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WKB ANALYSIS OF GENERALIZED DERIVATIVE NONLINEAR

SCHRÖDINGER EQUATIONS WITHOUT HYPERBOLICITY

RÉMI CARLES AND CLÉMENT GALLO

Abstract. We consider the semi-classical limit of nonlinear Schrödinger equa-
tions in the presence of both a polynomial nonlinearity and the derivative in
space of a polynomial nonlinearity. By working in a class of analytic initial
data, we do not have to assume any hyperbolic structure on the (limiting)
phase/amplitude system. The solution, its approximation, and the error esti-
mates are considered in time dependent analytic regularity.

1. Introduction

1.1. Setting. We consider the equation

(1.1) iε∂tu
ε +

ε2

2
∂2xu

ε + i
ε

2
∂x
(

g(|uε|2)uε
)

− f(|uε|2)uε = 0, (t, x) ∈ [0, T ]× R,

in the semi-classical limit ε → 0, where f, g are polynomials and g(0) = f(0) = 0.
The typical example we consider here is

(1.2) g(s) = αsγ , f(s) = λsσ, where α, λ ∈ R and γ, σ ∈ N \ {0},

but f and g need not be monomials. The initial data that we consider are WKB
states (also known as Lagrangian states):

(1.3) uε(0, x) = aε0(x)e
iφε

0(x)/ε =: uε0(x),

where φε0 : R → R is a real-valued phase, and aε0 : R → C is a possibly complex-
valued amplitude. Our goal is to understand the semi-classical limit of equation
(1.1), that is to describe the behaviour in the limit ε → 0 of the solutions to (1.1)
with initial data (1.3). We consider ε-dependent initial phase and amplitude, but
they can be thought of as ε-independent, or having an asymptotic in powers of ε,
as will be discussed below.

In the case g = 0, we recover the more standard nonlinear Schrödinger equation,
modelling for instance Bose–Einstein condensation (see e.g. [15, 23]). The case
f = 0 corresponds to the derivative Schrödinger equation, describing Alfvén waves
(see e.g. [16, 19, 20, 25]). The cubic cases, α = 0 with σ = 1, or γ = σ = 1,
with λ = −1, are known to be completely integrable ([1, 27, 28]). Derivation and
analysis in non-cubic cases can be found in e.g. [10, 14, 17, 22].

This work was supported by the French ANR projects BECASIM (ANR-12-MONU-0007-04)
and BoND (ANR-13-BS01-0009-01).
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1.2. Formal limit: hydrodynamical structure. Assuming that aε0 is real-valued,
the standard approach known as Madelung transform consists in seeking the solu-
tion uε under the form uε = aεeiφ

ε/ε with aε and φε real-valued. Plugging such an
expression into (1.1) and separating real and imaginary parts yields

(1.4)











∂tφ
ε +

1

2
(∂xφ

ε)2 +
1

2
g
(

|aε|2
)

∂xφ
ε + f

(

|aε|2
)

=
ε2

2

∂2xa
ε

aε
, φε|t=0 = φε0,

∂ta
ε + ∂xφ

ε∂xa
ε +

1

2
aε∂2xφ

ε +
1

2
∂x
(

g
(

|aε|2
)

aε
)

= 0, aε|t=0 = aε0.

Making this approach rigorous can be a delicate issue, especially when aε has zeroes
(see [5] and references therein). Remaining at a formal level, in the limit ε → 0,
the quantum pressure (right hand side of the equation for φε) vanishes, and we get

(1.5)











∂tφ+
1

2
(∂xφ)

2 +
1

2
g
(

|a|2
)

∂xφ+ f
(

|a|2
)

= 0, φ|t=0 = φ0,

∂ta+ ∂xφ∂xa+
1

2
a∂2xφ+

1

2
∂x
(

g
(

|a|2
)

a
)

= 0, a|t=0 = a0,

where we have supposed also that the initial phase and amplitude converge, φε0 → φ0
and aε0 → a0, as ε→ 0. Note that this formal convergence remains in the case where
aε0 is complex-valued. Introducing ρ = |a|2 and v = ∂xφ, (1.5) yields

(1.6)







∂tv + v∂xv +
1

2
∂x (g(ρ)v) + ∂xf(ρ) = 0, v|t=0 = ∂xφ0,

∂tρ+ ∂x(ρv) + ∂xQ(ρ) = 0, ρ|t=0 = |a0|2,
where

Q(ρ) = ρg(ρ)− 1

2

∫ ρ

0

g(r)dr.

This is a generalized compressible Euler equation. We recover the standard isen-
tropic Euler equation when g = 0, with pressure law p(ρ) = ρf(ρ)−

∫ ρ

0 f(r)dr.

1.3. Rigorous limit: mathematical setting. As noticed in [13], if g = 0 and
f ∈ C∞ is such that f ′ > 0 (not necessarily assuming that f is polynomial), the
system (1.6) is hyperbolic. Based on this important remark, it is possible to justify
the semi-classical limit in Sobolev spaces Hs(R), locally in time (so long as the
solution to the Euler equation (1.6) remains smooth, that is, in particular, on a
time interval independent of ε). The assumption f ′ > 0 was relaxed to cases where
(1.6) is hyperbolic with f ′ > 0 (the nonlinearity need not be cubic at the origin) in
[2, 7].

