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INFLUENCE OF DISORDER FOR THE POLYMER PINNING

MODEL

QUENTIN BERGER

Abstract. When studying disordered systems, the influence of disorder on
the phase transition is a central question: one wants determine whether an
arbitrary quantity of disorder modifies the critical properties of the system,
with respect to the non-disordered case. We present here an overview of the
mathematical results obtained to answer that question for the polymer pinning
model. In the IID case, the picture of disorder relevance/irrelevance is by now
established, and follows the so-called Harris criterion: disorder is irrelevant if
νhom > 2 and relevant if νhom < 2, where νhom is the order of the homoge-
neous phase transition. In the correlated case, Weinrib and Halperin predicted
that, if the two point correlation decays as a power law with exponent a > 0,
then the Harris criterion would be modified if a < 1: disorder should be rele-
vant whenever νhom < 2max(1, 1/a). It turns out that this prediction is not
accurate: the key quantity is not the decay exponent a, but the occurrence of
rare regions with atypical disorder. An infinite disorder regime may appear,
in which the relevance / irrelevance picture is crucially modified. We also men-
tion another recent approach to the question of the influence of disorder for
the pinning model: the persistence of disorder when taking the scaling limit
of the system.

Introduction and physical motivations

The study of random polymers interacting with their environment has been a
very active field of research in the past fifty years, both in the physical literature,
and more recently in the mathematical literature [18, 25, 27]. We focus here on the
so-called polymer pinning model, which was introduced by Poland and Scheraga
to describe the DNA denaturation phenomenon, but has also been used in other
contexts: it has for example been used as an effective model for the wetting of an
interface on a disordered substrate (see [25] and references therein for an overview
of the physical motivations).

The model considers a directed polymer interacting with a defect line, and the
main focus, as in general for disordered systems, is its phase transition. One wants
to describe it, and in particular to determine the influence of inhomogeneities on
its characteristics. Some predictions regarding this question exist in the physical
literature. In his seminal paper, Harris [32] predicts that, for a d-dimensional
system (d = 1 for the pinning model), an IID disorder is relevant if the order νhom

of the corresponding non-disordered (or homogeneous) phase transition is smaller
than 2/d. In the case of a correlated disorder, with two-point correlations decaying
as a power a of the distance, |i− j|−a, Weinrib and Halperin [42] predict that the
Harris criterion is not changed if a > d (disorder is relevant is νhom < 2/d), and
modified if a < d (disorder is relevant if νhom < 2/a).
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- In Section 1, we introduce the disordered pinning model and give its first
properties.

- In Section 2, we give the results in the IID case, where the Harris criterion
has been (almost completely) proven. We stress the influence of disorder fluctua-
tions, and in particular the role of rare atypical regions in disorder relevance, see
Section 2.2.

- In Section 3, we turn to a correlated environment, where Weinrib-Halperin’s
predictions are not valid in general: the important quantity to consider is not the
two point correlation decay exponent, but the exponential or sub-exponential decay
of the size of rare favorable regions.

- Finally, we conclude by mentioning another question in Section 4, which is
a priori unrelated to disorder relevance as usually discussed, but brings a new
approach: the study of the scaling limit of the system, and the persistence of
disorder in the continuum limit.

1. The disordered pinning model

1.1. Definition of the model. The polymer. Let τ := {τ0 = 0, τ1, . . .} be
a renewal process, whose law is denoted by P: τ0 := 0 and (τi − τi−1)i∈N is a
sequence of IID, N-valued, random variables, with common inter-arrival distribution
K(n) := P(τ1 = n). The set τ (with a slight abuse of notations) is interpreted as
the set of contact points of the polymer with the defect line. We denote {n ∈ τ}
the event that n is a renewal point, that is that there exists some k ∈ N such that
τk = n.

One is lead to make the following assumption on the inter-arrival distribution:

Assumption 1.1. There exists a positive slowly-varying function ϕ(·) and some
α ≥ 0 such that

P(τ1 = n) =: K(n)
n→∞
∼ ϕ(n)n−(1+α).

This assumption comes from the fact that, historically, the polymer was modeled
by the graph of a directed random walk (n, Sn)n∈N, where S is a random walk on Z

d,
interacting with the defect line N×{0}: the renewal τ is the set of return times of Sn
to 0. Then, if S is a symmetric simple random walk on Z

d, the first hitting time of 0,
τ1, is known to satisfy Assumption 1.1 (aside from periodicity considerations easily
overcome by only considering even times of return): there are explicit constants
cd, such that, in dimension d = 1, α = 1/2 and limn→∞ ϕ(n) = c1; in dimension

d = 2, α = 0 and ϕ(n)
n→∞
∼ c2(logn)

−2; and in dimension d ≥ 3, α = d
2 − 1 and

limn→∞ ϕ(n) = cd. In dimension d = 1, Assumption 1.1 also covers the case of a
random walks with IID increments in the domain of attraction of a stable law, and
of Bessel-type random walks, which can give asymptotically any α ≥ 0 and ϕ(·),
see [2].

The random composition of the defect line. Let ω = (ωn)n∈N be a sequence
of random variables, whose law, denoted by P, is assumed to be ergodic: to every site
of the defect line, an ωn is attached, modeling the inhomogeneities. We also assume
for simplicity that the ω’s are centered, E[ω1] = 0, and normalized, E[ω2

1 ] = 1.

