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Observer-based relay feedback controller design for LTI systems

Zohra Kader, Christophe Fiter, Laurentiu Hetel and Lotfi Belkoura .

Abstract— This paper presents a design approach for
observer-based relay feedback controllers. A switching law
dependent on the estimation state is designed while using
a Luenberger observer. The stabilization problem leads to
qualitative conditions. A numerical example is provided to
assess the effectiveness of the developed method.

I. INTRODUCTION

Relays are largely studied in control theory since the fifties

[8], [27]. They are widely used in different application fields

and for different targets - see for instance [13], [18], [29],

[30]. Relay feedback controllers present some advantages

which make them a perfect substitute to continuous control

laws (see for instance [11], [14], [27], [28]). Indeed, they

can emulate locally the behavior of a linear static feedback,

and they are classified as simple and robust controller [7],

[14], [23]. However, the usefulness of relays for stabilization

and control does not exclude difficulties and some undesired

phenomena. From a theoretical point of view, systems with

relay feedback control can be seen as switched systems [17]

with a complex behaviour. The design of a relay feedback

controller is not an obvious problem even for the case of

linear systems. In the literature [15], [16], the presence of

sliding modes, limit cycles and chattering in relay feedback

systems is pointed out. These phenomena must not be

neglected and their study is theoretically challenging. In

particular, for systems with sliding modes the notion of

system’s solution must be reviewed to take into account

the dynamics obtained by fast switching [5], [9]. Frequency

domain methods [3] and LMI approaches [22], [23] have

also been used for relay feedback controller design. Recently,

a convex embedding formalism has been used in order to

design relay feedback controllers in [14] and [12]. However,

to the best of our knowledge, the existing results about relay

feedback systems consider the system’s states as perfectly

known. In many practical cases, the state of the system is not
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fully available for measurements. In this case an observer-

based controller must be designed.

Here, we design a relay feedback controller with an

observer-based switching law. Using a convex embedding

formalism [6], [14], it will be shown how we can design an

observer and switching hyperplane so as to ensure the local

exponential stability of the closed loop system. The research

here is also related with the output feedback sliding mode

control problem [21], [10] and output feedback design for

switched systems [25].

The paper is organized as follows: Section II gives the

system description and exposes the problem under study.

A qualitative stability result is proposed in Section III. In

Section IV, a numerical example is given to illustrate the

efficiency of the presented method. Finally, perspectives are

given in the last section together with the conclusion.

A. Notations

In this paper we use the notation R
+ to refer to the

interval [0,∞). The transpose of a matrix M is denoted by

MT and if the matrix is symmetric the symmetric elements

are denoted by ∗. The notation M � 0 (resp. M � 0)

means that the matrix M is positive (resp. negative) semi-

definite, and the notation M ≻ 0 (resp. M ≺ 0) means that

it is positive definite (resp. negative definite). The identity

matrix is denoted by I and both notations eigmin(M) and

eigmax(M) are used to refer to the minimum and maximum

eigenvalue respectively of a matrix M . For a positive definite

matrix P ∈ R
n×n and a positive scalar γ, we denote by

E(P, γ) the ellipsoid

E(P, γ) = {x ∈ R
n : xTPx ≤ γ}, (1)

and for all positive scalar r.

For a given set S, the notation Conv{S} indicates the

convex hull of the set, int{S} its interior and S its closure

and finally the closed convex hull of the set S will be noted

by Conv{S}. The minimum argument of a given function

f : S −→ R such that the set S ⊂ R is a finite set of

vectors is noted by

argmin f = {y ∈ S : f(y) ≤ f(z), ∀z ∈ S}. (2)

For a positive integer N , we denote by IN the set

{1, . . . , N}. By ∆N we denote the unit simplex

∆N =











α =







α1

...
αN






∈ R

N :

N
∑

i=1

αi = 1, αi ≥ 0, i ∈ IN











. (3)



II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

A. System description

Consider the linear system
{

ẋ = Ax+Bu,

y = Cx,
(4)

with x ∈ R
n, an input u which takes values in the set V =

{v1, . . . , vN} ⊂ R
m and an output y ∈ R

p. A ∈ R
n×n,

B ∈ R
n×m and C ∈ R

p×n are the matrices describing the

system.

