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Observer-based relay feedback controller design for LTI systems

This paper presents a design approach for observer-based relay feedback controllers. A switching law dependent on the estimation state is designed while using a Luenberger observer. The stabilization problem leads to qualitative conditions. A numerical example is provided to assess the effectiveness of the developed method.

I. INTRODUCTION

Relays are largely studied in control theory since the fifties [START_REF] Eirmgard | Discontinuous automatic control[END_REF], [START_REF] Tsypkin | Relay control systems[END_REF]. They are widely used in different application fields and for different targets -see for instance [START_REF] Hang | Relay feedback auto-tuning of process controllers: a tutorial review[END_REF], [START_REF] Liu | Industrial process identification and control design: step-test and relay-experiment-based methods[END_REF], [START_REF] Wang | Relay feedback: analysis, identification and control[END_REF], [START_REF] Yu | Autotuning of PID controllers: A relay feedback approach[END_REF]. Relay feedback controllers present some advantages which make them a perfect substitute to continuous control laws (see for instance [START_REF] Gonc ¸alves | Global stability of relay feedback systems[END_REF], [START_REF] Hetel | Variable structure control with generalized relays: A simple convex optimization approach[END_REF], [START_REF] Tsypkin | Relay control systems[END_REF], [START_REF] Utkin | Sliding mode control in electromechanical systems[END_REF]). Indeed, they can emulate locally the behavior of a linear static feedback, and they are classified as simple and robust controller [START_REF] Edwards | Sliding mode control: theory and applications[END_REF], [START_REF] Hetel | Variable structure control with generalized relays: A simple convex optimization approach[END_REF], [START_REF]On practical stabilization of systems with delayed relay control[END_REF]. However, the usefulness of relays for stabilization and control does not exclude difficulties and some undesired phenomena. From a theoretical point of view, systems with relay feedback control can be seen as switched systems [START_REF] Liberzon | Switching in systems and control[END_REF] with a complex behaviour. The design of a relay feedback controller is not an obvious problem even for the case of linear systems. In the literature [START_REF] Johansson | Limit cycles with chattering in relay feedback systems[END_REF], [START_REF] Johansson | Fast switches in relay feedback systems[END_REF], the presence of sliding modes, limit cycles and chattering in relay feedback systems is pointed out. These phenomena must not be neglected and their study is theoretically challenging. In particular, for systems with sliding modes the notion of system's solution must be reviewed to take into account the dynamics obtained by fast switching [START_REF] Cortes | Discontinuous dynamical systems[END_REF], [START_REF] Filippov | Differential equations with discontinuous righthand sides: control systems[END_REF]. Frequency domain methods [START_REF] Boiko | Discontinuous control systems: frequency-domain analysis and design[END_REF] and LMI approaches [START_REF] Polyakov | Practical stabilization via relay delayed control[END_REF], [START_REF]On practical stabilization of systems with delayed relay control[END_REF] have also been used for relay feedback controller design. Recently, a convex embedding formalism has been used in order to design relay feedback controllers in [START_REF] Hetel | Variable structure control with generalized relays: A simple convex optimization approach[END_REF] and [START_REF] Govindaswamy | On relay control for discrete time systems using linear matrix inequalities[END_REF]. However, to the best of our knowledge, the existing results about relay feedback systems consider the system's states as perfectly known. In many practical cases, the state of the system is not Lotfi.Belkoura@univ-lille1.fr fully available for measurements. In this case an observerbased controller must be designed.

Here, we design a relay feedback controller with an observer-based switching law. Using a convex embedding formalism [START_REF] Delpoux | Parameter-dependent relay control: Application to pmsm[END_REF], [START_REF] Hetel | Variable structure control with generalized relays: A simple convex optimization approach[END_REF], it will be shown how we can design an observer and switching hyperplane so as to ensure the local exponential stability of the closed loop system. The research here is also related with the output feedback sliding mode control problem [START_REF] Perruquetti | Sliding mode control in engineering[END_REF], [START_REF] Floquet | An output feedback sliding mode control strategy for mimo systems of arbitrary relative degree[END_REF] and output feedback design for switched systems [START_REF] Riedinger | Observabilité d'un convertisseur multi-niveaux via le principe d'invariance de lasalle[END_REF].