The polymer measure. Given a fixed realization of ω (quenched disorder),
and parameters β ≥ 0 (strength of the inhomogeneities) h ∈ R (homogeneous
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interaction), we define the measures Pβ,ωN,h on trajectories of τ up to length N , as a
Gibbs transformation of P:

(1)
dPβ,ωN,h

dP
(τ) :=

1

Zβ,ωN,h

exp

(
N∑

n=1

(βωn + h)1{n∈τ}

)
1{N∈τ},

where Zβ,ωN,h is the partition function of the system, used to normalize P
β,ω
N,h to a

probability,

(2) Zβ,ωN,h = E

[
exp

(
N∑

n=1

(βωn + h)1{n∈τ}

)
1{N∈τ}

]
.

The measure P
β,ω
N,h corresponds to giving a reward (or a penalty, depending on

its sign) βωn + h if there is a contact with the defect line at site n. The goal is

then to study the properties of trajectories of τ under P
β,ω
N,h as N goes to infinity,

for typical realizations of ω, and how they depend on the parameters β ≥ 0, h ∈ R.

1.2. The free energy and the localization phase transition. A central phys-
ical quantity is the free energy, or energy per monomer, which encodes many prop-
erties of the system.

Proposition 1.2. see [25], Ch. 4 The following limit exists P-a.s. and in L1,

(3) F(β, h) := lim
N→∞

1

N
logZβ,ωN,h = lim

N→∞

1

N
E logZβ,ωN,h.

The quantity F(β, h) is called the quenched free energy of the system, and the map
(β, h) 7→ F(β, h) is non-negative, convex, and non-decreasing in both variables.

With this proposition in hand, one observes a phase transition when making h
vary: there exists a quenched critical point hquec (β) such that F(β, h) > 0 if and
only if h > hc(β) ; h = inf{ h ; F(β, h) > 0} = sup{ h ; F(β, h) = 0}. How to
actually interpret this phase transition may still be unclear, but one can derive
some path properties from the free energy, and relate the positivity of the free
energy to localization properties. Indeed, a straightforward computation yields

that ∂h logZ
β,ω
N,h = E

β,ω
N,h

[∑N
n=1 1{n∈τ}

]
. Therefore, using the convexity of F (and

Proposition 1.2), we get that

(4) ∂hF(β, h) = lim
N→∞

E
β,ω
N,h

[
1

N

N∑

n=1

1{n∈τ}

]
, P− a.s.

when the derivative ∂hF(β, h) exists (it is however known that h 7→ F(β, h) is C∞

except possibly at hquec (β)).
The critical point therefore marks the transition between a localized phase L =

{(β, h) ; F(β, h) > 0} = {h > hquec (β)}, where there is (asymptotically) a positive

density of contacts under P
β,ω
N,h, the polymer sticking to the defect line; and a delo-

calized phase D = {(β, h) ; F(β, h) = 0} = {h ≤ hquec (β)}, where the density of con-
tacts is (asymptotically) null, the polymer wandering away from the line. We give
an overview of the phase diagram in Figure 1, with a sketch of typical trajectories in
the localized and delocalized phase. Note also that the order of the phase transition
νque, that one can formally define as νque = limh↓hque

c (β) log F(β, h)
/
log(h−hquec (β))

(if the limit exists), reflects the growth of the contact fraction, see (4): if νque ≤ 1,
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then there is a jump discontinuity in the contact fraction, and if νque > 1, the
contact fraction grows roughly like (h− hc(β))

νque−1.

0

hac(β)

h̄(β)

hquec (β)

h
hc(0)

β

L

D

Figure 1. Since (β, h) 7→ F(β, h) is convex, the region D is
convex, so that hc(β) is a concave function of β. Moreover,
hquec (β) < hc(0) for all β > 0 (if the disorder is IID, see [3]),
showing that disorder helps for localization: indeed, a typical re-
newal trajectory may target positive ω’s. We also have some
bounds on the critical curve: hquec (β) ≥ hac(β), see Section 1.4
(note that, under some conditions (7), hc(0)− hac(β) ∼ cst.β2, see
(15)). One can also show that there exists some c > 0 such that
hquec (β) ≤ h̄(β) = hc(0) − cβ2, see [25, § 5.2] (the method is pre-
sented in the IID case, but is very general). When β → ∞, one is

able to get the asymptotic behavior hquec (β)
β↑∞
∼ 1

1+αh
a
c(β) when-

ever the annealed model is defined for all β > 0, as in [40, Eq.
(3.8)] or [7, Prop. 5.2.4].

