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Abstract. Although the timing of the termination of the
African Humid Period (AHP) is now relatively well estab-
lished, the modes and controlling factors of this drying are
still debated. Here, through a geomorphological approach,
we characterize the regression of Lake Turkana at the end
of the AHP. We show that lake level fall during this period
was not continuous but rather stepwise and consisted of five
episodes of rapid lake level fall separated by episodes marked
by slower rates of lake level fall. Whereas the overall regres-
sive trend reflects a decrease in regional precipitations linked
to the gradual reduction in Northern Hemisphere summer in-
solation, itself controlled by orbital precession, we focus dis-
cussion on the origin of the five periods of accelerated lake
level fall. We propose that these periods are due to temporary
reductions in rainfall across the Lake Turkana area associ-
ated with repeated westward displacement of the Congo Air
Boundary (CAB) during solar activity minima.

1 Introduction

The African Humid Period (AHP), ca. 14.8 to 5.5 ka cal BP
(kilo-annum before present), is a major climate period that
was paced by orbital parameters (i.e. precession; deMeno-
cal et al., 2000; deMenocal and Tierney, 2012; Bard, 2013;
Shanahan et al., 2015) and that had a marked impact the
environment, ecosystems, and human occupation of Africa
(Bard, 2013). An increase in rainfall during this climate pe-
riod led to the rise and highstand of numerous African lakes
(Street and Grove, 1976; Tierney et al., 2011). The end of the
AHP was characterized by the establishment of more arid
conditions, leading to dramatic lake level falls (Street-Perrott

and Roberts, 1983; Kutzbach and Street-Perrott, 1985). This
aridification forced Neolithic populations to adapt to more
limited resources (Kuper and Kröpelin, 2006) and represents
one of the most recent examples of major climate change.
The mid-Holocene termination of the AHP is thought to
have been either abrupt (deMenocal et al., 2000), gradual
(Kröpelin et al., 2008), or time-transgressive (Shanahan et
al., 2015), depending on location. This highlights the variable
responses of proxies to dominant forcings and the complex
interactions among the multiple components of the local en-
vironment (e.g. deMenocal et al., 2000; Renssen et al., 2006;
Liu et al., 2007; Tierney and deMenocal, 2013; Shanahan et
al., 2015). However, drying trends remain poorly constrained
and, in consequence, the precise modes of aridification are
uncertain. A lack of continuous sedimentary archives has led
to the standard idea of a relative constant rate of lake level
fall during the regression of African lakes (e.g. Garcin et
al., 2012; Forman et al., 2014; Morrissey and Scholz, 2014;
Junginger et al., 2014; Bloszies et al., 2015). In this study, we
investigate the drying trend of Lake Turkana at the end of the
AHP and, for the first time, present evidence that this final re-
gression was not continuous through time, revealing a more
complex process than the traditional idea of lake regression.
Understanding the mode of African lake regressions is partic-
ularly relevant in the context of projecting future global cli-
mate change impacts on the African continent (e.g. Patricola
and Hook, 2011), especially in terms of evolution of water
resources of large lakes.

Lake Turkana is one of the great lakes of the East African
Rift system. It is considered as a wind-driven body of water
(Nutz et al., 2016) that developed abundant wave-dominated
coastal features along its shoreline. These coastal features
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Figure 1. Location maps. (a) Lake Turkana basin in the East
African Rift system (EARS). (b) Digital elevation model (DEM)
SRTM1 showing Lake Turkana and the two investigated areas
(Turkwel delta complex and the east side of the Omo River valley).
Dashed white line represents the maximum Holocene lake level. All
described geomorphological features are located between the palae-
olake limit and the modern lake shoreline.

represent a valuable palaeohydrological archive that permits
a greater understanding of Lake Turkana evolution during
the AHP (Butzer, 1980; Owen et al., 1982; Garcin et al.,
2012; Forman et al., 2014; Bloszies et al., 2015). However,
the detailed and continuous evolution of lake level over the
course of the last forced regression (i.e. basinward migration
of the shoreline associated with a base level fall), marking
the end of the AHP, has not been clearly documented. Here,
the delta complex of the Turkwel River (Fig. 1), which de-

veloped during the last forced regression of Lake Turkana,
is examined using trajectory analysis (Helland-Hansen and
Hampson, 2009). We highlight variations in the rate of lake
level fall during this ultimate regression. We then interpret
these variations as markers that reflect changes in precipita-
tion during the crucial period corresponding to the terminal
phase of the AHP. Subsequently, we discuss potential forc-
ings responsible for the regressive pattern of Lake Turkana
with a primary focus on the role of the Sun and short-term
variations in insolation.