The idea of Grenier consists in modifying the Madelung transform, by allowing
the amplitude aε to be complex-valued, and taking advantage to this new degree
of freedom (compared to the Madelung transform) to consider

(1.7)











∂tφ
ε +

1

2
(∂xφ

ε)2 +
1

2
g
(

|aε|2
)

∂xφ
ε + f

(

|aε|2
)

= 0, φε|t=0 = φε0,

∂ta
ε + ∂xφ

ε∂xa
ε +

1

2
aε∂2xφ

ε +
1

2
∂x
(

g
(

|aε|2
)

aε
)

=
iε

2
∂2xa

ε, aε|t=0 = aε0.

We have written directly the system in the presence of g, in view of future references.
It is readily checked that if (φε, aε) solves (1.7), then uε = aεeiφ

ε/ε solves (1.1).
As suggested above, the good unknown to work in Sobolev spaces is not (φε, aε),
but rather (∂xφ

ε, aε), or even (∂xφ
ε,Re aε, Im aε). The system satisfied by this
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unknown (readily obtained from (1.7)) is a skew-symmetric perturbation of (the
symmetric version of) (1.6).

In the case g 6= 0, the semi-classical limit for (1.1) was considered in [9] (case
f = 0) and [8] (with f, g ∈ C∞(R+;R)), by considering (1.7). However, in the
case where g 6= 0, hyperbolicity is not a property that one has for free. In [9] (case
f = 0), the semi-classical analysis relies on the assumption

∂xφ
εg′ > 0,

where φε appears in (1.7), and in [8], it relies on

∂xφ
εg′ + f ′ > 0.

These assumptions are made to ensure the hyperbolicity for (1.7), but have the
strong drawback to involve the solution itself.

To overcome this issue, we work in a functional setting where hyperbolicity is
not needed. Assume g = 0: if f ′ < 0 (λ < 0 in (1.2)), then the Euler equation (1.6)
is elliptic. G. Métivier [18] has proved that in this case, the only reasonable C1

solutions to (1.6) stem from analytic initial data. Indeed, if φ0 is analytic at some
point x0 ∈ R and (1.6) has a C1 solution, then a0 is analytic at x0. Therefore, if φ0
is analytic (e.g. φ0 = 0) and a0 is not, then (1.6) has no C1 solution. Conversely, if
the initial data aε0 and φε0 are analytic, then the semi-classical limit for (1.1) with
g = 0 was studied in [11, 26], thanks to some tools developed by J. Sjöstrand [24],
based on complex analysis. We shall also work with analytic regularity, but rather
with a Fourier analysis point of view, introduced by J. Ginibre and G. Velo [12].

Following [12], for w > 0 and ℓ > 0, we consider the space

Hℓ
w = {ψ ∈ L2(R), ‖ψ‖Hℓ

w
<∞}, where ‖ψ‖2Hℓ

w
:=

∫

R

〈ξ〉2ℓ e2w〈ξ〉|ψ̂(ξ)|2dξ,

with 〈ξ〉 =
√

1 + ξ2, and where the Fourier transform is defined by

ψ̂(ξ) = Fψ(ξ) = 1√
2π

∫

R

e−ixξψ(x)dx.

Note that if ℓ > 0 and w > 0, Hℓ
w is continuously embedded in all Sobolev spaces

Hs for s ∈ R. The interest of considering a time-dependent, decreasing, weight w
is that energy estimates become similar to parabolic estimates, since

(1.8)
d

dt
‖ψ‖2Hℓ

w
= 2Re 〈ψ, ∂tψ〉Hℓ

w
+ 2ẇ‖ψ‖2

H
ℓ+1/2
w

.

The last term may be understood as a gain of regularity (ẇ < 0). Mimicking
our approach in [6] (where convergence results for a numerical scheme in the semi-
classical limit are established in the case g = 0), we will consider solutions to (1.7)
where the phase and the complex-valued amplitude both live in such spaces, for a
weight w = w(t) = w0 −Mt, where w0 > 0 and M > 0 are fixed. Such spaces are
also reminiscent of the framework considered in [21]. More precisely, for T > 0, we
will work in spaces such as

C([0, T ],Hℓ
w) =

{

ψ | F−1
(

ew(t)〈ξ〉ψ̂
)

∈ C([0, T ],Hℓ
0) = C([0, T ], Hℓ)

}

,

where Hℓ = Hℓ(R) is the standard Sobolev space, or

L2([0, T ],Hℓ
w) = L2

THℓ
w =

{

ψ |
∫ T

0

‖ψ(t)‖2Hℓ
w(t)

dt <∞
}

.
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Phases and amplitudes belong to spaces

Y ℓ
w,T = C([0, T ],Hℓ

w) ∩ L2
THℓ+1/2

w ,

and the fact that phase and amplitude do not have exactly the same regularity
shows up in the introduction of the space

Xℓ
w,T = Y ℓ+1

w,T × Y ℓ
w,T ,

which is reminiscent of the fact that in the hyperbolic case, the good unknown is
(∂xφ

ε, aε) rather than (φε, aε). The space Xℓ
w,T is endowed with the norm

‖(φ, a)‖Xℓ
w,T

=|||φ|||ℓ+1,T+|||a|||ℓ,T ,
where

(1.9) |||ψ|||2ℓ,t = max

(

sup
06s6t

‖ψ(s)‖2Hℓ
w(s)

, 2M

∫ t

0

‖ψ(s)‖2
H

ℓ+1/2

w(s)

ds

)

.