Remark 1.3. Aside from the free energy, another central physical quantity of
disordered systems is the correlation length ℓ(β, h) = 1/r(β, h), where r(β, h) is the
exponential decay rate of "correlations" in the system. In the context of pinning
model, it is natural to define, for h > hc(β),

r(β, h) := lim
k→∞

−
1

k
log

(
E
β,ω
∞,h[1{i∈τ}1{i+k∈τ}]−E

β,ω
∞,h[1{i∈τ}]E

βω
∞,h[1{i+k∈τ}]

)
P−a.s.,

where we denoted E
β,ω
∞,h[A] := limN→∞ E

β,ω
N,h[A], which is known to exist P-a.s. for

any bounded local observable A when h > hquec (β), see [30].
In the homogeneous system, one has that r(0, h) = F(0, h), see [26]. In the

disordered system, Toninelli [38, Thm. 3.5] also showed that r(β, h) = F(β, h),
in the special case where the underlying renewal is the return times of a simple
symmetric random walk S in dimension 1. The argument, however, works for any
nearest-neighbor random walk in dimension 1, such as Bessel-type random walks
[2]: one can therefore interpret the inverse of the free energy as the correlation
length, for a wide class of renewals (with asymptotically any ϕ(·) and α ≥ 0 in
Assumption 1.1).
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The general goal is now to describe this localization/delocalization phase tran-
sition: can one compute explicitely or have sharp estimates on the critical point
hquec (β)? what is the behavior of the free energy F(β, h) close to criticality (when
h ↓ hquec (β)), and in particular can one find νque? can one describe precisely path
properties in the localized or delocalized phase? To that end, one compares the
disordered system with its homogeneous and annealed couterparts, that we now
define.

1.3. The homogeneous model. The homogeneous model is the non-disordered

model, i.e. when β = 0, and its partition function reads Zβ=0,ω
N,h =: Zhom

N,h =

E
[
eh

∑
N
n=1 1{n∈τ} 1{N∈τ}

]
. This model is exactly solvable: one has an explicit ex-

pression for the free energy, and can derive from it the value of the critical point
and the critical behavior of the free energy.

Theorem 1.4 (cf. [25], Ch. 2). The homogeneous free energy F(0, h) is the solution
in x of the equation

(5)
∑

n∈N

K(n) e−xn = e−h ,

if a solution exists, and F(0, h) = 0 otherwise.
From (5), one deduces that the critical point is hc(0) = − log

(
P(τ1 < +∞)

)
≥ 0.

In particular, one has that hc(0) = 0 if and only if τ is recurrent. One also has
the critical behavior of the free energy: for every α > 0 and ϕ(·), there exists an
explicit slowly varying function ϕ̂(·) such that

(6) F(0, hc(0) + u)
u↓0
∼ ϕ̂(1/u) uν

hom

,

where νhom = max(1, 1/α) is the order of the homogeneous phase transition. When
α = 0, F(0, hc(0)+u) vanishes faster than any power of u, and the critical behavior
is also explicit.

The homogeneous model is therefore very well understood, and the path proper-

ties can be described in details as well, cf. [25, Ch. 2] or [18, Ch. 7]: under P
β=0
N,h ,

τ is a renewal with inter-arrival distribution K̃h(n) = ehK(n)e−F(0,h)n, conditioned
to have N ∈ τ .

Remark 1.5. In the following, we assume without loss of generality that the un-
derlying renewal is recurrent, so that hc(0) = 0. Indeed, considering the inter-
arrival distribution K̄(n) := K(n)/P(τ1 < +∞) which is that of a recurrent re-
newal, and going from K to K̄ in (2) results only in a shift in the parameter h by
− logP(τ1 < +∞).

1.4. The annealed model. The averaged partition function with respect to dis-
order is referred as the annealed model. In the pinning model, one has

EZβ,ωN,h = E
[
eh

∑N
n=1

1{n∈τ}E[eβ
∑N

n=1
ωn1{n∈τ} ]1{N∈τ}

]
,

and the annealed measure P
β,a
N,h is defined accordingly. One also has the annealed

free energy,

F
a(β, h) := lim inf

N→∞

1

N
logEZβ,ωN,h,
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and its annealed critical point, hac(β) := inf{h ; Fa(β, h) > 0}. Then, Jensen’s

inequality gives that F(β, h) = limN→∞
1
NE logZβ,ωN,h ≤ F

a(β, h), so that hquec (β) ≥

hac(β).

Remark 1.6. For the comparison between the quenched and annealed system to
be of interest, one needs the annealed model to be non-degenerated: one asks that
there exists some β0 such that,

(7) lim inf
N→∞

1

N
logE

[
exp

(
β

N∑

n=1

ωn
)]
< +∞ for all β ≤ β0.

Indeed, one has otherwise that Fa(β, h) = +∞, and the inequality F(β, h) ≤ F
a(β, h)

is trivial. In the IID case, (7) corresponds to asking that ω1 has a finite exponential
moment M(β) := E[eβω1 ] < +∞, for β ≤ β0.

Remark 1.7. We stress that if the ωn’s are IID, then the annealed partition
function is simply the partition function of an homogeneous model, with h replaced
by h+ logM(β), so that hac(β) = − logM(β). The annealed system is then exactly
solvable, and well understood, making it a cornerstone in the study of the influence
of an IID disorder. When the ωn’s are not IID anymore, the annealed system is
not explicit, except in the case where (ωn)n∈Z is a Gaussian stationary sequence
with correlation function (ρk)k∈Z, ρk := E[ω0ωk], ρk = ρ−k, for which the annealed
partition function is

EZβ,ωN,h = E

[
exp

(
h

N∑

n=1

1{n∈τ} +
β2

2

∑

1≤i,j≤N
ρj−i1{i∈τ}1{j∈τ}

)]
.

One realizes that this is not the partition function of a standard homogeneous
model, and its study is already challenging.

