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Abstract— This paper investigates the stabilization of Linear
Time Invariant (LTI) systems by relay feedback. Generally
the states measurements are subject to perturbations and
noises. However, their effect is often ignored in the design
of relay feedback. Here a state-dependent switching law is
designed in a robust manner, while taking into account the
perturbed states. The stability analysis of the closed loop system
leads to qualitative conditions. Then, an LMI reformulation
of the stability conditions is proposed to allow a numerical
implementation of the results. Computer simulations show the
efficiency of the developed method over a numerical example.

I. INTRODUCTION

Since the ’50s, relay feedback systems have been widely

studied in control theory. Due to their simplicity and robust-

ness properties, relays represent an interesting substitute to

continuous control laws (see for instance [23], [24], [13],

[8], [11]). Relays are used for different targets (control,

controllers auto-tuning, identification, etc.) and in different

application fields (chemistry, electromechanics, biology, etc.)

- see for instance [25], [27], [3], [17], [10], [5], [26]. How-

ever, the usefulness of relays for stabilization and control

does not exclude difficulties and some undesired phenomena.

From a theoretical point of view, systems with relay feedback

control can be seen as switched systems [16] with a complex

behavior. The design of a relay feedback controller is not

an obvious problem even for the case of linear systems. In

the works [15], [14], the presence of sliding modes, limit

cycles and chattering in relay feedback systems are pointed

out. These phenomena must not be neglected and their

study is theoretically challenging. In particular, for systems

with sliding modes the notion of system’s solution must be

reviewed to take into account the dynamics obtained by fast

switching [7], [6]. Frequency domain methods [4] and LMI

approaches [19], [20] have also been used for design relay

feedback design. Recently, a convex embedding formalism
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has been used in order to design relay feedback controllers

in [11] and [9]. However, to the best of our knowledge,

the existing results about relay feedback systems consider

the system’s states as perfectly known. In real systems, the

system’s states are generally affected by perturbations and

measurement noises.

In this paper we consider the problem of stabilization

by a perturbed relay feedback. The value of the state mea-

surements used in the relay is assumed to be affected by

a bounded disturbance. The result is formulated as LMI

conditions to allow a simple numerical implementation.

The paper is organized as follows: Section II gives the

system description and exposes the problem under study.

A qualitative stability result is proposed in Section III. In

Section IV, LMI conditions are expressed. The proposed

conditions provide estimates of the domain of attraction and

of the chattering ball. In Section V, a numerical example

is given to illustrate the efficiency and the limits of the

presented method. Finally, perspectives are given in the last

section together with the conclusion.

A. Notations

In this paper we use the notation R
+ to refer to the

interval [0,∞). The transpose of a matrix M is denoted by

MT and if the matrix is symmetric the symmetric elements

are denoted by ∗. The notation M � 0 (resp. M � 0)

means that the matrix M is positive (resp. negative) semi-

definite, and the notation M ≻ 0 (resp. M ≺ 0) means that

it is positive definite (resp. negative definite). The identity

matrix is denoted by I and both notations eigmin(M) and

eigmax(M) are used to refer to the minimum and maximum

eigenvalue respectively of a matrix M . For a positive definite

matrix P ∈ R
n×n and a positive scalar γ, we denote by

E(P, γ) the ellipsoid

E(P, γ) = {x ∈ R
n : xTPx ≤ γ}, (1)

and for all positive scalar r, we denote by B(0, r) the ball

B(0, r) = E(I, r) = {x ∈ R
n : xTx ≤ r}. (2)

For a given set S, the notation Conv{S} indicates the

convex hull of the set, int{S} its interior and S its closure

and finally the closed convex hull of the set S will be noted

by Conv{S}. The minimum argument of a given function

f : S −→ R such that the set S ⊂ R is a finite set of

vectors is noted by

argmin f = {y ∈ S : f(y) ≤ f(z), ∀z ∈ S}. (3)



For a positive integer N , we denote by IN the set

{1, . . . , N}. We use ‖.‖ to denote the Euclidean norm for

a vector and the associated norm for a matrix. By ∆N we

denote the unit simplex

∆N =

{

α = (α1, . . . , αN )T ∈ R
n :

N
∑

i=1

αi = 1, αi ≥ 0, i ∈ IN

}

.