1.4. Main results. Our first result states local well-posedness for (1.7) in this
functional framework. To lighten our statements as well as the proofs, we shall
assume that f and g are of the form (1.2), but linear combinations of such functions
could be addressed as well, with heavier notations only.

Theorem 1.1. Let w0 > 0, ℓ > 1 and (φε0, a
ε
0)ε∈[0,1] be a bounded family in Hℓ+1

w0
×

Hℓ
w0

. Then, provided M = M(ℓ) > 0 is chosen sufficiently large, for all ε ∈ [0, 1],

there is a unique solution (φε, aε) ∈ Xℓ
w,T to (1.7), where w(t) = w0 −Mt and

T = T (ℓ) < w0/M . Moreover, up to the choice of a possibly larger value for M
(and consequently a smaller one for T ), we have the estimates

|||φε|||2ℓ+1,T 6 4‖φε0‖2Hℓ+1
w0

+ ‖aε0‖4σHℓ
w0

, |||aε|||2ℓ,T 6 2‖aε0‖2Hℓ
w0

.

Unlike in the framework of Sobolev spaces, we do not have tame estimates in
Hℓ

w. This is the reason why the existence time in the above result depends a priori
on ℓ. (In the Sobolev case, the existence time for hyperbolic systems in Hs does
not depend on s > d/2+1, thanks to tame estimates.) It is natural to consider that
the map ℓ 7→M(ℓ) is increasing. In other words, T in Theorem 1.1 is a decreasing
function of ℓ.

Our second result states the convergence of the phase and of the complex am-
plitude as ε→ 0.

Theorem 1.2. Let w0 > 0, ℓ > 1, (φ0, a0) ∈ Hℓ+2
w0

× Hℓ+1
w0

and (φε0, a
ε
0)ε∈(0,1]

bounded in Hℓ+1
w0

×Hℓ
w0

such that

rε0 := ‖φε0 − φ0‖Hℓ+1
w0

+ ‖aε0 − a0‖Hℓ
w0

−→
ε→0

0.

Let M =M(ℓ+ 1) and T = T (ℓ+ 1), as defined as in Theorem 1.1. Then there is
an ε-independent C > 0 such that for all ε ∈ (0, 1],

|||φε − φ|||ℓ+1,T+|||aε − a|||ℓ,T 6 C (rε0 + ε) ,

where (φε, aε) denotes the solution to (1.7) and (φ, a) is the solution to (1.5).

The fact that in the above statement, T (ℓ + 1)(< T (ℓ)) is considered, and not
simply T (ℓ), is reminiscent of the fact that to prove error estimates in WKB ex-
pansions, one has to pay some price in terms of regularity, even in the linear case
when working in Sobolev spaces (see e.g. [4, Chapter 1]).
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However, regarding convergence of the wave functions, the previous result is not
sufficient. Indeed, as fast as φε0 and aε0 may converge as ε→ 0, Theorem 1.2 at most
guarantees that φε − φ = O(ε), which only ensures that aεeiφ

ε/ε − aeiφ/ε = O(1),
due to the rapid oscillations. However, the above convergence result suffices to infer
the convergence of quadratic observables:

Corollary 1.3. Under the assumptions of Theorem 1.2, the position and momen-
tum densities converge:

|uε|2 −→
ε→0

|a|2, and Im (εūε∂xu
ε)−→

ε→0
|a|2∂xφ, in L∞([0, T ];L1 ∩ L∞(R)).

In order to get a good approximation of the wave function aεeiφ
ε/ε, we have

to approximate φε up to an error which is small compared to ε. It will be done
by adding a corrective term to (φ, a). For this purpose, we consider the system
obtained by linearizing (1.7) about (φ, a), solution to (1.5),

(1.10)











































∂tφ1 +

(

∂xφ+
1

2
g
(

|a|2
)

)

∂xφ1

+
(

g′
(

|a|2
)

∂xφ+ 2f ′(|a|2)
)

Re (aa1) = 0, φ1|t=0 = φ10,

∂ta1 + ∂xφ∂xa1 +
1

2
a1∂

2
xφ+ ∂xa∂xφ1 +

1

2
a∂2xφ1 +

1

2
∂x
(

g
(

|a|2
)

a1
)

+
1

2
∂x
(

2ag′
(

|a|2
)

Re (aa1)
)

=
i

2
∂2xa, a1|t=0 = a10.

We refer to [4] for a discussion on the appearance of these correctors, and in partic-
ular regarding cases where they are trivial or not. Provided (φ0, a0) ∈ Hℓ+3

w0
×Hℓ+2

w0

(which implies (φ, a) ∈ Xℓ+2
w,T according to Theorem 1.1) and (φ10, a10) ∈ Hℓ+2

w0
×

Hℓ+1
w0

, we will see that the solution to (1.10) belongs to Xℓ+1
w,T , and our final result

is the following.

Theorem 1.4. Let w0 > 0, ℓ > 1, (φ0, a0) ∈ Hℓ+3
w0

×Hℓ+2
w0

, (φ10, a10) ∈ Hℓ+2
w0

×Hℓ+1
w0

and (φε0, a
ε
0)ε∈(0,1] bounded in Hℓ+1

w0
×Hℓ

w0
such that

rε1 := ‖φε0 − φ0 − εφ10‖Hℓ+1
w0

+ ‖aε0 − a0 − εa10‖Hℓ
w0

= o(ε) as ε→ 0.