2 Methods

The dataset is comprised of satellite imagery and a digital el-
evation model (DEM). A recently obtained SRTM1 dataset
(Shuttle Radar Topography Mission; Rabus et al., 2003) is
available for the entire Lake Turkana area. This DEM is pro-
duced by radar interferometry with 1 arcsec (approximately
30 m) horizontal grid spacing and provides a maximum 5 m
absolute vertical error (Becek, 2008; Garcin et al., 2009).
In addition, high-resolution (< 1 m) PLEIADES and (5 m)
SPOT 5 images were used to focus on selected areas. This
dataset was processed using GIS software (Global Mapper
15; www.globalmapper.com) to provide a high-resolution 3-
D image of geomorphological features. Topographic profiles,
elevation differences, and slope values were obtained using
Global Mapper 15 software.

The trajectory analysis method is a recent development
based on the principles of sequence stratigraphy. This ap-
proach permits an estimate of the palaeoevolution of sea or
lake levels based on the analysis of lateral and vertical migra-
tion of shore-dependent landforms (i.e. shelf, coastal wedge,
or deltaic systems). Four categories of shoreline trajectories
exist: ascending regressive, descending regressive, transgres-
sive, and stationary. These reflect normal regression, forced
regression, transgression, and stable trends, respectively. In
terms of base-level evolution, normal regression and trans-
gression indicate a rise in sea or lake levels, while forced
regression reflects a water level decline. Here, we apply this
method to decipher the evolution of Lake Turkana levels at
the end of the AHP.

3 Geomorphological analysis

The Turkwel delta complex is 35 km long, forming one of
the major deltaic systems of Lake Turkana (Fig. 1). It was
developed as the shoreline migrated basinward, lowering
from 450 to 360 m a.s.l. (Fig. 2). From west to east, five
distinct progradational stages were identified (Fig. 2d). The
first progradational stage forms a lobe protruding out from
the average north–south palaeoshoreline, well defined by the
450 m a.s.l. elevation contour (red line in Fig. 2d). According
to regional age models (Garcin et al., 2012; Forman et al.,
2014; Bloszies et al., 2015), this first progradational stage
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Figure 2. Turkwel delta complex. For location, see Fig. 1b. (a) Raw digital elevation model SRTM1 of the Turkwel delta. (b) Slope direc-
tion shading applied to the DEM SRTM1 of the Turkwel delta to highlight the steps separating the different plateaus. Markers display the
correspondence between (a) the DEM SRTM1 and (b) the slope direction shading. (c) SPOT5 satellite image of the Turkwel delta. (d) Inter-
pretative geomorphological map of the area showing five successive delta plains in addition to the oldest plain associated with the late AHP
highstand.

marks the last Holocene highstand before the end of the
AHP. Moving eastward, each of the three topographic pro-
files across the Turkwel delta complex (Fig. 3) show five
slightly inclined plateaus separated by five abrupt 5 to 15 m
high steps at ca. 445, 425, 410, 400, and 390 m a.s.l. (Fig. 4).
Each plateau defines a different progradational stage. The
plateaus are 3–5 km wide, and correspond to successively
abandoned delta plains (Fig. 2d). To the north, these plateaus
systematically end with palaeospits that document ancient,
northward-flowing alongshore currents. The resulting land-
form reveals the Turkwel delta complex to be composed of

successive asymmetric wave-dominated deltas (Bhattacharya
and Giosan, 2003; Anthony, 2015) during most of its evo-
lution, except in the early period associated with the AHP
highstand. None of the plateaus exhibit evidence of sig-
nificant erosion that would indicate reworking of the land-
forms subsequent to their deposition, except for the fluvial
incision by the Turkwel River that progressively adjusted
to base level fall. This supports the idea that the Turkwel
delta complex represents a primary depositional landform
displaying a continuous, comprehensive record of lake level
evolution. Trajectory analysis, performed for the three tran-
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Figure 3. Geomorphological data for the Turkwel delta complex. For location, see Fig. 1b. (a) SRTM1 images were processed to display a
digital elevation model of the Turkwel delta complex. Locations of the topographic transects are presented. (b) Topographic transects P1, P2,
and P3. (c) Trajectory analyses show that the overall forced regressive trend (< 0.4◦) is punctuated by five steeper slopes (1 to 3.8◦) revealing
short-term increases in the rates of lake level fall.
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Figure 4. Landforms from the Turkwel delta. (a) Front view of a
step grading downward to a plateau. (b) Side view of the same step
separating two plateaus.

