective value and Z(λ) be the corresponding solution.

2. Return Z(λ * ) as the optimal solution, where λ * = argmax λ∈D v(λ).

Design of The Experiments

Data

We use the same instances as [START_REF] Cheung | Linear matrix inequalities with stochastically dependent perturbations and applications to chance-constrained semidefinite optimization[END_REF].

We have two group of data.

Data 1 : A = -0.8147 -0.4163 0.8167 -0.1853 , b = 1 0.7071 , ε = 0.05, ρ = 0.01, β = 0.05 Data 2 : A =      0 2 0 0 0 0 0 0.0028 0.0142 0 0 0 0 1 0 0 0 -0.0825 -0.4126 0 1 0 0 0 0      , b =      0 0.0076 0 -0.1676 0      , ε = 0.03, ρ = 0.001, β = 0.05
where β is a confidence parameter which is needed to decide the sample size N and number of removal constraints k.

Selecting the Sample Size and the Number of Constraints to be Removed

For data 1, we consider four sample sizes N ranging from 400 up to 1000. The number of constraints to be removed is calculated as following :

k = εN -d + 1 -2εIn (εN) d-1 β ,
where d is the dimension of variable Z. It has been proven in [START_REF] Campi | A sampling-anddiscarding approach to chance-constrained optimization: feasibility and optimality[END_REF] that with this number of k, the solution obtained by CCSP(λ) (with optimal removal) is feasible to CCMV IE(λ) with high probability 1β.

As choosing the optimal set of constraints to be removed is an NP-hard problem, the solution that we obtain with our procedure can not ensure conservativeness. Therefore, we vary the ratio of k/N from 0.03 to 0.05 to study the influence of k on the result.

For data 2, we consider three sample sizes N ranging from 1000 to 1400 with k calculated as in (4.3.2). In addition, we set the ratio of k/N to be 0.02 and 0.03 for each sample size respectively.

Numerical Results

All experiments are run under MATLAB R2012b on a Windows 7 operating system with i7 CPU 2GHz and 4GB of RAM. The computations are performed using CVX 2.1 with semidefinite program solver SeDuMi.

Tables [1] and[2] provide the computational results of Data 1 and Data 2 respectively. N presents the sampling number. k is the number of removal constraints and k/N is the corresponding ratio. We use the average linear size measure, which is defined as ALS(E(Z)) = (Vol n (E(Z)) 1/n ) [START_REF] Cheung | Linear matrix inequalities with stochastically dependent perturbations and applications to chance-constrained semidefinite optimization[END_REF], to evaluate the volume of ellipsoid. The smaller the volume of ellipsoid is, the smaller the average linear size of ellipsoid is. The columns SC, Greedy, BMSP give the average linear size of ellipsoid obtained by scenario approach (4.2.1), greedy approach (4.2.2) and our method (4.2.3) respectively. 1 -Vio shows the satisfaction rate of each solution estimated under 100000 simulated random samples. Gap presents the gap between the solution of the current method and the solution of the scenario approach. Table [3] shows the CPU time expressed in seconds. The columns SC, Greedy, BMSP show the average CPU time of all tests in Table [1] and[2] when applying scenario approach, greedy approach and our We observe that the real violation is significantly below 5% and 3% respectively in Tables [1] and[2]. It is easy to see that as k increases, we obtain a better solution both with greedy method and with our BMSP method; and the violation of the solution is larger. The reason is that as the more constraints we remove, the larger feasible set of CCSP(λ) we obtain, which involves more violated elements of CCSC(λ).

In Table [1], for each sampling number N, BMSP obtains better solution than Greedy with smaller final value (average linear size of ellipsoid) and a larger violation which is below 5%. For greedy method, the gap is between 0.5‰-10.4‰, compared with scenario approach. While for our method, the gap is between 2.7‰-11.8‰. Figure [1] gives a precise look on the final value obtained by Greedy and BMSP for different values of k for 400 samples. In Figure [2], we compare the violation of Greedy and BMSP. We observe that the increasing rate of violation is nearly the same. Figure [3] shows the local view of ellipsoid for Data 1 obtained by scenario approach, greedy approach and our method with N = 400 and k = 20. We can see that the ellipsoid obtained by our method has the smallest volume.

In Table [2], we obtain a Gap more obvious than the previous one on Data 1. For the case where k is chosen by (4.3.2), our method obtains a gap better than Greedy method with 0.2% to 0.6% improvement. While for other choices of k, their gap are very close to each other.

The advantage of our method compared with Greedy procedure is on the computing time. In the Greedy procedure, we need to solve k + 1 times the semidefinite program CCSP(λ) in order to decide removal constrains, while in our method, we only need to solve 2 semidefinite programs. Therefore, we observe from Table [3] that BMSP consumes much less CPU time than Greedy and almost twice CPU time than scenario approach. But as a counterpart of the CPU time, we obtain better solution than scenario approach.

CONCLUSION

In this paper, we introduce a new simulation-based method to solve stochastic chance constrained program. This method is a combination of Big-M relaxation and a sampling-and-discarding method. We apply this method to semidefinite programming problem in control theory. The numerical results show that our method provides better solutions within a reasonable CPU time.
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 3 Figure 3: Local view of chance-constrained invariant ellipsoid of Data 1 with N = 400, k = 20.