1.5. Disorder relevance/irrelevance? The central question to be answered is
that of the influence of an arbitrarily small disorder on the phase transition. If,
for all β > 0, the characteristics of the disordered and homogeneous (or annealed)
phase transitions differ, then disorder is said to be relevant ; otherwise, if there
exists some β < β0 such that the characteristics of the phase transitions are similar
for all β ≤ β0, then disorder is said to be irrelevant.

• in terms of order of the phase transition: is the critical behavior of F(β, h)
as h ↓ hquec (β) different from that of the homogeneous system, see Theorem
1.4, for every β > 0? This is the original question of disorder relevance.

• in terms of critical points: if the annealed model is non-degenerated (see
condition (7)), is the inequality hquec (β) ≥ hac(β) strict for all β > 0?

2. On the influence of disorder in the IID case

In the context of disordered pinning model, we have that d = 1, and νhom =
max(1, 1/α): Harris’ criterion therefore predicts that disorder is irrelevant if α <
1/2, and relevant if α > 1/2. The case α = 1/2, corresponding to the case of
the simple symmetric random walk when ϕ(·) is a constant (see discussion after
Assumption 1.1), is called marginal, and actually depends on the model considered.
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2.1. Results in the IID case. In this section, we consider the case where (ωn)n∈N

is an IID sequence, with finite exponential moment M(β) < +∞ for β smaller than
some β0 > 0, so that the annealed model is well defined, see (7). This case has
been intensively studied in the past decade, and the Harris criterion is now (almost
completely) settled.

Theorem 2.1 (Irrelevant disorder). If α < 1/2, or if α = 1/2 and
∑

n∈N

1
nϕ(n)2 <

+∞, then disorder is irrelevant: there exists some β1 > 0 such that
• for all β ≤ β1, h

que
c (β) = hac(β) ;

• for any β ≤ β1 and any η > 0, there exists some cη,β such that, for all u ≤ cη,β,

(8) (1 + η) ≥
F(β, hac(β) + u)

F(0, hc(0) + u)
≥ (1 − η) .

There exist several proofs of this result, with very different techniques: a sec-
ond moment method in [1, 38], martingale techniques in [34], and a large devia-
tion/variational formula approach in [17]. We stress that, in [5], the case α = 0
is studied more in depth, and it is shown that then, one can take β1 = +∞: the
annealed and quenched critical points are equal, whatever β is. On the other hand,
it is shown in [39] that, when α > 0, the annealed and quenched critical points
differ when β is large enough (provided that the disorder is not bounded), so that
β1 < +∞.

Theorem 2.2 (Relevant disorder). If α > 1/2, or if α = 1/2 and
∑
n∈N

1
nϕ(n)2 =

+∞, then disorder is relevant: for every β > 0, one has that
• the critical points differ: hquec (β) > hac(β), and moreover

(9)

hquec (β)− hac(β)
β↓0
≍

{
β2 if E[τ1] < +∞ (possible only if α ≥ 1);

ψ(1/β) β
2α

2α−1 if 1/2 < α ≤ 1 , E[τ1] = +∞

for some (explicit) slowly varying function ψ(·). In the case α = 1/2, and if
limn→∞ ϕ(n) = c, then one has that − log

(
hquec (β)− hac(β)

)
∼ 1

2c
2β−2 as β ↓ 0.

• the phase transition is of order at least 2: for all β > 0 and v > 0, there exists
a constant Cβ,v, with limβ↓0,v↓0Cβ,v = 1 such that, for all u ≤ v,

(10) F(β, hquec (β) + u) ≤ Cβ,v
1 + α

2β2
u2.

This result has been proven in a series of papers [4, 17, 19, 28, 29, 31] in several
manners, the full necessary and sufficient condition for disorder relevance (together
with the sharp critical point shift when α = 1/2) being given only recently in [12].
In [12, 19, 28, 29], the authors estimate the fractional moment of the partition
function up to the correlation length by a change of measure argument, and then
use a coarse-graining procedure to glue these estimates together. A coarse-graining
argument is also in order in [4], whereas in [17], a large deviation/variational formula
approach is used. In [31, 15], the authors prove the smoothing inequality (10) via
a rare-stretch strategy, that we outline in Section 2.2: it stresses the influence of
rare regions in disorder relevance. For a more complete overview of the results and
techniques employed, we refer to [27]. We now make a few comments about these
results:

1. Theorem 2.2 shows that the critical points differ at all temperature, but also
gives the right order of the gap between the critical points in the weak coupling
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limit (i.e. when β ↓ 0). We mention that in [10], the case µ := E[τ1] < +∞ is
considered, and the exact weak coupling behavior is found: limβ↓0

1
β2 (h

que
c (β) −

hac(β)) =
α

2µ(1+α) . Note that it has a universal behavior, in the sense that the limit

does not depend on the law P of ω (provided that E[ω1] = 0 and E[ω2
1 ] = 1), or on

the fine details of the inter-arrival distribution of τ . It is natural to conjecture that,

also in the case 1/2 < α < 1, the limit limβ↓0
hque
c (β)−ha

c(β)

ψ(1/β) β
2α

2α−1

exists and is universal.

A work in progress [16] shows that this limit exists, and depends only on α.