sects across the Turkwel delta complex along its progradation
axes (Fig. 3), reveals that the plateaus are continuous, having
slightly descending regressive trajectories (< 0.4◦). The five
abrupt steps that separate plateaus have much higher slope
gradients (1 to 3.8◦), and are also defined as descending re-
gressive trajectories. The trajectories reflect a progradation
associated with a general lake level fall that meets the defi-
nition of a forced regression (Posamentier et al., 1992). The
five abrupt steps reflect recurrent, short-lived increases in the
rate of lake level fall that evidence a stepwise forced regres-
sion at the end of the AHP.

In the eastern Omo River valley (Fig. 1), topographic pro-
files along two fossil spits (Fig. 5) confirm this interpretation.
Both spits show successive steps starting at elevations simi-
lar to those observed in the Turkwel delta complex (ca. 445,
425, 410, and 400 m a.s.l.; Fig. 3). These additional observa-
tions strongly support features in the Turkwel delta complex
that reflect a stepwise forced regression of Lake Turkana at
the end of the AHP.

4 Chronological framework

Humid conditions related to the AHP broadly prevailed over
Africa from 14.8 to 5.5 ka cal BP (deMenocal et al., 2000;
Shanahan et al., 2015). Several lake level curves developed
from Lake Turkana provide records of the regional moisture
history over the Holocene (Garcin et al., 2012; Forman et
al., 2014; Bloszies et al., 2015). Based on surveys of raised

Holocene beach ridges coupled with dated archaeological
sites, these studies also provide a relatively robust chrono-
logical framework for its regression at the end of the AHP.
Garcin et al. (2012) initially estimated the onset of the last
lake level fall in Lake Turkana at ca. 5.27± 0.36 ka cal BP
based on radiocarbon ages obtained from shells preserved
in palaeoshorelines. Subsequently, using a similar method-
ology, Forman et al. (2014) proposed that the age of this
last regression occurred between 5.5/5.0 and 4.6 ka cal BP
associated to a lake level fall from 440 to 380 m a.s.l. Fi-
nally, Bloszies et al. (2015) proposed an onset of the last re-
gression of the AHP starting at 5.18± 0.12 ka cal BP (shells
at 90 m above the modern Lake Turkana; sample SNU12-
589) and finishing at 4.58± 0.25 ka BP (optically stimulated
luminescence (OSL) age reused from Forman et al., 2014;
sample UIC2319) associated with a lake level fall from 450
to 375 m a.s.l. Based on these published data, we carried
out minor complementary processing in order to refine the
chronology. First, we recalibrated sample SNU12-589, con-
sidered to provide the age of the onset of the last regression.
Using INTCAL13 (Reimer et al., 2013), the onset of the
last regression is now 5.14± 0.18 ka cal BP (4.51± 0.06 ka
14C BP). Second, we converted the OSL age, represent-
ing the end of the last regression of 4.58± 0.5 ka BP (2σ)
by Forman et al. (2014), to radiocarbon years. Forman et
al. (2014) provide six samples that were dated by both OSL
and radiocarbon methods. Despite the limited number of
samples, we ran a linear regression to propose a statisti-
cal relationship between OSL and radiocarbon ages. Based
on this correlation (age(OSL) = 0.98386063× age(14

C(calibrated))
;

b (the intercept) has been forced to 0; r2
= 0.9942), the

age of the end of the last regression is now estimated
at 4.65± 0.51 ka cal BP (4.14± 0.17 ka 14C BP). As the in-
vestigated portion of the Turkwel delta complex is lo-
cated between 450 and 375 m a.s.l., the landforms are
considered to have developed between 5.14± 0.18 and
4.65± 0.51 ka cal BP.