(4)

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

A. System description

Consider the linear system

ẋ = Ax+Bu, (5)

with x ∈ R
n and an input u which takes only values in the

set V = {v1, . . . , vN} ⊂ R
m. A ∈ R

n×n, and B ∈ R
n×m

are the matrices describing the system.

In the sequel we assume that:

A-1 The pair (A,B) is stabilizable, which means that there

exists a matrix K such that the closed-loop matrix

Acl = A+BK is Hurwitz.

A-2 The set Conv{V} is nonempty, and the null vector is

contained in its interior (0 ∈ int{Conv{V}}).
This paper deals with the stabilization of system (5) in the

case of a disturbed switching law. We consider a controller

given by

u(x+ e(t)) ∈ argmin
v∈V

(x+ e(t))TΓv, (6)

where e is an exogenous unknown disturbance considered as

a measurable and bounded function from R
+ to R

n satisfying

e(t)T e(t) ≤ ē, (7)

with ē its upper bound. The matrix Γ ∈ R
n×m characterizes

the switching hyperplanes. The formulation of the controller

(6) encompasses the classical sign function in the classical

relay feedback. Therefore, if V = {v1, v2} = {−v, v} with

v > 0 then we get

u(x+ e(t)) = −vsign(ΓT (x+ e(t))

∈







v if ΓT (x+ e(t)) < 0,
{−v, v} if ΓT (x + e(t)) = 0,
v if ΓT (x+ e(t)) > 0.

(8)

It may equally be interpreted as networked control systems

with quantization [18]. The closed loop system is modeled

by a differential equation with a discontinuous right hand-

side. Consequently, to study the stability of the system we

will consider the Filippov solutions of differential inclusions.

The definitions of differential inclusions and their solutions

are given below and used in the sequel. They can be found

in [7], [1], [6], [2].

B. Solution concept

The interconnection (5), (6), (7) is the closed-loop system

modeled by a discontinuous differential equation of the form

ẋ = Ax+Bũ(t, x) = f(t, x), (9)

where ũ(t, x) = u(x+e(t)). Therefore, to the discontinuous

closed-loop system (9) we associate the differential inclusion

ẋ ∈ F(t, x), (10)

with F(t, x) the set-valued map which can be computed from

the differential equation with a discontinuous right hand side

using the construction given in [7], [2], [6], [21] and the

references therein such that

F(t, x) =
⋂

δ>0

⋂

µ(S)=0

Conv{f(t,B(x, δ))\ S}, x ∈ R
n
, t ∈ R

+,

(11)

where Conv is the closed convex hull, B(x, δ) is the open ball

centered on x with radius δ, and S is a set of measure zero

with µ(S) its measure in the sens of Lebesgue. The closed-

loop system is then modeled by a differential inclusion for

which the notion of a solution was defined in [7], and

remembered hereafter.

Definition 1: (Filippov solution) Consider the closed-loop

system (9) and its associated differential inclusion (10). A

Filippov solution of the discontinuous systems (5), (6) over

the interval [ta, tb] ⊂ [0,∞) is an absolutely continuous

mapping y : [ta, tb] −→ R
n satisfying:

ẏ(t) ∈ F(t, y(t)), for almost all t ∈ [ta, tb], (12)

with F(t, x) given by (11).

A differential inclusion has at least one solution if the set

valued map F(t, x) is locally bounded and takes nonempty,

compact and convex values [6], [7], [2], [1]. We adapt as

follows the concept of Rǫ-stability from [20] to the context

under study.

Definition 2: (Rǫ-stability) Consider positive scalars R

and ǫ. Assume that there exists a matrix P = PT ≻ 0 such

that for all Filippov solutions x(.) with x(0) ∈ E(P,R), the

value of the state x(t) converges to E(P, ǫ) as t goes to

infinity. Then system (5), (6) is said to be Rǫ-stable from

E(P,R) to E(P, ǫ).
III. CONTROL DESIGN

This section deals with the Rǫ-stabilization of system (5),

(6), (7). Assumptions A.1 and A.2 are used to prove that

there exists a switching matrix Γ such that the system is

Rǫ-stable. The results are given in the following.

Theorem 1: Assume that A.1 and A.2 hold. Then there

exist positive scalars R and ǫ and matrices P = PT ≻ 0
and Γ = PB such that the system (5) with control (6) is

Rǫ-stable from E(P,R) to E(P, ǫ) for a perturbation (7) with

a sufficiently small bound ē.