The paper is organized as follows: Section II gives the system description and exposes the problem under study. A qualitative stability result is proposed in Section III. In Section IV, a numerical example is given to illustrate the efficiency of the presented method. Finally, perspectives are given in the last section together with the conclusion.

A. Notations

In this paper we use the notation R + to refer to the interval [0, ∞). The transpose of a matrix M is denoted by M T and if the matrix is symmetric the symmetric elements are denoted by * . The notation M 0 (resp. M 0) means that the matrix M is positive (resp. negative) semidefinite, and the notation M ≻ 0 (resp. M ≺ 0) means that it is positive definite (resp. negative definite). The identity matrix is denoted by I and both notations eig min (M ) and eig max (M ) are used to refer to the minimum and maximum eigenvalue respectively of a matrix M . For a positive definite matrix P ∈ R n×n and a positive scalar γ, we denote by E(P, γ) the ellipsoid

E(P, γ) = {x ∈ R n : x T P x ≤ γ}, (1) 
and for all positive scalar r.

For a given set S, the notation Conv{S} indicates the convex hull of the set, int{S} its interior and S its closure and finally the closed convex hull of the set S will be noted by Conv{S}. The minimum argument of a given function f : S -→ R such that the set S ⊂ R is a finite set of vectors is noted by

arg min f = {y ∈ S : f (y) ≤ f (z), ∀z ∈ S}. (2) 
For a positive integer N , we denote by I N the set {1, . . . , N }. By ∆ N we denote the unit simplex

∆N =      α =    α1 . . . αN    ∈ R N : N i=1 αi = 1, αi ≥ 0, i ∈ IN      . (3) 

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

A. System description

Consider the linear system

ẋ = Ax + Bu, y = Cx, (4) 
with x ∈ R n , an input u which takes values in the set V = {v 1 , . . . , v N } ⊂ R m and an output y ∈ R p . A ∈ R n×n , B ∈ R n×m and C ∈ R p×n are the matrices describing the system.

In the sequel we assume that: A-1 The pair (A, B) is stabilizable, which means that there exists a matrix K such that the closed-loop matrix

A cl = A + BK is Hurwitz. A-2
The set int{Conv{V}} is nonempty and the null vector is contained inside (0 ∈ int{Conv{V}}). A-3 The pair (A, C) is detectable, which means that there exists a matrix L such that the matrix A o = A + LC is Hurwitz. This paper deals with the stabilization of system (4) in the case of an observer-based switching law. We consider a controller given by

u(x) ∈ arg min v∈V xT Γv, (5) 
where the matrix Γ ∈ R n×m characterizes the switching hyperplanes, and x ∈ R n is the estimated state which is computed by the full-order Luenberger state observer [START_REF] Luenberger | Observers for multivariable systems[END_REF], [START_REF] Luenberger | Observing the state of a linear system[END_REF] 

ẋ = Ax + Bu + L(ŷ -y), ŷ = C x. (6) 
The formulation of the controller (5) encompasses the classical sign function in the classical relay feedback. Note that, if

V = {v 1 , v 2 } = {-v, v} with v > 0 then, we get u(x) = -vsign(Γx) ∈    v if Γx < 0, {-v, v} if Γx = 0, v if Γx > 0. ( 7 
)
Our objective is to provide conditions which guarantee the existence of matrices Γ (which characterizes the switching hyperplanes of the control law) and L (the observer gain) such that the closed-loop system

ẋ ẋ = A 0 LC A + LC x x + B B u (8) 
with the control law ( 5) is locally exponentially stable (this problem will be mathematically formalized farther in II-C).