2. We mention that, remarkably, in [17], the authors are able to give a variational
formula for the quenched critical point (and as a matter of fact, also for the annealed
one). They deduce from it that the map β 7→ hqc(β) − hac(β) is non-decreasing, so
that disorder relevance is monotone in β (this was also found in [29, Section 6]): in
particular, there exists a critical value βc ≥ 0 such that hquec (β) = hac(β) if β ≤ βc,
and hquec (β) > hac(β) if β > βc. One interprets βc as the transition point between
an irrelevant and relevant regime: in our words, disorder is relevant if one always
lies in the relevant regime, that is if βc = 0.

3. When disorder is relevant, one obtains that the order of the phase transition is
larger than the homogeneous one (at least for α > 1/2, νhom = max(1, 1/α) < 2, the
case α = 1/2 being marginal), but more precise results are lacking, and the mistery
concerning the order of the phase transition remains, even at the heuristic level.
However, recently, Derrida and Retaux [21] studied a toy, hierarchical, pinning
model, for which the quenched critical point is explicit, and they show that the
disordered phase transition has an essential singularity of the type e−c/

√
z, so that

νque = ∞. Even though their techniques rely strongly on the hierarchical structure,
making the model more tractable (i.e. with a tractable renormalization group), it
gives a first glimpse that relevant disorder may make the phase transition of infinite
order.

4. The marginal case α = 1/2, when the slowly varying function ϕ(·) is asymp-
totically equivalent to a constant (which is the case of a simple random walk in
dimension d = 1), has long been subject to debates among physicists, with two
different approaches and conjectures. In [24], the authors suggested that disorder
was irrelevant, but then in [20], it was predicted that disorder was relevant, with a

critical point shift was of order e−c/β
2

. The conjecture that, for α = 1/2, disorder
is relevant if and only if

∑
n∈N

1
nϕ(n)2 = +∞ has now been proven in a very recent

paper [12], in which the authors also obtain the sharp critical point shift e−c/β2

, the
constant c being explicit: for example, c = π/2 in the case of the simple random
walk in dimension d = 1.

Remark 2.3. The condition
∑

n∈N

1
nϕ(n)2 < +∞ appears naturally, since under

Assumption (1.1), it is equivalent to the transience of the intersection τ ∩ τ ′ of

two independent copies of the renewal. Indeed, E[|τ ∩ τ ′ ∩ [0, N ]|] =
∑N

n=1 P(n ∈

τ ∩ τ ′) =
∑N

n=1 P(n ∈ τ)2, and [22, Thm. B] gives that (if 0 < α < 1) P(n ∈

τ)
n→∞
∼ cαϕ(n)

−1n−(1−α) for some constant cα.
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The intersection τ ∩ τ ′ appears for example when one computes the second mo-
ment of the partition function. If h = hac(β), one gets

(11)

E[(Zβ,ωN,h)
2] = E

[
E

⊗2

[
exp

( N∑

n=1

(βωn−logM(β))(1{n∈τ}+1{n∈τ ′})

)
1{N∈τ} 1{N∈τ ′}

]]

= E
⊗2

[
exp

( N∑

n=1

(logM(2β)− 2 logM(β))1{n∈τ∩τ ′}

)
1{N∈τ∩τ ′}

]
,

which is the partition function of an homogeneous system, with underlying renewal
τ ∩ τ ′. Therefore, (11) diverges for all β > 0 if τ ∩ τ ′, and remains bounded when
N → ∞ if τ ∩ τ ′ is transient and provided that β is small, in which case there is a
chance that the quenched and annealed system are close.

There is another interesting manifestation of the transience/recurrence of τ ∩ τ ′.

Standing at the annealed critical point,
(
Zβ,ωN,ha

c(β)

)
N∈N

is a positive martingale: it

converges P-a.s. to some non-negative limit Zβ,ω∞ , and one has that Zβ,ω∞ > 0 P-a.s.
for small β if τ ∩ τ ′ is transient, and Zβ,ω∞ = 0 P-a.s. for all β > 0 if τ ∩ τ ′ is
recurrent, see [34, Prop. 1.6].

As far as path properties under P
β,ω
N,h are concerned, we have already seen that

one can extract the density of contacts from the free energy, and it is ∂hF(β, h) > 0
in the localized phase. In the delocalized phase, the answer is however not trivial.
For the homogeneous case, one knows that the number of contact remains bounded
if h < hc(0) [27, Ch. 7], whereas in the disordered case the situation is more subtle,
since there might be some stretches of unsual disorder driving the polymer to have
a growing number of contacts, even if h < hquec (β). One a priori only knows that
the number of contacts is o(N) in the delocalized regime, but [35] gives that the

number of contact under P
β,ω
N,h is O(logN) P-a.s. In [6], the authors show that the

last contact occurs at distance O(1) of the origin in probability (cf. Thm. 1.1),
but they exhibit some parameters (β large enough, some hac(β) < h < hquec (β)) for
which the number of contacts is exactly of order logN P-a.s.

Remark 2.4. If ω1 does not admit any exponential moment, E[eβω1 ] = +∞ for all
β > 0, we already mentioned that Fa(β, h) = +∞ for all β > 0, h ∈ R. The behavior
of the quenched system is however also degenerated: one is able to show that the
quenched critical point is hquec (β) = −∞, so that there is no phase transition
anymore, and one obtains exactly the behavior of the free energy when h → −∞,

F(β, h)
h→−∞
∼ β

∫
x≥|h|/β P(ω1 ≥ x)dx.