Then, for M = M(ℓ + 2) and T = T (ℓ + 2) as in Theorem 1.1, there is an ε-
independent C > 0 such that for all ε ∈ (0, 1],

(1.11) |||φε − φ− εφ1|||ℓ+1,T+|||aε − a− εa1|||ℓ,T 6 C
(

rε1 + ε2
)

,

where (φε, aε) denotes the solution to (1.7), (φ, a) is the solution to (1.5), and
(φ1, a1) is the solution to (1.10). In particular,

∥

∥

∥uε − aeiφ1eiφ/ε
∥

∥

∥

L∞([0,T ];L2∩L∞(R))
= O

(

rε1
ε

+ ε

)

−→
ε→0

0.
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2. Well-posedness

In this section, ε ∈ [0, 1] is fixed. Solutions to (1.7) are constructed as limits of
the solutions of the iterative scheme

(2.1)







































∂tφ
ε
j+1 +

1

2
∂xφ

ε
j∂xφ

ε
j+1 +

1

2
g(|aεj |2)∂xφεj+1 + f(|aεj |2) = 0,

φεj+1|t=0 = φε0,

∂ta
ε
j+1 + ∂xφ

ε
j∂xa

ε
j+1 +

1

2
aεj+1∂

2
xφ

ε
j +

1

2
∂x
(

g
(

|aεj |2
))

aεj+1

+
1

2
h
(

|aεj |2
)

aεja
ε
j+1∂xa

ε
j =

iε

2
∂2xa

ε
j+1, aεj+1|t=0 = aε0,

where h(s) = g(s)/s. The scheme is initialized with time-independent (φε0, a
ε
0) ∈

Hℓ+1
w0

×Hℓ
w0

⊂ Xℓ
w,T for any T > 0.

The scheme is well-defined: if ℓ > 1, for a given (φεj , a
ε
j) ∈ Xℓ

w,T , (2.1) defines

(φεj+1, a
ε
j+1). Indeed, in the first equation, φεj+1 solves a linear transport equation

with smooth coefficients, and the second equation is equivalent through the relation
vεj+1 = aεj+1e

iφε
j/ε to the linear Schrödinger equation

iε∂tv
ε
j+1 +

ε2

2
∂2xv

ε
j+1

= −
(

∂tφ
ε
j +

1

2
(∂xφ

ε
j)

2 +
iε

2
∂x
(

g
(

|aεj |2
))

+
iε

2
h(|aεj |2)aεj∂xaεj

)

vεj+1

with initial condition

vεj+1|t=0 = aε0e
iφε

0/ε.

This is a linear Schrödinger equation with a smooth and bounded external time-
dependent potential, for which the existence of an L2-solution is granted, by per-
turbative arguments (the potential is complex-valued).

We recall the following lemma, which is proved in [12].

Lemma 2.1. Let m > 0 and s > 1/2. Then, there is a constant C > 0, independent

of w > 0, such that for every ψ1, ψ2 ∈ Hmax(m,s)
w ,

(2.2) ‖ψ1ψ2‖Hm
w
6 C

(

‖ψ1‖Hm
w
‖ψ2‖Hs

w
+ ‖ψ1‖Hs

w
‖ψ2‖Hm

w

)

.

The following lemma is a toolbox for all the forthcoming analysis.

Lemma 2.2. Let ℓ > 1 and T > 0. Let (φ, a) ∈ Xℓ
w,T , ã ∈ Y ℓ+1

w,T and (F,G) ∈
L2([0, T ],Hℓ+1/2

w ×Hℓ−1/2
w ) such that

∂tφ = F, φ(0) ∈ Hℓ+1
w0

,(2.3)

∂ta = G+ iθ1∂
2
xa+ iθ2∂

2
xã, a(0) ∈ Hℓ

w0
,(2.4)

where θ1, θ2 ∈ R. Then

|||φ|||2ℓ+1,T 6 ‖φ(0)‖2
Hℓ+1

w0

+
1

M
|||φ|||ℓ+1,T

√
2M‖F‖

L2
TH

ℓ+1/2
w

,(2.5)

|||a|||2ℓ,T 6 ‖a(0)‖2Hℓ
w0

+
1

M
|||a|||ℓ,T

√
2M‖G‖

L2
TH

ℓ−1/2
w

+
|θ2|
2M

|||a|||ℓ,T |||ã|||ℓ+1,T .(2.6)

Moreover, there exists C > 0 (that depends only on ℓ) such that
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• If F = ∂xψ1∂xψ2 with ψ1, ψ2 ∈ Yℓ+1,T , then

(2.7)
√
2M‖F‖

L2
TH

ℓ+1/2
w

6 C|||ψ1|||ℓ+1,T |||ψ2|||ℓ+1,T .

• If F =

(

2n
∏

j=1

bj

)

∂xψ with ψ ∈ Yℓ+1,T and bj ∈ Yℓ,T for all j, then

(2.8)
√
2M‖F‖

L2
TH

ℓ+1/2
w

6 C





2n
∏

j=1

|||bj |||ℓ,T



|||ψ|||ℓ+1,T .

• If F =
2n
∏

j=1

bj with bj ∈ Yℓ,T for all j, then

(2.9)
√
2M‖F‖

L2
TH

ℓ+1/2
w

6 C

2n
∏

j=1

|||bj|||ℓ,T .