Proof: Since the pair (A,B) is stabilizable then there

exists a gain K such that Acl = A + BK is Hurwitz.

Furthermore, for all δ > 0 there exists a matrix P = PT ≻ 0
satisfying

AT
clP + PAcl � −2δP. (13)



Consider the closed-loop system (5), (6), (7) and the associ-

ated differential inclusion (10).

We want to prove that for Γ = PB there exists ē such

that if eT e ≤ ē then

sup
y∈F(t,x)

∂V

∂x
y ≤ −2αV (x), (14)

for some α > 0 in a domain D ⊂ R
n which will be

determined.

We define for any z ∈ R
n the set of index I∗(z) such that

I∗(z) = {i ∈ IN : zTPB(vj − vi) ≥ 0, ∀j ∈ IN}. (15)

To I∗(z) we associate for all z ∈ R
n the set ∆∗(z) of vectors

defined by

∆∗(z) = {β ∈ ∆N : βi = 0, ∀i ∈ IN \ I∗(z)}. (16)

Using (15) and (16), the set valued map F(t, x) in (11)

satisfies

F(t, x) ⊆ F∗(t, x), (17)

with

F∗(t, x) = Conv
i∈I∗(x̄e(t))

{Ax+Bvi}

={Ax+Bv(β) : β ∈ ∆∗(x̄e(t))},
(18)

v(β) =
∑N

i=1 βivi, and x̄e(t) = x+ e(t).
Therefore, in order to show (14), it is sufficient to prove

that for some positive scalar α we have

sup
y∈F∗(t,x)

∂V

∂x
y ≤ −2αV (x), (19)

in some domain D ⊂ R
n to be determined.

From (18), and using the fact that the set ∆∗(z) is compact

for all z ∈ R
n, we have

sup
y∈F∗(t,x)

∂V

∂x
y = sup

β∈∆∗(x̄e(t))

{

∂V

∂x
(Ax +Bv(β))

}

= max
β∈∆∗(x̄e(t))

{

∂V

∂x
(Ax +Bv(β))

}

.

(20)

Then, showing (19) is equivalent to prove that for some α >

0

max
β∈∆∗(x̄e(t))

{

∂V

∂x
(Ax +Bv(β))

}

≤ −2αV (x), (21)

in a domain D ⊂ R
n to be determined below.

From inequality (13), we obtain

∂V

∂x
(Aclx) ≤ −2δV (x), ∀x ∈ R

n. (22)

Note that, since the set Conv{V} is nonempty and the null

vector is contained in its interior (0 ∈ int{Conv{V}}), then

there exists a neighborhood of the origin E(P, γ) with γ > 0
such that for all x ∈ E(P, γ) we have

Kx ∈ Conv{V}. (23)

Therefore for all x ∈ E(P, γ) there exist positive scalars

αj(x), j ∈ IN , such that
∑N

j=1 αj(x) = 1 and

Kx =

N
∑

j=1

αj(x)vj . (24)

In the development that follows, we consider the case where

(22) and (24) are verified (i.e. for all x ∈ E(P, γ)). From

(15), for all i ∈ I∗(x̄e(t)) we have

(x + e(t))TPB(vj − vi) ≥ 0, ∀j ∈ IN . (25)

Then, for any β ∈ ∆∗(x̄e(t)) we have

(x+ e(t))TPB(vj − v(β)) ≥ 0, ∀j ∈ IN . (26)

Multiplying this last inequality by αj(x) for j ∈ IN (αj(x)
defined in (24)) and summing the N elements, we obtain

(x + e(t))TPB(Kx− v(β)) ≥ 0. (27)

Adding this to the left part of (21), it comes

max
β∈∆∗(x̄e(t))

{

∂V

∂x
(Ax+Bv(β))

}

≤ max
β∈∆∗(x̄e(t))

{xT (AT
clP + PAcl)x

+2eTPBKx− 2eTPBv(β)}.

(28)

Then, using (22), we get

max
β∈∆∗(x̄e(t))

{xT (AT
clP + PAcl)x

+2eTPBKx− 2eTPBv(β)}
≤ max

β∈∆∗(x̄e(t))

{

−2δV (x) + 2eTPBKx− 2eTPBv(β)
}

.