In the sequel we assume that:

A-1 The pair (A,B) is stabilizable, which means that there

exists a matrix K such that the closed-loop matrix

Acl = A+BK is Hurwitz.

A-2 The set int{Conv{V}} is nonempty and the null vector

is contained inside (0 ∈ int{Conv{V}}).
A-3 The pair (A,C) is detectable, which means that there

exists a matrix L such that the matrix Ao = A+LC is

Hurwitz.

This paper deals with the stabilization of system (4) in

the case of an observer-based switching law. We consider a

controller given by

u(x̂) ∈ argmin
v∈V

x̂TΓv, (5)

where the matrix Γ ∈ R
n×m characterizes the switching

hyperplanes, and x̂ ∈ R
n is the estimated state which is

computed by the full-order Luenberger state observer [19],

[20]
{

˙̂x = Ax̂+Bu+ L(ŷ − y),
ŷ = Cx̂.

(6)

The formulation of the controller (5) encompasses the

classical sign function in the classical relay feedback. Note

that, if V = {v1, v2} = {−v, v} with v > 0 then, we get

u(x̂) = −vsign(Γx̂)

∈







v if Γx̂ < 0,
{−v, v} if Γx̂ = 0,
v if Γx̂ > 0.

(7)

Our objective is to provide conditions which guarantee the

existence of matrices Γ (which characterizes the switching

hyperplanes of the control law) and L (the observer gain)

such that the closed-loop system
[

ẋ
˙̂x

]

=

[

A 0
LC A+ LC

] [

x

x̂

]

+

[

B

B

]

u (8)

with the control law (5) is locally exponentially stable (this

problem will be mathematically formalized farther in II-C).

B. Solution concept

Using the augmented state

ξ =

[

x̂

e

]

=

[

0 I

−I I

] [

x

x̂

]

, (9)

where e = x̂− x is the estimation error, the interconnection

(4), (6) can be written as the augmented closed-loop system






ξ̇ =

[

A LC

0 A+ LC

]

ξ +

[

B

0

]

u(x̂),

y =
[

C C
]

ξ,

(10)

which leads to
{

ξ̇ = Ãξ + B̃ū(ξ) = X (ξ),
y =

[

C C
]

ξ,
(11)

where Ã =

[

A LC

0 A+ LC

]

, B̃ =

[

B

0

]

, and

ū(ξ) = u(
[

I 0
]

ξ) = u(x̂) ∈ argmin
v∈V

ξT
[

I

0

]

Γv. (12)

Note that this is a differential equation with a discontinu-

ous right hand side [9], [5], and thus we need an appropriate

formalism and specific tools to define the system’s solutions

and analyze their behaviour.

Therefore, to the discontinuous closed-loop system (11),

(12) we associate the differential inclusion

ξ̇ ∈ F [X ](ξ), (13)

with F [X ](ξ) the set-valued map which can be computed

from the differential equation with a discontinuous right hand

side using the construction given in [2], [5], [9], [24]

F [X ](ξ) =
⋂

δ>0

⋂

µ(S)=0

Conv{X (B(ξ, δ))\ S}, ξ ∈ R
2n, (14)

where Conv is the closed convex hull, B(ξ, δ) is the open ball

centered on ξ with radius δ, and S is a set of measure zero

with µ(S) its measure in the sense of Lebesgue. The closed-

loop system is then modeled by a differential inclusion for

which the notion of a solution was defined in [9], and recalled

hereafter.

Definition 1: (Filippov solution) Consider the closed-loop

system (11) and its associated differential inclusion (13). A

Filippov solution of the discontinuous system (11), (12) over

the interval [ta, tb] ⊂ [0,∞) is an absolutely continuous

mapping y(t) : [ta, tb] −→ R
2n satisfying:

ẏ(t) ∈ F [X ](y(t)), for almost all t ∈ [ta, tb], (15)

with F [X ](ξ) given by (14).

A differential inclusion has at least one solution if the set

valued map F [X ](ξ) is locally bounded and takes nonempty,

compact and convex values [1], [2], [5], [9] which is the case

of the differential inclusion (13) corresponding to the system

(11), (12).