Based on this time interval, the last regression of Lake
Turkana would, at the longest, span a period from 5.32 to
4.14 ka cal BP. Converting this longest potential time inter-
val as radiocarbon ages (i.e. the interval between 4.57 and
3.97 ka 14C BP), a mean age of 4.27± 0.3 ka 14C BP is estab-
lished to thereby allow calibration and provide a probability
curve. The probability curve reveals a ca. 43/44 % probabil-
ity that the last regression occurred precisely between 5.14
and 4.65 ka cal BP.

5 Discussion

5.1 Origin of Lake Turkana lake level evolution

Lake level fluctuations may result from changes in the quan-
tity of water supply to a lake, from altered evapotranspira-
tion rates within the catchment area, or from modifications

www.solid-earth.net/7/1609/2016/ Solid Earth, 7, 1609–1618, 2016



1614 A. Nutz and M. Schuster: Stepwise drying of Lake Turkana at the end of the AHP

Figure 5. Fossil spits along the eastern Omo River valley (for location see Figure1b) from SRTM 1 (left panel) and from PLEIADES images
(right panel). The fossil spits are outlined by dashed white lines. They display plateaus interrupted at similar elevations to those of the
Turkwel delta.

in basin physiography. These changes may originate from a
number of potential external forcing processes, among which
the most commonly considered are tectonism and climate.
Given the short timescale considered in this study, abrupt
falls in lake level cannot be attributed to tectonism and any
associated physiographic modification of the Lake Turkana
basin. Vertical crustal movements occur over much longer

time periods and the rate of subsidence in the basin is too
low (i.e. 0.4 m ka−1 at the Eliye Spring well site; Morley et
al., 1999) to explain several lake level falls of > 5 m each oc-
curring within 1000 years. Moreover, vertical displacements
at this scale would require earthquakes having a magnitude
> 9 (Pavlides and Caputo, 2004). Earthquakes of this magni-
tude are unknown in the area and are not compatible with rift

Solid Earth, 7, 1609–1618, 2016 www.solid-earth.net/7/1609/2016/
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Figure 6. The red curve presents total solar irradiance (40-year moving average) relative to the value of the PMOD composite during the
solar cycle minimum of the year 1986 (1365.57 W m−2; Steinhilber et al., 2009) for the period contemporaneous with AHP regression of
Lake Turkana. The shaded band (yellow) represents 1σ uncertainty. The blue curve represents the precessional curve covering the same time
period (http://www.imcce.fr/Equipes/ASD/insola/earth/online/). Grey stripes highlight solar activity minima.

systems. Finally, volcanic activity is known to have occurred
during the Late Quaternary (Karson and Curtis, 1994), but
its timing is not well constrained. Repeated pulses of accel-
erated subsidence related to successive emptying of a magma
chamber are also inconsistent with the limited amount of
magma observed in the basin. Indeed, there is no regional
magmatic effusion observed that would have caused sudden
subsidence. Rather, magmatism corresponded to episodic,
spatially limited effusions that formed the north, central, and
south islands. As such, it is difficult to attribute the abrupt na-
ture of the accelerated lake level falls to tectonism and mag-
matism, thus rendering climate variability as the most likely
forcing mechanism.

During the Holocene, the overall climate pattern in East
Africa was governed by insolation patterns related to changes
in precessional orbital parameters of the Earth (Barker et
al., 2004). Links between insolation and hydrology are now
well established for this region, with monsoonal rainfall in-
tensity being strongly correlated with summer insolation. In
the early Holocene, an increase in summer insolation pro-
duced wetter conditions over much of the African continent
leading to the establishment of the AHP and an expansion
of lakes (deMenocal et al., 2000; Shanahan et al., 2015).
Subsequently, the overall contraction of lakes at the end of
the AHP is generally attributed to decreased precipitation
related to an orbitally controlled reduction in summer in-
solation (deMenocal et al., 2000; deMenocal and Tierney,
2012; Bard, 2013; Shanahan et al., 2015) Insolation changes
drive modifications in rainfall amounts through the strength-
ening or weakening of local climate processes. In the Lake
Turkana area, Junginger et al. (2014) suggest that the in-
crease in precipitation during the AHP is mainly a result of a
north-eastward shift of the Congo Air Boundary (CAB). The
CAB is a north-east–south-west-oriented convergence zone

presently located west of the Lake Turkana area. This conver-
gence zone shifts eastward in response to an enhanced atmo-
spheric pressure gradient between India and East Africa dur-
ing Northern Hemisphere insolation maxima (Junginger and
Trauth, 2013; Junginger et al., 2014). When the CAB moves
eastward over the Turkana area, precipitation is expected to
increase significantly. As the five abrupt accelerations in lake
level fall require short-term accentuated decreases in precip-
itation, we propose that these five periods of significantly re-
duced rainfall amounts are related to short-term decreases in
insolation that repeatedly displaced the CAB. In our opinion,
at such decadal to centennial timescales, variations in solar
activity appear as the most likely parameter to explain varia-
tions in insolation.