(29)

Then, in order to prove (21) in some domain D ⊆ E(P, γ),
from (29) it is sufficient to show that for some α > 0

max
β∈∆∗(x̄e(t))

{

−2δV (x) + 2eTPBKx− 2eTPBv(β)
}

≤ −2αV (x).
(30)

Recall that for any positive number θ

2aT b ≤ 1

θ
aTa+ θbT b, ∀a, b ∈ R

n. (31)

Applying (31) to the terms 2eTPBKx and −2eTPBv(β),
with

θ = η, a1 = e, b1 = PBKx, (32)

and

θ = η, a2 = e, b2 = −PBv(β), (33)

we obtain the following inequality

max
β∈∆∗(x̄e(t))

{

−2δV (x) + 2eTPBKx− 2eTPBv(β)
}

≤− 2δV (x) + 2η−1eT e

+ηxTKTBTPPBKx

+η max
β∈∆∗(x̄e(t))

{

vT (β)BTPPBv(β)
}

.

(34)



Note that there exist ζmax > 0 and ξmax > 0 such that

xTKTBTPPBKx ≤ ζmaxV (x), ∀x ∈ R
n,

max
β∈∆∗(x̄e(t))

{

v(β)TBTPPBv(β)
}

≤ ξmax.
(35)

Also, with ē a positive scalar satisfying (7), thus from (34)

we obtain

max
β∈∆∗(x̄e(t))

{

−2δV (x) + 2eTPBKx− 2eTPBv(β)
}

≤− 2δV (x) + 2η−1ē+ η(ζmaxV (x) + ξmax).
(36)

Then, (36) is verified (and consequently (14)) if there exists

α > 0 such that

−2δV (x) + 2η−1ē+ η(ζmaxV (x) + ξmax) ≤ −2αV (x),
(37)

which is satisfied if
{

−δV (x) + 2η−1ē+ ηξmax ≤ 0,
−δ + ηζmax + 2α ≤ 0.

(38)

Therefore, if we take 0 < α < δ
2 and

0 < η ≤ −2α+ δ

ζmax

, (39)

then for a sufficiently small ē and η, we have (37) (and thus

(14)) is satisfied for all x ∈ D := E(P, γ) \ E(P, c(ē)), with

xTPx ≤ c(ē) :=
2η−1ē+ ηξmax

δ
< γ. (40)

Therefore, system (5), (6), (7) is Rǫ-stable from E(P, γ) to

E(P, c) with R = γ and ǫ = c(ē).
Remark 1: From the proof of Theorem 1, equation (40),

we can note that the size of the level set E(P, ǫ) depends on

the upper bound of the disturbance. Furthermore, it depends

also on the upper bound of the control value. Then, the size

of the chattering ball E(P, ǫ) increases with the amplitude of

the control vector (see Figure 1 in Section V).

Remark 2: In Theorem 1, the upper bound ē of the distur-

bance is assumed to be sufficiently small in order to ensure

the solvability of the stabilization problem. The existence of

solutions may be preserved despite the large value of ē.

In this section, qualitative conditions for a robust stabilization

of the closed-loop system are given. In order to allow a

numerical implementation of the proposed relay controller,

an LMI approach is developed hereafter.

IV. LMIS SOLUTION

The first result (Theorem 1) has a qualitative nature. In

practice, it is useful to find a constructive procedure which

for desired domain of attraction B(0, rγ) and chattering ball

B(0, rc) provides a switching law which ensures the Rǫ-

stability. In this section a numerical approach to deal with

this problem is given. The main idea is to use the existence

of a stabilizing linear static feedback gain K in order to re-

design a relay feedback control of the form (6). An LMI

solution is proposed hereafter. In order to express the result

note that for any set V there exists a finite number nh of

vectors hi ∈ R
1×m, i ∈ Inh

such that

Conv{V} = {u ∈ R
m : hiu ≤ 1, i ∈ Inh

}. (41)

Theorem 2: Assume that A.1 and A.2 hold. Consider the

linear closed-loop system (5), (6), (7) with Γ = PB, P is a

design parameter, and positive scalars c, rc, rγ , γ such that

rc < rγ and α > 0. The matrix A+BK is Hurwitz. If there

exist ǫ1 > 0, ǫ2 > 0, ǫ3 > 0 and P = PT ≻ 0 such that the

LMIs

1)