2.2. The rare-stretch strategy and the smoothing inequality. We now stress
the importance of rare regions in disorder relevance, by sketching the rare stretch
strategy. One divides the system in regions of size m, and denote Bi := {(i−1)m+
1, . . . , im}. Then, one defines the property Am = A(ω1, . . . , ωm) of being favorable
(definition which has to be made specific at some point). Then, the rare-stretch
strategy consists in imposing the renewal τ to visit only the blocks Bi for i ∈ I,
where I = {i ; (ωk)k∈Bi

∈ A} are the indices of the favorable blocks, see Figure 2:
this gives a non-trivial lower bound on the free energy.

Then, loosely speaking, the energetic gain (at the exponential level) on a favor-

able region is E[logZβ,ωm,h|Am]. On the other hand, since the first favorable region
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0 m 2m 3m 4m 5m · · · N = 11m

Figure 2. Overview of the rare-stretch strategy. Here, N =
11m, and the underlined regions are the ones identified as favor-
ables : I = {3, 7, 8}. Then, we impose the renewal trajectory to
visit only these regions.

is at distance ≈ mP(Am)−1, the entropic cost of aiming at a favorable block is
logK(mP(Am)−1) ≈ −(1 + α) log(P(Am)−1). Then, in a system constituted of

n blocks, one roughly has that logZnm ≥ |I ∩ [0, n]| ×
(
E[logZβ,ωm,h|Am] − (1 +

α) log(P(Am)−1)
)
, and when taking limn→∞

1
mn logZnm one obtains

(12) F(β, h) ≥ P(Am)

(
1

m
E[logZβ,ωm,h|Am]− (1 + α)

1

m
log
(
P(Am)−1

))
.

Then, the key is to define properly Am, in order to optimize the lower bound (12).
For example, to obtain the smoothing inequality, the idea is to set, for u ≥ 0,

the property Am =
{
(ω1, . . . , ωm) has empirical mean u/β

}
. Then, one naturally

has that limm→∞
1
mE[logZβ,ωm,h|Am] = F(β, h + u). Also, P(Am), the probability

that the (ωi)1≤i≤m are shifted by u/β, is approximately e
−Cβ,u

u2

2β2 m, cf. [15]. In
the end, if one takes h = hquec (β), then F(β, hquec (β)) = 0, and one obtains in (12),
and letting m go to infinity,

(13) 0 ≥ F(β, hquec (β) + u)− (1 + α)Cβ,u
u2

2β2
.

3. Case of a correlated disorder

Once that one has studied the case of an IID environment, it is natural to turn to
a correlated one, with correlations in ω decaying with the distance as a power law
|i−j|−a. In the context of the pinning model, Weinrib and Halperin prediction tells
that disorder should be irrelevant if νhom > 2min(1, a), that is if α < min(1, a)/2.

3.1. Gaussian type environment with long-range correlations.

3.1.1. The annealed model. Since the annealed model is in general not explicit,
the first step is to work with a stationary Gaussian environment, with correlation
function (ρk)k∈Z, for which the annealed partition function is, as mentioned in
Remark 1.7,

(14) EZβ,ωN,h = E

[
exp

(
h

N∑

n=1

1{n∈τ} +
β2

2

∑

1≤i,j≤N
ρj−i1{i∈τ}1{j∈τ}

)]
.

Here, the model is non degenerated if
∑

n∈Z
|ρn| < +∞ (recall condition 7), and it is

shown that the annealed free energy Fa(β, h) exists and if finite under that condition.

Remark that, if ρn
n→∞
∼ n−a for some a > 0, the condition

∑
n∈Z

|ρn| < +∞ implies
in particular that a > 1.
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This annealed model is highly non-trivial, and it has been studied in [8, 36] via
two different approaches. We collect here the main results.

Theorem 3.1. Even though the critical point is not explicit, whenever
∑

n∈Z
|ρn| <

+∞ (or a > 1), one has

(15) hac(β)
β↓0
∼ −

1

2
β2

(
1 + 2

∑

n∈N

ρnP(n ∈ τ)

)
.

If moreover
∑

n∈N
n|ρn| < +∞ (or a > 2), then the annealed critical behavior

is similar to that of the homogeneous system: for any β > 0, there exists some
constant cβ ∈ (0, 1) such that, for all u ∈ [0, 1], one has

(16) cβ F(0, u) ≤ F
a(β, hac(β) + u) ≤

1

cβ
F(0, u) .

3.1.2. Disorder relevance/irrelevance. We focus on the case ρn
n→∞
∼ n−a with

a > 1: according to the Weinrib-Halperin predictions, one expects the disorder
relevance/irrelevance picture to be similar to the IID case. Several partial results
are now available in this direction.

One obtains a smoothing inequality analogous to (10), showing disorder relevance
in terms of critical exponents when α > 1/2, as in the IID case.

Proposition 3.2 (Theorem 5.6, [8]). If ρn
n→∞
∼ n−a with a > 1 (which is coherent

with the fact that
∑
n∈N

|ρn| < +∞), one has that for any β > 0 and u ≥ 0,

(17) F(β, hquec (β) + u) ≤
1∑

n∈Z
ρn

×
1 + α

2β2
u2 .