• If G = ∂xψ∂xb with ψ ∈ Yℓ+1,T and b ∈ Yℓ,T , then

(2.10)
√
2M‖G‖

L2
TH

ℓ−1/2
w

6 C|||ψ|||ℓ+1,T |||b|||ℓ,T .

• If G = b∂2xψ with ψ ∈ Yℓ+1,T and b ∈ Yℓ,T , then

(2.11)
√
2M‖G‖

L2
TH

ℓ−1/2
w

6 C|||ψ|||ℓ+1,T |||b|||ℓ,T .

• If G =

(

2n
∏

j=1

bj

)

∂xb with b, bj ∈ Yℓ,T for all j, then

(2.12)
√
2M‖G‖

L2
TH

ℓ−1/2
w

6 C





2n
∏

j=1

|||bj |||ℓ,T



|||b|||ℓ,T .

Remark 2.3. In the proof given below, the assumption ℓ > 1 is used only to establish
the last three estimates on G. The rest of the proof only requires the assumption
ℓ > 1/2. Actually, even the estimates on G can be proved under the condition
ℓ > 1/2, thanks to a refined version of Lemma 2.1 (see [6]). However, since it is not
useful in the sequel to sharpen this assumption, we choose to make the stronger
assumption ℓ > 1 for the sake of conciseness.

Proof of Lemma 2.2. For fixed t ∈ [0, T ], (1.8) yields

d

dt
‖φ‖2

Hℓ+1
w(t)

+ 2M‖φ‖2
H

ℓ+3/2

w(t)

= 2Re 〈φ, F 〉Hℓ+1
w(t)

6 2‖φ‖
H

ℓ+3/2

w(t)

‖F‖
H

ℓ+1/2

w(t)

.

By integration and Cauchy-Schwarz inequality in time, we get, for every t ∈ [0, T ],

‖φ(t)‖2
Hℓ+1

w(t)

+ 2M

∫ t

0

‖φ(τ)‖2
H

ℓ+3/2

w(τ)

dτ 6 ‖φ(0)‖2
Hℓ+1

w0

+ 2‖φ‖
L2

TH
ℓ+3/2
w

‖F‖
L2

TH
ℓ+1/2
w

,

hence (2.5). The proof of (2.6) is similar, taking into account that

Re
〈

iθ1∂
2
xa, a

〉

Hℓ
w(t)

= 0,

since θ1 ∈ R, and that
∣

∣

∣

∣

〈

iθ2∂
2
xã, a

〉

Hℓ
w(t)

∣

∣

∣

∣

= |θ2|
∣

∣

∣

∣

∫

〈ξ〉2ℓ e2w〈ξ〉ξ2F(ã)F(a)dξ

∣

∣

∣

∣

6 |θ2|‖a‖Hℓ+1/2

w(t)

‖ã‖
H

ℓ+3/2

w(t)

.
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In order to prove (2.7), let us first use (2.2) with m = ℓ+ 1/2 and s = ℓ: for every
t ∈ [0, T ], we obtain

‖F‖
H

ℓ+1/2

w(t)

= ‖∂xψ1∂xψ2‖Hℓ+1/2

w(t)

.

(

‖ψ1‖Hℓ+3/2

w(t)

‖ψ2‖Hℓ+1
w(t)

+ ‖ψ1‖Hℓ+1
w(t)

‖ψ2‖Hℓ+3/2

w(t)

)

.

Taking the L2 norm in time in the last estimate, we get

‖F‖
L2

TH
ℓ+1/2
w

.
(

‖ψ1‖L2
TH

ℓ+3/2
w

‖ψ2‖L∞

T Hℓ+1
w

+ ‖ψ1‖L∞

T Hℓ+1
w

‖ψ2‖L2
TH

ℓ+3/2
w

)

,

hence (2.7). The proofs of (2.8) and (2.9) are similar, thanks to multiple uses of
(2.2) with m = ℓ + 1/2 and s = ℓ. The proofs of (2.10), (2.11) and (2.12) are also
similar, except that (2.2) is now applied with m = s = ℓ− 1/2 > 1/2. �

Proof of Theorem 1.1. In view of the equation satisfied by φεj+1 in (2.1), Lemma 2.2
yields

|||φεj+1|||2ℓ+1,T 6 ‖φε0‖2Hℓ+1
w0

+
C

M
|||φεj+1|||2ℓ+1,T |||φεj |||ℓ+1,T +

C

M
|||φεj+1|||ℓ+1,T |||aεj |||2σℓ,T

+
C

M
|||φεj+1|||2ℓ+1,T |||aεj |||2γℓ,T .

As for aεj+1, we obtain in a similar way

|||aεj+1|||2ℓ,T 6 ‖aε0‖2Hℓ
w0

+
C

M
|||aεj+1|||2ℓ,T |||φεj |||ℓ+1,T +

C

M
|||aεj+1|||2ℓ,T |||aεj |||2γℓ,T .