B. Solution concept

Using the augmented state

ξ = x e = 0 I -I I x x , (9) 
where e = xx is the estimation error, the interconnection ( 4), ( 6) can be written as the augmented closed-loop system

   ξ = A LC 0 A + LC ξ + B 0 u(x), y = C C ξ, (10) 
which leads to

ξ = Ãξ + B ū(ξ) = X (ξ), y = C C ξ, (11) 
where

à = A LC 0 A + LC , B = B 0 , and 
ū(ξ) = u( I 0 ξ) = u(x) ∈ arg min v∈V ξ T I 0 Γv. ( 12 
)
Note that this is a differential equation with a discontinuous right hand side [START_REF] Filippov | Differential equations with discontinuous righthand sides: control systems[END_REF], [START_REF] Cortes | Discontinuous dynamical systems[END_REF], and thus we need an appropriate formalism and specific tools to define the system's solutions and analyze their behaviour.

Therefore, to the discontinuous closed-loop system ( 11), [START_REF] Govindaswamy | On relay control for discrete time systems using linear matrix inequalities[END_REF] we associate the differential inclusion

ξ ∈ F [X ](ξ), (13) 
with F [X ](ξ) the set-valued map which can be computed from the differential equation with a discontinuous right hand side using the construction given in [START_REF] Bacciotti | Liapunov functions and stability in control theory[END_REF], [START_REF] Cortes | Discontinuous dynamical systems[END_REF], [START_REF] Filippov | Differential equations with discontinuous righthand sides: control systems[END_REF], [START_REF] Poznyak | Attractive Ellipsoids in Robust Control[END_REF] F

[X ](ξ) = δ>0 µ(S)=0 Conv{X (B(ξ, δ))\ S}, ξ ∈ R 2n , ( 14 
)
where Conv is the closed convex hull, B(ξ, δ) is the open ball centered on ξ with radius δ, and S is a set of measure zero with µ(S) its measure in the sense of Lebesgue. The closedloop system is then modeled by a differential inclusion for which the notion of a solution was defined in [START_REF] Filippov | Differential equations with discontinuous righthand sides: control systems[END_REF], and recalled hereafter.

Definition 1: (Filippov solution) Consider the closed-loop system [START_REF] Gonc ¸alves | Global stability of relay feedback systems[END_REF] and its associated differential inclusion [START_REF] Hang | Relay feedback auto-tuning of process controllers: a tutorial review[END_REF]. A Filippov solution of the discontinuous system [START_REF] Gonc ¸alves | Global stability of relay feedback systems[END_REF], [START_REF] Govindaswamy | On relay control for discrete time systems using linear matrix inequalities[END_REF] [START_REF] Johansson | Limit cycles with chattering in relay feedback systems[END_REF] with F [X ](ξ) given by [START_REF] Hetel | Variable structure control with generalized relays: A simple convex optimization approach[END_REF].

over the interval [t a , t b ] ⊂ [0, ∞) is an absolutely continuous mapping y(t) : [t a , t b ] -→ R 2n satisfying: ẏ(t) ∈ F [X ](y(t)), for almost all t ∈ [t a , t b ],
A differential inclusion has at least one solution if the set valued map F [X ](ξ) is locally bounded and takes nonempty, compact and convex values [START_REF] Aubin | Differential inclusions: set-valued maps and viability theory[END_REF], [START_REF] Bacciotti | Liapunov functions and stability in control theory[END_REF], [START_REF] Cortes | Discontinuous dynamical systems[END_REF], [START_REF] Filippov | Differential equations with discontinuous righthand sides: control systems[END_REF] which is the case of the differential inclusion (13) corresponding to the system (11), [START_REF] Govindaswamy | On relay control for discrete time systems using linear matrix inequalities[END_REF].

C. Problem statement

Hereafter the notion of stability which will be used is introduced and we mathematically formalize the problem under study.

Definition 2: (local exponential stability) The differential inclusion ( 13) is said to be locally exponentially stable with a decay rate α (it is also said to be locally α-stable) to the origin in a compact set Ω containing the origin if there exist positive scalars c and α such that every possible solution ξ(t) of ( 13) starting from any initial condition ξ(0) ∈ Ω verifies ξ(t) ≤ ce -αt ξ(0) .