C. Problem statement

Hereafter the notion of stability which will be used is

introduced and we mathematically formalize the problem

under study.

Definition 2: (local exponential stability) The differential

inclusion (13) is said to be locally exponentially stable with

a decay rate α (it is also said to be locally α-stable) to the

origin in a compact set Ω containing the origin if there exist



positive scalars c and α such that every possible solution ξ(t)
of (13) starting from any initial condition ξ(0) ∈ Ω verifies

‖ξ(t)‖ ≤ ce−αt ‖ξ(0)‖ . (16)

We recall that sufficient conditions for the local exponential

stability with decay rate α of a differential equation with

a discontinuous right hand side ξ̇ = X (ξ), with X locally

bounded, are given by the existence of a strict Lyapunov

function V , V (0) = 0, V (ξ) > 0, ∀ξ 6= 0, such that

sup
y∈F [X ](ξ)

∂V

∂ξ
y ≤ −2αV (ξ), ∀ξ ∈ D, (17)

for some positive scalar α and a domain D such that 0 ∈
int{D}.

The main problem under study is mathematically formu-

lated as follows:

Problem. Are there matrices Γ and L such that system

(11)-(12) is locally exponentially stable (when solutions are

understood in the sense of Filippov)?

III. OBSERVER-BASED CONTROL DESIGN

This section deals with the local exponential stabilization

of system (11), (12) and equivalently with the local expo-

nential stabilization of system (4), (6) by the switching law

(5). Assumptions A.1, A.2 and A.3 are used to prove that

there exist a switching matrix Γ and an observer gain L such

that the system is locally exponentially stable. The results are

given in the following.

Theorem 1: Assume that A.1, A.2 and A.3 hold. Then

there exist matrices Γ (characterizing the switching hyper-

planes) and L (the observer gain) such that system (11), (12)

(or equivalently the closed-loop system (4), (5), (6)) is locally

exponentially stable in an ellipsoidal domain containing the

origin.

Proof: Since system (4) is stabilizable, then there exist

a static gain K , a scalar αK > 0 and a symmetric positive

definite matrix P1 such that Acl = A+BK is Hurwitz and

satisfies

AT
clP1 + P1Acl � −2αKP1. (18)

Likewise, since the system is observable, then there exist an

observer gain L, a scalar αo > 0 and a symmetric positive

definite matrix P2 such that Ao = A + LC is Hurwitz and

satisfies

AT
o P2 + P2Ao � −2αoP2. (19)

We want to prove that the system (11), (12) is locally

exponentially stable in some domain D around the origin.

Let us consider the quadratic Lyapunov function

V (ξ) = ξTPξ (20)

with the 2n× 2n matrix

P =

[

P1 0
0 λP2

]

(21)

with a scaling term λ > 0. We want to show then that taking

the matrix Γ defined in (5) as

Γ = P1B =
[

I 0
]

PB̃ (22)

with B̃ defined in (12) and for some positive scalar α we

have

sup
y∈F [X ](ξ)

∂V

∂ξ
y ≤ −2αV (ξ), (23)

in a domain D ⊂ R
2n to be determined.

For each x̂ ∈ R
n we define the set of minimizers in which

the control (5) takes values. This corresponds to defining

minimizers in which the control (12) takes values such that

x̂TΓv = x̂TP1Bv = ξT
[

I

0

]

PB̃v. (24)

We define for any z ∈ R
2n the set of indexes I∗(z) such

that

I∗(z) =
{

i ∈ IN : zTPB̃(vj − vi) ≥ 0, ∀j ∈ IN

}

, (25)

with B̃ defined in (11). To I∗(z) we associate for all z ∈ R
2n

the set ∆∗(z) of vectors defined by:

∆∗(z) = {β ∈ ∆N : βi = 0, ∀i ∈ IN \ I∗(z)} . (26)

Using (25) and (26), the set valued map F [X ](ξ) in (13)

satisfies

F [X ](ξ) ⊆ F∗[X ](ξ) (27)

with
F∗[X ](ξ) = Conv

i∈I∗(ξ)
{Ãξ + B̃vi}

= {Ãξ + B̃v(β) : β ∈ ∆∗(ξ)},
(28)

with v(β) =
∑N

i=1 βivi.