Under the condition

(2.13)
C

M
|||φεj |||ℓ+1,T 6

1

4
,

C

M
|||aεj |||2γℓ,T 6

1

4
,

we infer

1

4
|||φεj+1|||2ℓ+1,T 6 ‖φε0‖2Hℓ+1

w0

+
C2

M2
|||aεj |||4σℓ,T ,

1

2
|||aεj+1|||2ℓ,T 6 ‖aε0‖2Hℓ

w0

.(2.14)

First step: boundedness of the sequence. We show by induction that, pro-
vided M is sufficiently large, we can construct a sequence (φεj , a

ε
j)j∈N such that for

every j ∈ N,

|||φεj |||2ℓ+1,T 6 4‖φε0‖2Hℓ+1
w0

+
4C2

M2

(

2‖aε0‖2Hℓ
w0

)2σ

, |||aεj |||2ℓ,T 6 2‖aε0‖2Hℓ
w0

.(2.15)

For that purpose, we choose M sufficiently large such that (2.13) holds for j = 0
and such that

4‖φε0‖2Hℓ+1
w0

+
4C2

M2

(

2‖aε0‖2Hℓ
w0

)2σ

6
M2

16C2
, (2‖aε0‖2Hℓ

w0

)γ 6
M

4C
.(2.16)

Then, (2.15) holds for j = 0, since with (φε0, a
ε
0)(t, x) = (φε0, a

ε
0)(x) independent

of time, it is easy to check that |||φε0|||ℓ+1,T = ‖φε0‖Hℓ+1
w0

and |||aε0|||ℓ,T = ‖aε0‖Hℓ
w0
.

Let j > 0 and assume that (2.15) holds. Then (2.15) and (2.16) ensure that the
condition (2.13) is satisfied, and therefore (2.14) holds, from which we infer easily
that (2.15) is true for j replaced by j + 1.
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Second step: convergence. For j > 1, we set δφεj = φεj − φεj−1, and δaεj =
aεj − aεj−1. Then, for every j > 1, we have

∂tδφ
ε
j+1 +

1

2

(

∂xφ
ε
j∂xδφ

ε
j+1 + ∂xδφ

ε
j∂xφ

ε
j

)

+
1

2
g
(

|aεj |2
)

∂xδφ
ε
j+1

+
1

2

(

g
(

|aεj |2
)

− g
(

|aεj−1|2
))

∂xφ
ε
j + f(|aεj |2)− f(|aεj−1|2) = 0.

Taking into account that

|aεj |2γ − |aεj−1|2γ =

γ−1
∑

k=0

(aεj−1)
kδaεj(a

ε
j)

γ−1−kaεj
γ
+

γ−1
∑

k=0

(aεj−1)
γaεj−1

k
δaεja

ε
j

γ−1−k
,

and that the same equality holds for γ replaced by σ, Lemma 2.2 and (2.15) imply

|||δφεj+1|||2ℓ+1,T 6
K

M

(

|||δφεj+1|||2ℓ+1,T+|||δφεj |||2ℓ+1,T+|||δaεj |||2ℓ,T
)

for some K > 0, which does not depend on ε provided (φε0, a
ε
0)ε∈[0,1] is uniformly

bounded in Hℓ+1
w0

×Hℓ
w0

. Thus, for M large enough,

|||δφεj+1|||2ℓ+1,T 6
2K

M

(

|||δφεj |||2ℓ+1,T+|||δaεj |||2ℓ,T
)

.

Similarly, δaεj+1 solves

∂tδa
ε
j+1 + ∂xφ

ε
j∂xδa

ε
j+1 + ∂xδφ

ε
j∂xa

ε
j +

1

2
δaεj+1∂

2
xφ

ε
j +

1

2
aεj∂

2
xδφ

ε
j

+
1

2
∂x
(

g
(

|aεj |2
))

δaεj+1 +
1

2
∂x
(

g
(

|aεj |2
)

− g
(

|aεj−1|2
))

aεj

+
1

2
h
(

|aεj |2
)

∂xa
ε
ja

ε
jδa

ε
j+1 +

1

2
h
(

|aεj |2
)

∂xa
ε
jδa

ε
ja

ε
j

+
1

2
h
(

|aεj |2
)

∂xδa
ε
ja

ε
j−1a

ε
j +

1

2

(

h
(

|aεj |2
)

− h
(

|aεj−1|2
))

∂xa
ε
j−1a

ε
j−1a

ε
j

= i
ε

2
∂2xδa

ε
j+1,

so Lemma 2.2 and (2.15) yield

|||δaεj+1|||2ℓ,T 6
2K

M

(

|||δφεj |||2ℓ+1,T+|||δaεj |||2ℓ,T
)

.

We conclude that provided ℓ > 1, possibly increasing M , (φεj , a
ε
j) converges geo-

metrically in Xℓ
w,T as j → ∞. Uniqueness of the solution (φε, aε) to (1.7) follows

from the same kind of estimates as the ones which prove the convergence. �

3. First order approximation

Proof of Theorem 1.2. Next, assume that (φ0, a0) ∈ Hℓ+2
w0

× Hℓ+1
w0

. Then, in view

of Theorem 1.1, the solution (φ, a) to (1.5) belongs to Xℓ+1
w,T . Given ε > 0, if

(φε0, a
ε
0) ∈ Hℓ+1

w0
×Hℓ

w0
, we denote by (φε, aε) the solution to (1.7). We also denote

(δφε, δaε) = (φε − φ, aε − a). Then, in the same fashion as above, we have

∂tδφ
ε +

1

2
(∂xφ

ε∂xδφ
ε + ∂xδφ

ε∂xφ) +
1

2
g
(

|aε|2
)

∂xδφ
ε

+
1

2

(

g
(

|aε|2
)

− g
(

|a|2
))

∂xφ+ f(|aε|2)− f(|a|2) = 0,
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and

∂tδa
ε + ∂xφ

ε∂xδa
ε + ∂xδφ

ε∂xa+
1

2
δaε∂2xφ

ε +
1

2
a∂2xδφ

ε

+
1

2
∂x
(

g
(

|aε|2
))

δaε +
1

2
∂x
(

g
(

|aε|2
)

− g
(

|a|2
))

a

+
1

2
h
(

|aε|2
)

∂xa
εaεδaε +

1

2
h
(

|aε|2
)

∂xa
εδaεa

+
1

2
h
(

|aε|2
)

∂xδa
ε|a|2 + 1

2

(

h
(

|aε|2
)

− h
(

|a|2
))

∂xa|a|2 = i
ε

2
∂2xδa

ε + i
ε

2
∂2xa.