(16) We recall that sufficient conditions for the local exponential stability with decay rate α of a differential equation with a discontinuous right hand side ξ = X (ξ), with X locally bounded, are given by the existence of a strict Lyapunov function V , V (0) = 0, V (ξ) > 0, ∀ξ = 0, such that

sup y∈F [X ](ξ) ∂V ∂ξ y ≤ -2αV (ξ), ∀ξ ∈ D, (17) 
for some positive scalar α and a domain D such that 0 ∈ int{D}.

The main problem under study is mathematically formulated as follows:

Problem. Are there matrices Γ and L such that system (11)-( 12) is locally exponentially stable (when solutions are understood in the sense of Filippov)?

III. OBSERVER-BASED CONTROL DESIGN

This section deals with the local exponential stabilization of system [START_REF] Gonc ¸alves | Global stability of relay feedback systems[END_REF], [START_REF] Govindaswamy | On relay control for discrete time systems using linear matrix inequalities[END_REF] and equivalently with the local exponential stabilization of system ( 4), ( 6) by the switching law [START_REF] Cortes | Discontinuous dynamical systems[END_REF]. Assumptions A.1, A.2 and A.3 are used to prove that there exist a switching matrix Γ and an observer gain L such that the system is locally exponentially stable. The results are given in the following.

Theorem 1: Assume that A.1, A.2 and A.3 hold. Then there exist matrices Γ (characterizing the switching hyperplanes) and L (the observer gain) such that system [START_REF] Gonc ¸alves | Global stability of relay feedback systems[END_REF], [START_REF] Govindaswamy | On relay control for discrete time systems using linear matrix inequalities[END_REF] (or equivalently the closed-loop system (4), ( 5), ( 6)) is locally exponentially stable in an ellipsoidal domain containing the origin.

Proof: Since system (4) is stabilizable, then there exist a static gain K, a scalar α K > 0 and a symmetric positive definite matrix P 1 such that A cl = A + BK is Hurwitz and satisfies

A T cl P 1 + P 1 A cl -2α K P 1 . (18) 
Likewise, since the system is observable, then there exist an observer gain L, a scalar α o > 0 and a symmetric positive definite matrix P 2 such that A o = A + LC is Hurwitz and satisfies

A T o P 2 + P 2 A o -2α o P 2 . ( 19 
)
We want to prove that the system (11), ( 12) is locally exponentially stable in some domain D around the origin. Let us consider the quadratic Lyapunov function

V (ξ) = ξ T P ξ (20) 
with the 2n × 2n matrix

P = P 1 0 0 λP 2 (21) 
with a scaling term λ > 0. We want to show then that taking the matrix Γ defined in (5) as

Γ = P 1 B = I 0 P B ( 22 
)
with B defined in [START_REF] Govindaswamy | On relay control for discrete time systems using linear matrix inequalities[END_REF] and for some positive scalar α we have sup

y∈F [X ](ξ) ∂V ∂ξ y ≤ -2αV (ξ), (23) 
in a domain D ⊂ R 2n to be determined.

For each x ∈ R n we define the set of minimizers in which the control [START_REF] Cortes | Discontinuous dynamical systems[END_REF] takes values. This corresponds to defining minimizers in which the control [START_REF] Govindaswamy | On relay control for discrete time systems using linear matrix inequalities[END_REF] takes values such that

xT Γv = xT P 1 Bv = ξ T I 0 P Bv. ( 24 
)
We define for any z ∈ R 2n the set of indexes I * (z) such that

I * (z) = i ∈ I N : z T P B(v j -v i ) ≥ 0, ∀j ∈ I N , ( 25 
)
with B defined in [START_REF] Gonc ¸alves | Global stability of relay feedback systems[END_REF]. To I * (z) we associate for all z ∈ R 2n the set ∆ * (z) of vectors defined by:

∆ * (z) = {β ∈ ∆ N : β i = 0, ∀i ∈ I N \ I * (z)} . ( 26 
)
Using ( 25) and ( 26), the set valued map