The critical point shift when α > 1/2 or equality when α < 1/2 has not been
proven in full generality in the correlated context. The only result is when µ :=
E[τ1] < +∞, where, remarkably, one is able to get the asymptotic behavior of
the quenched critical point [13, Thm. 9], as in the IID case (see Remark 1. after
Theorem 2.2):

(18) lim
β↓0

1

β2
(hquec (β) − hac(β)) =

∑

n∈Z

ρn ×
α

2µ(1 + α)
.

Remark 3.3. In [14], the authors study the hierarchical counterpart of this Gauss-
ian correlated disordered pinning model. The hierarchical structure enables them
to control the annealed measure close to criticality, without any knowledge on the
annealed critical point: this trick works whenever a > 1, with the restriction that
a < 2min(1, α). In particular, their results suggest that the annealed critical behav-
ior should be different than the homogeneous one when a < 2min(1, α). In [14], the
authors show disorder irrelevance when α < 1/2, in terms of critical points and crit-
ical behavior, and are able to show the critical point shift if a > 1, a < 2min(1, α).
We collect the results in the hierarchical and non-hierarchical context in Figure 3.

3.1.3. Non-summable correlations. The most interesting part comes when one con-

siders non-summable correlations, or in Weinrib Halperin words, if ρn
n→∞
∼ n−a

with a < 1, when the Harris prediction should be modified, disorder relevant when
α > a/2. We already know that the annealed model is degenerated: Fa(β, h) = +∞
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Figure 3. Overview of the results obtained in the standard pin-

ning model with a Gaussian correlated environment with ρn
n→∞
∼

n−a, and of the results expected thanks to the comparison with its
hierarchical counterpart [14]. When a > 1, (17) shows that disor-
der is relevant for α > 1/2. The annealed and homogeneous critical
behavior are shown to be the same when a > 2 (Theorem 3.1), and
they are expected to be the same also when a > 2min(1, α), but
to differ when a > 1, a < 2min(1, α). The proof that disorder is
irrelevant if α < 1/2, a > 1 is done only in the hierarchical setting.
When a < 1 the annealed model is degenerated, and the disordered
system is always in the localized phase, see Section 3.1.3.

for all h ∈ R, β > 0. It is actually shown that the disordered model is also de-
generated, in the sense that hquec (β) = −∞: the system is always in the localized
phase.

Theorem 3.4 (Thm. 6, [8]). If ρn
n→∞
∼ n−a with a < 1, then there exist constants

c, C > 0 such that, for all β > 0 and h ≤ −1,

(19) F(β, h) ≥ c exp
(
−C β2/(1−a) |h|−a/(1−a)

)
.

This is due to the fact that rare favorable regions appear much more frequently,
because of stronger fluctuations of ω. One can turn this idea into a proof, thanks
to the rare-stretch strategy exposed in Section 2.2, see (12).

Indeed, if one defines Am := {ωi ≥ 2|h|/β ; for 1 ≤ i ≤ m}, so that βωn +

h ≥ |h| on favorable blocks, one obtains that E[logZβ,ωm,h|Am] ≥ logZhom
m,|h| which is

approximately mF(0, |h|) ≥ c′′|h|m if h ≤ −1. It is then just a matter of estimating
P(Am), the cost of shifting all ω’s so that they are all larger than 2|h|/β: Lemma

4.1 in [8] gives that P(Am) ≥ e
−c |h|2

β2 ma

if a < 1. This is the crucial point, and
stresses that rare regions are much more frequent than in the IID case. Plugged in
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(12), one gets that

(20) F(β, h) ≥ e
−c |h|2

β2 ma(
c′′|h| − c′

|h|2

β2
ma−1

)
.

Now one just need to optimize the choice of m, taking ma−1 = cst. β2/|h|, to
get (17).

3.2. The infinite disorder regime. As seen in previous sections, the effect of
rare regions on critical properties is crucial, and reveals the relevant character of
disorder. Rare regions effects has been studied in depth in the physical literature,
in particular via a renormalization group approach, see [41] for a review. If atypical
regions occur very frequently (as a matter of fact, are only subexponentially rare,
as it is the case in Theorem 3.4), their impact on the system blows up when taking
larger and larger length scales: one lies in the infinite disorder (or strong random-
ness) regime. This regime has been investigated for various systems, for which the
stong randomness renormalization group may in general be carried out explicitely,
and many exact can be derived, see [33] for a brief review.

In the context of pinning model, we have seen a first occurrence of infinite dis-
order in Theorem 3.4. The above discussion suggests that

a) the central quantity characterizing infinite disorder is not the two-point
correlation, but the frequency of occurrence of rare atypical regions;

b) whenever one lies in the infinite disorder regime, one can hope to obtain
exact results on the critical behavior of the system.

Point a) is made rigourous in [9] in the case of a binary disorder (ωi ∈ {−1, 1}),
but its results holds with more generality. Denote M := ess supω1 (M = +∞
if ω is not bounded). Then, for any neighborhood V of M, we define the event

A
(V )
m := {ωi ∈ V ; ∀1 ≤ i ≤ m}, of having a "V -favorable" region of size m: the

frequency of their occurrence is P(A
(V )
m ).

Definition 3.5. One is said to have infinite disorder if

(21) for any neighborhood V of M, one has lim inf
m→∞

−
1

m
logP(A(V )

m ) = 0 ,

which corresponds to having arbitrarily favorable regions which are only subexpo-
nentially rare.