M(vi) =





Mi PBK 0
∗ −ǫ3I −PBvi
∗ ∗ −ψ



 � 0, ∀i ∈ IN ,

(42)

with
Mi = AT

clP + PAcl

+(2α+ ǫ1 − ǫ2)P,

ψ = −ǫ1c+ ǫ3ē+ ǫ2γ,

2)

P −KThTi γhiK ≻ 0, ∀i ∈ Inh
, (43)

3)

P � γ

rγ
I, (44)

4)

P � c

rc
I, (45)

5)

c < γ, (46)

are feasible, then the system (5), (6) is Rǫ-stable from

E(P, γ) to E(P, c) for a perturbation e satisfying (7). Fur-

thermore, B(0, rγ) ⊆ E(P, γ) and E(P, c) ⊆ B(0, rc).
Proof: We want to prove that if the set of LMIs (42)-

(46) are feasible then the closed-loop system (5), (6), (7) is

Rǫ-stable from E(P, γ) to E(P, c). It is sufficient to prove

that

sup
y∈F∗(t,x)

∂V

∂x
y ≤ −2αV (x), ∀x ∈ E(P, γ) \ E(P, c), (47)

for some α > 0, with F∗(t, x) is defined in (11).

The static gain K is such that the matrix A + BK is

Hurwitz and for x the controller satisfies Kx ∈ Conv{V} ,

hence let us define the set Cv as

Cv = {x ∈ R
n : hiKx < 1, i ∈ IN}. (48)

Note that, from (43) we have

xTKThTi hiK
Tx < xT

P

γ
x. (49)

This last inequality means that the level set E(P, γ) satisfies

E(P, γ) ⊂ Cv. (50)

The LMI (42) is equivalent to

zTM(vi)z ≤ 0, ∀z ∈ R
2n+1. (51)



Considering the vector zT = (x, e, 1)
T

, this leads to

xT (AT
clP + PAcl)x + (2α− ǫ2 + ǫ1)x

TPx

+2eTPBKx− 2eTPBvi

−ǫ3eT e− ǫ1c+ ǫ2γ + ǫ3ē

≤0, ∀x ∈ R
n, ∀e ∈ R

n, ∀i ∈ IN .

(52)

Note that for all x ∈ Cv there exist N positive scalars αj(x),

j ∈ IN ,
∑N

j=1 αj(x) = 1 such that

Kx =

N
∑

j=1

αj(x)vj . (53)

Since the constraint (50) is satisfied, then using (52) and

(53), we obtain

xT (ATP + PA)x + (2α− ǫ2 + ǫ1)x
TPx

+2eTPB

N
∑

j=1

αj(x)vj − ǫ3e
T e− 2eTPBvi

+2xTPB

N
∑

j=1

αj(x)vj − ǫ1c+ ǫ2γ + ǫ3ē

≤0, ∀x ∈ E(P, γ), ∀e ∈ R
n, ∀i ∈ IN .

(54)

which leads to

N
∑

j=1

αj(x){2xTP (Ax+Bvj) + (2α− ǫ2 + ǫ1)x
TPx

+2eTPB(vj − vi)− ǫ3e
T e− ǫ1c+ ǫ2γ

+ǫ3ē} ≤ 0, ∀x ∈ E(P, γ), ∀e ∈ R
n, ∀i ∈ IN .

(55)

By adding and subtracting the term

2
∑N

j=1 αj(x)x
TPB(vj − vi), we get

N
∑

j=1

αj(x){2xTP (Ax+Bvi) + (2α− ǫ2 + ǫ1)x
TPx

+2(x+ e(t))TPB(vj − vi)− ǫ3e
T e− ǫ1c+ ǫ2γ

+ ǫ3ē} ≤ 0, ∀x ∈ E(P, γ), ∀e ∈ R
n, ∀i ∈ IN .

(56)

In addition, the LMI (44) is equivalent to the constraint

B(0, rγ) ⊂ E(P, γ), (57)

where B(0, rγ) is the ball of radius rγ centered on 0.