F [X ](ξ) in (13) satisfies F [X ](ξ) ⊆ F * [X ](ξ) (27) 
with

F * [X ](ξ) = Conv i∈I * (ξ) { Ãξ + Bv i } = { Ãξ + Bv(β) : β ∈ ∆ * (ξ)}, (28) 
with v(β) = N i=1 β i v i . Consider the gain K satisfying [START_REF] Liu | Industrial process identification and control design: step-test and relay-experiment-based methods[END_REF]. From ( 27) and ( 28) and using the fact that ∆ * (ξ) is compact, we have

sup y∈F [X ](ξ) ∂V ∂ξ y ≤ sup y∈F * [X ](ξ) ∂V ∂ξ y = sup β∈∆ * (ξ) ∂V ∂ξ Ãξ + Bv(β) = max β∈∆ * (ξ) ∂V ∂ξ Ãξ + Bv(β) . (29) 
Thus, in order to show [START_REF]On practical stabilization of systems with delayed relay control[END_REF], it is sufficient to prove that for some scalar α > 0 we have

max β∈∆ * (ξ) ∂V ∂ξ Ãξ + Bv(β) ≤ -2αV (ξ), (30) 
in a domain D to be determined. Note that, since Assumption A-2 holds, then there exists a neighborhood of the origin E(P, γ) ⊂ R 2n , with γ > 0 such that for all ξ = x e ∈ E(P, γ), we have

K x = Kξ ∈ Conv{V}, (31) 
with K = K 0 . Therefore, for all ξ ∈ E(P, γ) there exist scalars α j (ξ), j ∈ I N such that N j=1 α j (ξ) = 1 and

Kξ = N j=1 α j (ξ)v j . ( 32 
)
From ( 25), for all i ∈ I * (ξ) we have

ξ T P B(v j -v i ) ≥ 0, ∀j ∈ I N . (33) 
Then, for any β ∈ ∆ * (ξ), we have

ξ T P B(v j -v(β)) ≥ 0, ∀j ∈ I N . (34) 
Then, considering (32), and multiplying the last inequalities by α j (ξ) and summing the N elements we obtain

ξ T P B(Kξ -v(β)) ≥ 0. (35) 
Adding this to the left part of (30), it comes

max β∈∆ * (ξ) ∂V ∂ξ Ãξ + Bv(β) ≤ max β∈∆ * (ξ) 2ξ T P { Ãξ + Bv(β)} + 2ξ T P B(Kξ -v(β)) = 2 ∂V ∂ξ A cl LC 0 A o ξ = 2 ∂V ∂ξ ( Ãcl ξ) = 2ξ T P ( Ãcl ξ).
(36) Thus, in order to show [START_REF]On practical stabilization of systems with delayed relay control[END_REF], it is sufficient to prove that

2ξ T P ( Ãcl ξ) ≤ -2αV (ξ), ∀ξ ∈ E(P, γ), (37) 
which holds if

ÃT cl P + P Ãcl -2αP. (38) 
Note that

ÃT cl P + P Ãcl + 2αP = A T cl P1 + P1A cl + 2αP1 P1LC (LC) T P1 λ(A T o P2 + P2Ao + 2αP2) . (39) 
Applying the Schur complement, the matrix (39) is negative if and only if

A T o P 2 + P 2 A o + 2αP 2 0 (40) 
and

(A T cl P1 + P1A cl + 2αP1) - 1 λ P1LC[2αP2 + A T o P2 + P2Ao] -1 (LC) T P1 0. (41) 
Since ( 18) and ( 19) are satisfied, it is obvious that if we take α ≤ min(α K , α o ), and λ large enough both inequalities are verified. Thus, there exist Γ = P 1 B and an observer gain L such that system [START_REF] Gonc ¸alves | Global stability of relay feedback systems[END_REF], [START_REF] Govindaswamy | On relay control for discrete time systems using linear matrix inequalities[END_REF] (and equivalently (4), ( 5), ( 6)) is locally α-stable with a domain of attraction E(P, γ).