For some new constant K, Lemma 2.2 and Theorem 1.1 imply, forM large enough,

|||δφε|||2ℓ+1,T 6 K‖φε0 − φ0‖2Hℓ+1
w0

+
K

M
|||δaε|||2ℓ,T ,

and

|||δaε|||2ℓ,T 6 K‖aε0 − a0‖2Hℓ
w0

+
K

M
|||δφε|||2ℓ+1,T +

K

M
ε|||δaε|||ℓ,T |||a|||ℓ+1,T .

Possibly increasing the value of M and adding the last two inequalities, we deduce

|||δφε|||2ℓ+1,T+|||δaε|||2ℓ,T 6 C‖φε0 − φ0‖2Hℓ+1
w0

+ C‖aε0 − a0‖2Hℓ
w0

+ Cε2,

hence Theorem 1.2. As for the choice of M , a careful examination of the previous
inequalities shows that aside from the assumption M >M(ℓ+1), which enables to
estimate the source term, M can be chosen as in Theorem 1.1, namely such that
M >M(ℓ). �

Proof of Corollary 1.3. Notice that, provided w > 0,

(3.1) ‖ψ‖Hℓ(R) 6 ‖ψ‖Hℓ
w
.

In particular, Sobolev embedding yields, for ℓ > 1/2,

‖ψ‖L∞(R) 6 C‖ψ‖Hℓ
w
,

where C is independent of w > 0. With these remarks in mind, the L1 estimates
of Corollary 1.3 follow from Theorem 1.2 and Cauchy-Schwarz inequality, since

∥

∥|uε|2 − |a|2
∥

∥

L∞

T L1 =
∥

∥|aε|2 − |a|2
∥

∥

L∞

T L1 6 ‖aε + a‖L∞

T L2‖δaε‖L∞

T L2 ,

and

‖ Im (εūε∂xu
ε)− |a|2∂xφ‖L∞

T L1 6 ε‖ Im āε∂xa
ε‖L∞

T L1 + ‖|aε|2∂xφε − |a|2∂xφ‖L∞

T L1

6 ε‖aε‖2L∞

T H1 + ‖aε + a‖L∞

T L2‖δaε‖L∞

T L2‖∂xφ‖L∞

T L∞

+ ‖aε‖L∞

T L∞‖aε‖L∞

T L2‖δφε‖L∞

T H1 .

The L∞ estimates in space follow by replacing L1 and L2 by L∞ in the above
inequalities, and using Sobolev embedding again. �

4. Convergence of the wave function

Proof of Theorem 1.4. Let ℓ > 1, and (φ0, a0) ∈ Hℓ+2
w0

×Hℓ+1
w0

. Theorem 1.1 yields

a unique solution (φ, a) ∈ Xℓ+1
w,T to (1.5).
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Let (φ10, a10) ∈ Hℓ+1
w0

×Hℓ
w0

. Like in Section 2, we note that (1.10) is a system
of linear transport equations whose coefficients are smooth functions. The general
theory of transport equations (see e.g. [3, Section 3]) then shows that (1.10) has a
unique solution (φ1, a1) ∈ C([0, T ], L2 × L2). We already know by this argument
that the solution is actually more regular (in terms of Sobolev regularity), but we
shall directly use a priori estimates in Hℓ

w spaces. Indeed, Lemma 2.2 implies that
(φ1, a1) ∈ Xℓ

w,T with

|||φ1|||2ℓ+1,T 6 ‖φ10‖2Hℓ+1
w0

+
C

M
|||φ1|||2ℓ+1,T |||φ|||ℓ+1,T +

C

M
|||φ1|||2ℓ+1,T |||a|||2γℓ,T

+
C

M
|||φ1|||ℓ+1,T |||φ|||ℓ+1,T |||a|||2γ−1

ℓ,T |||a1|||ℓ,T +
C

M
|||φ1|||ℓ+1,T |||a|||2σ−1

ℓ,T |||a1|||ℓ,T ,

along with

|||a1|||2ℓ,T 6 ‖a10‖2Hℓ
w0

+
C

M
|||a1|||ℓ,T |||a|||ℓ,T |||φ1|||ℓ+1,T +

C

M
|||a1|||2ℓ,T |||φ|||ℓ+1,T

+
C

M
|||a1|||2ℓ,T |||a|||2γℓ,T +

C

M
|||a1|||ℓ,T |||a|||ℓ+1,T ,

for some C > 0.
Let ℓ > 1. For (φ0, a0) ∈ Hℓ+3

w0
×Hℓ+2

w0
and (φ10, a10) ∈ Hℓ+2

w0
×Hℓ+1

w0
, we consider:

• (φ, a) ∈ Xℓ+2
w,T the solution to (1.5).