Moreover, the LMI (45) is equivalent to the constraint

E(P, c) ⊂ B(0, rc), (58)

where rc is the radius of the ball B(0, rc). Inequality (46)

guarantees the fact that

E(P, c) ⊂ E(P, γ). (59)

Recall that if i ∈ I∗(x+ e(t)) then

(x+ e(t))TPB(vj − vi) ≥ 0, j ∈ IN . (60)

If in addition x ∈ E(P, γ) \ E(P, c) and the disturbance

is such that eT e ≤ ē then, Then (56) is a result of an S-

procedure of these constraints with

∂V

∂x
(Ax +Bvi) ≤ −2αV (x). (61)

Then, using the same arguments as in Theorem 1 we may

show that

sup
y∈F(t,x)

∂V

∂x
y = max

β∈∆∗(x̄e(t))

∂V

∂x
(Ax +Bv(β))

≤ −2αV (x),

(62)

with v(β) =
∑N

i=1 βivi, for all x ∈ E(P, γ) \ E(P, c) and e

satisfying (7), which ends the proof.

Remark 3: To compute the LMI solution, for a given gain

K such that (A,B) is stabilizable, P , c, and γ are taken as

LMIs variables. A line search can be used to find the radius

rc and rγ and a gridding to find the parameters ǫ1, ǫ2, and

ǫ3. Optimization algorithm can then be used to maximize rγ
or minimize rc.

Remark 4: In Theorem 2 the controller gain K is sup-

posed to be given such that the closed-loop continuous

system matrix A + BK is Hurwitz. The choice of the

controller gain K has an influence on the size of the

domain of attraction E(P, γ) and the chattering domain

E(P, c). Although the main contribution here is the switching

law design, one can use the results in Theorem 2 to co-

design the controller gain K and the switching hyperplane

characterizing matrix Γ (and domains E(P, c) and E(P, γ))
by using recursive LMI optimization algorithms for example

the one used in [22].

In the sections III and IV the stability conditions of the

closed-loop system are given. In order to show the efficiency

of the developed method numerical implementations are done

and the results are reported in the next section.

V. NUMERICAL EXAMPLE

Consider the linear system (5) with u ∈ V = {−v, v} =

{−3, 3}, and matrices A =

[

−1 0.3
0.5 1

]

and B =

[

1
1

]

.

Consider the static gain K =
[

0.2295, −2.7897
]

computed

using non robust approach given in [12]. The eigenvalues

of A are −1.0724, and 1.0724 hence the open-loop linear

system is unstable. Applying the method developed above, a

relay feedback controller is designed to stabilize the system

in the presence of a bounded perturbation e(t) =
√
ē ×

[

sin(5t), cos(5t)
]T

with ē = 0.5×10−4 and considering a

decay rate α = 0.4. An algorithm of minimization of c with

a line search to find the parameters ǫ1, ǫ2, ǫ3, rγ and rc is

implemented.

The LMIs are feasible for rγ = 1.1, rc = 0.1, γ = 3.8112,

c = 0.0922, P =

[

1.0397 −0.5053
∗ 3.3555

]

, and with parameters

ǫ1 = 1.4216, ǫ2 = 0, and ǫ3 = 1.1980× 103.

The computer simulations are realized for an initial con-

dition x(0) =
[

1.5, 0.4
]T

, and are reported in Figures 1-2.



−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

B(0, rc)

E(P, c)

B(0, rγ)

E(P, γ)
Kx = v

ΓTx = 0

Kx = −v

x
2

x1

Fig. 1. Phase plant

0 1 2 3 4 5 6 7 8
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

 

x2

x1

x
1
,x

2

T ime(s)
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As we can see from Figures 1 and 2, the states starting

in the domain of attraction converge to a neighborhood of

the origin and remain in it. In other words, from Figure 1

we can see that the states starting in the largest level set

E(P, γ) contained in the convex Cv evolve until reaching the

smallest level set E(P, c) surrounding the origin. The states

stay bounded and oscillate around the origin indefinitely as

it can be seen from Figure 2 and this confirms the provided

results.

VI. CONCLUSION

In this paper a method for relay control design is pro-

vided for LTI systems stabilization. The article takes into

account the fact that the states measurements used in the

relay are affected by perturbations. Qualitative and numerical

conditions of stability are given and the domain of attrac-

tion is estimated. The efficiency of the method is shown

using a numerical example and computer simulations. New

approaches will be developed in future works in order to

reduce the conservatism of the current method. The studies

of output dependent switching law design for linear system

stabilization and observer based controller will be equally

considered.
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