Remark 1: Note that, the proof of Theorem 1 is constructive in the sense that if the inequalities ( 18) and ( 19) are satisfied then the closed loop system (11), ( 12) is locally exponentially stable with an observer gain satisfying [START_REF] Luenberger | Observers for multivariable systems[END_REF] and a switching hyperplane given by Γ = P 1 B with P 1 satisfying [START_REF] Liu | Industrial process identification and control design: step-test and relay-experiment-based methods[END_REF]. Inequalities ( 18) and ( 19) can be easily converted to classical LMI design conditions [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]: there exist Q 1 ≻ 0, P 2 ≻ 0, µ > 0, θ > 0 such that

Q 1 A T + AQ 1 -θBB T -2αQ 1 , (42) 
A T P 2 + P 2 A -µC T C -2αP 2 , (43) 
with Q 1 = P -1 1 . Then the matrix defining the switching hyperplanes is given by Γ = Q -1 1 B, and the observer gain is given by L = -µ 2 CP -1 2 . Remark 2: Some results in the literature extend the classical separation principle to the case of linear system stabilized via an observer-based nonlinear controller [START_REF] Barmish | Robustness of luenberger observers: Linear systems stabilized via non-linear control[END_REF]. However, only the case of continuous nonlinear controllers is considered. This property is not verified in the case of relay feedback controller. Note that conditions (42), (43) are independent i.e. they do not have cross variables. Furthermore, from (41) one may notice that when (42) and (43) are satisfied there always exist λ and α such that (38) holds, that is the closed-loop system [START_REF] Liu | Industrial process identification and control design: step-test and relay-experiment-based methods[END_REF], [START_REF] Luenberger | Observers for multivariable systems[END_REF] is stable. This means that the problems of observer synthesis and design of switching surfaces can be addressed independently. It represents a useful extension of the separation principle for systems with relays.

IV. NUMERICAL EXAMPLE Consider the linear system (4) with 

u ∈ V = {-v, v} = {-5, 5}, (44) and matrices 
The eigenvalues of A are -2. 

The computer simulations are performed for the initial conditions x(0) = 1, 0.5

T , and x(0) = 0 0 T (ξ T = 0 0 -1 -0.5 T ) and the results are reported in Figures 12345. As we can see from Figures 1 and2, the states are exactly estimated and they converge to the origin and remain therein. From Figure 3, we can remark that the observation errors converge to zero exponentially, and then the estimated states converge to the real states. In Figure 5 the observer's phase portrait is presented together with the switching hyperplane xT Γv = 0. We can observe that the trajectory initialized at zero evolves until reaching the switching hyperplane and it slides over it. The hyperplane x T Γv = 0 and the phase plot of the closed loop system [START_REF] Gonc ¸alves | Global stability of relay feedback systems[END_REF], [START_REF] Govindaswamy | On relay control for discrete time systems using linear matrix inequalities[END_REF] are presented in Figure 4. Comparing Figure 4 and Figure 5, we can see that the hyperplane x T Γv = 0 doesn't coincide exactly with the hyperplane xT Γv = 0. This is due to the fact that x converges to x when t tends to infinity. In simulations, the trajectory of the closed loop system reaches first the hyperplane xT Γv = 0 which tends to x T Γv = 0 as t goes to infinity and slides over it until reaching the origin. Note that, the quantitative estimation of the domain of attraction is not given in this paper. The problem of estimation and the optimization of the domain of attraction will be considered in future works.

V. CONCLUSION

In this article, the problem of designing an observer-based relay feedback controller for LTI systems is addressed. The control takes values from a finite set of constant vectors and the switching law depends on the estimated states. Qualitative conditions for the stability of the coupled plant are given. The assessment of the performance of the proposed observer-based relay feedback control algorithm is based on the simulation results. The problems of the estimation of the domain of attraction and the study of robustness with respect to perturbations will be studied in depth in future works.
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 12345 Fig. 1. Real state x 1 and its estimate x1
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