• (φ1, a1) ∈ Xℓ+1
w,T the solution to (1.10).

• (φεapp, a
ε
app) = (φ, a) + ε(φ1, a1).

• (φε, aε) ∈ Xℓ
w,T the solution to (1.7).

We assume that ‖φε0 − φ0 − εφ10‖Hℓ+1
w0

= o(ε) and ‖aε0 − a0 − εa10‖Hℓ
w0

= o(ε). Set

δφε1 = φε − φεapp = φε − φ− εφ1 = δφε − εφ1,

δaε1 = aε − aεapp = aε − a− εa1 = δaε − εa1.

The equation satisfied by δφε1 writes

∂tδφ
ε
1 + ∂xφ∂xδφ

ε
1 +

1

2
|∂xδφε|2

+
1

2

(

g
(

|aε|2
)

− g
(

|a|2
)

− 2g′
(

|a|2
)

Re(aεa1)
)

∂xφ

+
1

2

(

g
(

|aε|2
)

− g
(

|a|2
))

ε∂xφ1 +
1

2
g
(

|aε|2
)

∂xδφ
ε
1

+ f(|aε|2)− f(|a|2)− 2f ′(|a|2)Re(aεa1) = 0

Moreover, Taylor’s formula yields

g(|aε|2)− g(|a|2)− 2g′(|a|2)Re(aεa1)(4.1)

= 2g′(|a|2)Re(aδaε1) + 4Re (aδaε)
2
∫ 1

0

(1− s)g′′(|a+ sδaε|2)ds,

and the same identity holds for g replaced by f . Thus, taking into account Theo-
rem 1.1, which implies |||φε|||ℓ+1,T , |||aε|||ℓ,T = O(1), and Theorem 1.2, which implies
|||δφε|||ℓ+1,T , |||δaε|||ℓ,T = O(ε), it follows from Lemma 2.2 that

|||δφε1|||2ℓ+1,T 6 ‖φε0 − φ0 − εφ10‖2Hℓ
w0

+
C

M
|||δφε1|||ℓ+1,T

(

ε2+|||δφε1|||ℓ+1,T+|||δaε1|||ℓ,T
)

.
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We deduce

|||δφε1|||2ℓ+1,T 6 C‖φε0 − φ0 − εφ10‖2Hℓ
w0

+
C

M
ε4 +

C

M
|||δaε1|||2ℓ,T .(4.2)

Similarly, δaε1 solves

∂tδa
ε
1 + ∂xφ∂xδa

ε
1 + ∂xδφ

ε
1∂xa+ ∂xδφ

ε∂xδa
ε

+
1

2
a∂2xδφ

ε
1 +

1

2
δaε1∂

2
xφ+

1

2
δaε∂2xδφ

ε

+ ∂x
[(

g(|aε|2)− g(|a|2)− 2εg′(|a|2)Re(aa1)
)

a
]

+ ∂x
[(

g(|aε|2)− g(|a|2)
)

εa1
]

+ ∂x
[

g(|aε|2)δaε1
]

=
iε2

2
∂2xa1 +

iε

2
∂2xδa

ε
1.

From (4.1), Theorems 1.1 and 1.2, and Lemma 2.2, we deduce

|||δaε1|||2ℓ,T ≤ C‖aε0 − a0 − εa10‖2Hℓ
w0

+
C

M
ε4 +

C

M
|||δφε1|||2ℓ+1,T .(4.3)

Adding (4.2) and (4.3), (1.11) follows. Like in the proof of Theorem 1.2, a careful
examination of the inequalities that we have used shows that all the above esti-
mates are valid provided that we assume M > M(ℓ), the constant provided by
Theorem 1.1, and also M > max(M(ℓ + 1),M(ℓ + 2)) in order to estimate the
source terms.

To complete the proof of Theorem 1.4, consider the point-wise estimate
∣

∣

∣aεeiφ
ε/ε − aeiφ1eiφ/ε

∣

∣

∣ 6 |aε − a|+ |aε|
∣

∣

∣eiφ
ε/ε − ei(φ+εφ1)/ε

∣

∣

∣

6 |aε − a|+ |aε|
∣

∣

∣

∣

2 sin

(

φε − φ− εφ1
2ε

)∣

∣

∣

∣

6 |δaε|+ 1

ε
|aε| |δφε1| .

We then conclude like in the proof of Corollary 1.3, by using Cauchy-Schwarz
inequality, (3.1), and Sobolev embedding. �

Remark 4.1. The last step in the above proof relies on the estimate δφε1 = o(ε)
in suitable spaces. Regarding the error estimate on aε, only δaε appears. Recall
however that (δφε1, δa

ε
1) solves a coupled system, so it is necessary to show that

δaε1 = o(ε) too (see also [4]).
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Place E. Bataillon, 34095 Montpellier, France

E-mail address: Remi.Carles@math.cnrs.fr

E-mail address: Clement.Gallo@umontpellier.fr

https://hal.archives-ouvertes.fr/hal-01271907
http://www.numdam.org/numdam-bin/fitem?id=SEDP_1992-1993____A13_0

	1. Introduction
	1.1. Setting
	1.2. Formal limit: hydrodynamical structure
	1.3. Rigorous limit: mathematical setting
	1.4. Main results

	2. Well-posedness
	3. First order approximation
	4. Convergence of the wave function
	Acknowledgements

	References