Theorem 3.6 ([9]). If one has infinite disorder (i.e. (21) holds), then hquec (β) =
−βM for all β > 0.

Moreover, one has explicit lower and upper bounds on F(β, h), which do not
match in general, but give that disorder is relevant, whatever the value of α is: if
M < +∞, then for all β > 0

(22) F(β, hquec (β))
u↓0
= o(F(0, u)).

Let us make some comments.

1. The definition 3.5 of infinite disorder has also some consequences on the

annealed system. Indeed, one has that EZβ,ωN,h ≥ P(A
(V )
N )Zhom

N,βminV+h, so that,

when (21) holds, one gets that F
a(β, h) = F(0, βM + h): the annealed free energy



14 QUENTIN BERGER

is degenerated. This has to be related to (7), since, under (21), one has

lim inf
N→∞

1

N
logE

[
exp

(
β

N∑

n=1

ωn
)]

= βM for all β > 0.

It is then natural to ask whether the annealed and disordered models are non-
degenerated whenever (21) does not hold. This is proven in [9], under some addi-
tional assumption that correlations are non-increasing (in some specific sense, see
Assumption 2.2 in [9]), and we can conjecture that this is true in full generality.

2. One realizes that the Weinrib-Halperin criterion is not valid in our context,
for two reasons. First, the modification of the Harris criterion does not occur
when the correlations decay exponent is a < 1, but with another weaker condition,
(21). Secondly, when (21) holds, then, one does not have a relevance (α > a/2) /
irrelevance (α < a/2) picture anymore: disorder is relevant for all α ≥ 0.

To illustrate this remark, we mention the work [11], in which the authors provide
an example of a binary environment ω ∈ {−1, 0}, with long-range correlations

E[ωiωi+k]
k→∞
∼ k−a with a > 0, but such that P(ωi = 0, ∀1 ≤ i ≤ n)

n→∞
∼ n−(2+a).

The environement is constituted of alternating blocks of 0’s and −1’s, the lengths
of the blocks being independent random variables, with heavy-tail distribution of
exponent 2 + a, a > 0. Therefore, one has infinite disorder ((21) holds), whatever
the two point correlation decay exponent a > 0 is. One has then hc(β) = 0 for
all β > 0 (because of Theorem 3.6), and the sharp critical behavior of the free
energy is found: F(β, u) ≍ | log u|−a F(0, u)1+a. The order of the disordered phase
transition is therefore computed exactly,(1 + a)νhom > νpur, and remarkably, the
correct logarithmic corrections are also found. Disorder is then relevant whatever
a > 0 and α are, disproving Weinrib and Halperin’s prediction.

In the case of a Gaussian-based binary disorder (so that hquec (β) > −∞), with
correlation function ρn ∼ n−a, a < 1, we mention that [9] proves that νque = +∞,
whatever α is. According to the physics literature, one may hope to obtain the
exact behavior of the free energy whenever one lies in the infinite disorder regime,
see Conjecture 7.3.3. in [7].

4. Another perspective on disorder relevance: scaling limits

Another central question regarding disordered system is the one of the scaling
limit: one might hope to be able to construct a continuum model which is the
scaling limit of the system, in order to obtain for example universality results. We
consider in this section the case 0 < α < 1, and give only the ideas of the results,
for the sake of conciseness.

If we denote τ(N) the set 1
N τ ∩ [0, N ] ⊂ [0, 1], and bN

N→∞
∼ cαN

α/ϕ(N) with
cα = α/Γ(1 − α), one has that τ(N)/bN converges in distribution towards the
regenerative set of index α. For the pinning model, the idea is to take, as the size
N of the system goes to infinity, parameters βN and hN which scale properly with
the system in order to obtain a non-trivial limit.

A first piece of work focuses on the scaling limit of the homogeneous pinning
model, see [37]: there exists a critical window for the parameter h, for which the

scaling limit is non-trivial. If one takes h = ĥ/bN , one obtains that the set τ(N),
when distributed according to PN,h converges in law to some specific limit Bα,ĥ
which depends only on ĥ and α, see [37, Thm. 3.1] for a precise statement.
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The scaling limit of the disordered pinning model has been considered only re-
cently, in [23], when the disorder is IID. The authors then show that, if 1/2 < α < 1,

and setting β = β̂N1/2/bN , and h − hac(β) = ĥ/bN , then for all t ≥ 0, the parti-

tion function Zβ,ωN,h converges in distribution towards a non-trivial random variable

Z
β̂,W

t,ĥ
(which has an explicit dependence on the parameters), where W(·) denotes

the white noise on R: we refer to [23, Thm. 3.1] for a precise statement of the
result. Their idea is to perform a so-called polynomial chaos expansion of the

partition function Zβ,ωN,h, and prove the convergence of such an expansion.
The remarkable fact about this result is that one obtains a disordered continuum

limit if α > 1/2, and it is conjectured to be also the case when α = 1/2 and∑ 1
nϕ(n)2 < +∞: disorder survives when one takes the scaling limit, and it seems

to survive exactly when disorder is relevant. This idea of having a disordered scaling
limit is not directly related to disorder relevance as we discussed it in the previous
sections, but it provides a new approach to the question of the influence of disorder
on physical systems, and gives rise to new interesting continuum models.
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