Consider the gain K satisfying (18). From (27) and (28)

and using the fact that ∆∗(ξ) is compact, we have

sup
y∈F [X ](ξ)

∂V

∂ξ
y ≤ sup

y∈F∗[X ](ξ)

∂V

∂ξ
y

= sup
β∈∆∗(ξ)

{

∂V

∂ξ

{

Ãξ + B̃v(β)
}

}

= max
β∈∆∗(ξ)

{

∂V

∂ξ

{

Ãξ + B̃v(β)
}

}

.

(29)

Thus, in order to show (23), it is sufficient to prove that for

some scalar α > 0 we have

max
β∈∆∗(ξ)

{

∂V

∂ξ

{

Ãξ + B̃v(β)
}

}

≤ −2αV (ξ), (30)

in a domain D to be determined.

Note that, since Assumption A-2 holds, then there exists a

neighborhood of the origin E(P, γ) ⊂ R
2n, with γ > 0 such

that for all ξ =

[

x̂

e

]

∈ E(P, γ), we have

Kx̂ = Kξ ∈ Conv{V}, (31)

with K =
[

K 0
]

.

Therefore, for all ξ ∈ E(P, γ) there exist scalars αj(ξ),

j ∈ IN such that
∑N

j=1 αj(ξ) = 1 and

Kξ =

N
∑

j=1

αj(ξ)vj . (32)



From (25), for all i ∈ I∗(ξ) we have

ξTPB̃(vj − vi) ≥ 0, ∀j ∈ IN . (33)

Then, for any β ∈ ∆∗(ξ), we have

ξTPB̃(vj − v(β)) ≥ 0, ∀j ∈ IN . (34)

Then, considering (32), and multiplying the last inequalities

by αj(ξ) and summing the N elements we obtain

ξTPB̃(Kξ − v(β)) ≥ 0. (35)

Adding this to the left part of (30), it comes

max
β∈∆∗(ξ)

{

∂V

∂ξ

{

Ãξ + B̃v(β)
}

}

≤ max
β∈∆∗(ξ)

{

2ξTP{Ãξ + B̃v(β)}
}

+ 2ξTPB̃(Kξ − v(β))

= 2
∂V

∂ξ

[

Acl LC

0 Ao

]

ξ = 2
∂V

∂ξ
(Ãclξ) = 2ξTP (Ãclξ).

(36)

Thus, in order to show (23), it is sufficient to prove that

2ξTP (Ãclξ) ≤ −2αV (ξ), ∀ξ ∈ E(P, γ), (37)

which holds if

ÃT
clP + PÃcl � −2αP. (38)

Note that

ÃT
clP + PÃcl + 2αP =

[

A
T
clP1 + P1Acl + 2αP1 P1LC

(LC)TP1 λ(AT
o P2 + P2Ao + 2αP2)

]

.
(39)

Applying the Schur complement, the matrix (39) is nega-

tive if and only if

AT
o P2 + P2Ao + 2αP2 � 0 (40)

and

(AT
clP1 + P1Acl + 2αP1)

−
1

λ
P1LC[2αP2 + A

T
o P2 + P2Ao]

−1(LC)TP1

� 0.

(41)

Since (18) and (19) are satisfied, it is obvious that if we take

α ≤ min(αK , αo), and λ large enough both inequalities are

verified.

Thus, there exist Γ = P1B and an observer gain L such

that system (11), (12) (and equivalently (4), (5), (6)) is locally

α-stable with a domain of attraction E(P, γ).
Remark 1: Note that, the proof of Theorem 1 is construc-

tive in the sense that if the inequalities (18) and (19) are

satisfied then the closed loop system (11), (12) is locally

exponentially stable with an observer gain satisfying (19) and

a switching hyperplane given by Γ = P1B with P1 satisfying

(18). Inequalities (18) and (19) can be easily converted to

classical LMI design conditions [4]: there exist Q1 ≻ 0,

P2 ≻ 0, µ > 0, θ > 0 such that

Q1A
T +AQ1 − θBBT � −2αQ1, (42)

ATP2 + P2A− µCTC � −2αP2, (43)

with Q1 = P−1
1 . Then the matrix defining the switching

hyperplanes is given by Γ = Q−1
1 B, and the observer gain

is given by L = −µ
2CP−1

2 .