5.2 Linking solar activity and palaeohydrology

Establishing links between short-term (decadal-scale) solar
activity and climate change remains a point of debate. Peri-
odicities in solar activity, such as the 11-year sunspot cycle,
the Gleissberg cycle (80–90 years; Peristykh and Damon,
2003) or the de Vries cycle (∼ 200 years; Raspopov et al.,
2008) have been identified in Holocene palaeoenvironmental
records and indicate a possible forcing by short-term solar
activity on climate (Crowley, 2000; Bond et al., 2001; Gray
et al., 2013). In the Lake Turkana area, Halfman et al. (1994)
unravelled the expression of the 11-year sunspot cycle during
the last 4 ka through a time-series analysis of sediment cores.
Several authors link more arid periods inferred from lacus-
trine records with solar activity minima (Verschuren et al.,
2000; Stager et al., 2002; Junginger et al., 2014). The abil-
ity of lakes to record changes in palaeohydrology attributed
to variations in solar activity may be enhanced for “amplifier
lakes” (Street, 1980). Indeed, relatively modest changes in
climate are amplified into significant lake level fluctuations

www.solid-earth.net/7/1609/2016/ Solid Earth, 7, 1609–1618, 2016
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due to their specific morphology. As an amplifier lake, Lake
Turkana should be sensitive to variations in precipitation in-
duced by small variations in insolation.

When we compare the proposed chronological framework
with the solar activity curve from Steinhilber et al. (2009),
we observe between one and fourteen solar activity minima
during the minimum and maximum potential periods of re-
gression, respectively (Fig. 6). During the time period consis-
tent with the average duration of the regression – 490 years
between 5.14 and 4.65 ka cal BP – five solar activity min-
ima are observed. Given that the number of these minima
matches the number of abrupt lake level falls, this may sug-
gest a causal link between the short-term variability of solar
activity and the lake level changes in Lake Turkana at the
end of the AHP. Even though robust chronological correla-
tions are not yet available between these short-term acceler-
ations of lake level fall and solar activity minima, we pro-
pose a mechanism linking solar activity and lake level evolu-
tion. We suggest that periods of solar activity maxima would
be able to compensate for the precession-induced reduction
of insolation. The relatively limited reduction of insolation
would have led to a relatively stable position for the CAB
over the Lake Turkana area. As such, this would favour a re-
duced rate of lake level fall due to slowly decreasing rates of
precipitation amounts. However, when short-term solar ac-
tivity minima are coupled with the precession-related insola-
tion decrease, the CAB would have migrated rapidly west-
ward, resulting in a drastic reduction of rainfall and, as a
consequence, producing a rapid fall in lake level. As such,
alternations of solar activity maxima and minima could ex-
plain the geomorphological evidence for a long-term forced
regression interspersed by short-term accelerations in the rate
of lake level fall at the end of the AHP.

6 Conclusions

Geomorphic analysis (i.e. trajectory analysis) of the Turkwel
delta complex reveals, for the first time, a stepwise lake level
fall of Lake Turkana during its last forced regression at the
end of the African Humid Period. Five rapid falls in lake level
were identified, intercalated with periods of slower lake level
fall. These five rapid falls in lake level reflect five short-term
periods associated with drastic decreases in precipitation. We
propose that these abrupt, short-term decreases in precipita-
tion are associated with insolation minima altering the po-
sition of the Congo Air Boundary, the large-scale circula-
tion system responsible for regional precipitation patterns
over this region. Furthermore, we propose that the short-term
changes in insolation are caused by variations in solar activ-
ity. The next research step would be to precisely date each
plateau and each step to a specific solar maximum and mini-
mum, respectively. Nevertheless, existing dating methods do
not, however, provide precise enough ages at such decadal to
centennial timescales.

7 Data availability

SRTM digital elevation model is free to access using the web-
site: earthexplorer.usgs.gov. PLEIADES and SPOT images
were bought thanks to the support of the CNES and are not
freely available.
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