Remark 2: Some results in the literature extend the classi-

cal separation principle to the case of linear system stabilized

via an observer-based nonlinear controller [26]. However,

only the case of continuous nonlinear controllers is con-

sidered. This property is not verified in the case of relay

feedback controller. Note that conditions (42), (43) are inde-

pendent i.e. they do not have cross variables. Furthermore,

from (41) one may notice that when (42) and (43) are

satisfied there always exist λ and α such that (38) holds, that

is the closed-loop system (18), (19) is stable. This means that

the problems of observer synthesis and design of switching

surfaces can be addressed independently. It represents a

useful extension of the separation principle for systems with

relays.

IV. NUMERICAL EXAMPLE

Consider the linear system (4) with

u ∈ V = {−v, v} = {−5, 5}, (44)

and matrices

A =

[

−1.6 1.7
1.5 2

]

, B =

[

0
1

]

, and C =
[

1, 0
]

. (45)

The eigenvalues of A are −2.2, and 2.6 thus the open-loop

linear system is unstable. Considering a decay rate α = 5.5
an observer based relay feedback controller is designed to

stabilize the system to the origin.

After the implementation of the set of LMIs (42)-(43), we

find that they are feasible for

θ = 486.8634, Q1 =

[

1.4334 −4.7050
−4.7050 28.6001

]

,

µ = 348.4742, P2 =

[

37.3918 −5.4278
−5.4278 1.0098

]

.

(46)

Then, we compute the observer gain

L =

[

−21.2
−113.98

]

, (47)

and the matrix characterizing the switching hyperplanes

Γ =

[

0.25
0.076

]

. (48)

The computer simulations are performed for the initial

conditions x(0) =
[

1, 0.5
]T

, and x̂(0) =
[

0 0
]T

(ξT =
[

0 0 −1 −0.5
]T

) and the results are reported in Figures

1-5.
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Fig. 1. Real state x1 and its estimate x̂1
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Fig. 2. Real state x2 and its estimate x̂2
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Fig. 3. Observation errors e = x̂− x
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Fig. 4. x1 and x2 in the phase plot
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Fig. 5. x̂1 and x̂2 in the phase plot

As we can see from Figures 1 and 2, the states are exactly

estimated and they converge to the origin and remain therein.

From Figure 3, we can remark that the observation errors

converge to zero exponentially, and then the estimated states

converge to the real states. In Figure 5 the observer’s phase

portrait is presented together with the switching hyperplane

x̂TΓv = 0. We can observe that the trajectory initialized

at zero evolves until reaching the switching hyperplane and

it slides over it. The hyperplane xTΓv = 0 and the phase

plot of the closed loop system (11), (12) are presented in

Figure 4. Comparing Figure 4 and Figure 5, we can see

that the hyperplane xTΓv = 0 doesn’t coincide exactly with

the hyperplane x̂TΓv = 0. This is due to the fact that

x̂ converges to x when t tends to infinity. In simulations,

the trajectory of the closed loop system reaches first the

hyperplane x̂TΓv = 0 which tends to xTΓv = 0 as t goes

to infinity and slides over it until reaching the origin. Note

that, the quantitative estimation of the domain of attraction

is not given in this paper. The problem of estimation and the

optimization of the domain of attraction will be considered

in future works.

V. CONCLUSION

In this article, the problem of designing an observer-based

relay feedback controller for LTI systems is addressed. The

control takes values from a finite set of constant vectors

and the switching law depends on the estimated states.

Qualitative conditions for the stability of the coupled plant

are given. The assessment of the performance of the proposed

observer-based relay feedback control algorithm is based on

the simulation results. The problems of the estimation of the

domain of attraction and the study of robustness with respect

to perturbations will be studied in depth in future works.
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tisseur multi-niveaux via le principe d’invariance de lasalle,” in Sixième
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