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Abstract

Large scale re�ection tactics are often implemented with ad-hoc data-structures and in a way
which is speci�c to the problematic. This makes it hard to add improvements and to implement
variations without writing an extensive theory of the speci�c data-structures involved. We suggest
to replace the core of such tactics with procedures that are proven correct using CoqEAL
re�nement framework, and to build a modular methodology around it. This re�nement framework
addresses the problem of duplication by promoting the use of one extensive proof-oriented library
together with one or several more e�cient implementations, with a reduced amount of proofs, but
destined to computation and proven correct with regard to the proof-oriented library. We show
on the example of the ring tactic of Coq that this gain in �exibility opens the door to di�erent
improvements.

This is a presentation to trigger discussion about ideas for a prototype based on the existing
but improved CoqEAL re�nement framework, described in [5] and [3].

1. Introduction

One of the interests of proof-assistants is to make proofs more reliable through systematic checking.
They require the user to provide the steps of a proof and they automate the veri�cation of their validity.
However, having to write every single step makes the proof process quite tedious. Fortunately, most
proof-assistants embed automatic procedures that help the user to build proofs. Some of them rely
on a technique called re�ection ([2]).

The purpose of re�ection is to replace proof steps with computation, thus automating and
shortening the proof. The proof-assistant Coq ([11]) makes an extensive use of computation for
such a purpose. For instance, the following term is typable in Coq: eq_refl : 0 + n = n. Coq

accepts the proof by re�exivity because it is able to use the de�nition of + to compute the left hand-
side into n. Re�ection performs more complex reasonings thanks to a translation (called metai�cation
in [2]) of the goal and the description of rules of computation inside a logical language.

Re�ection is used to design veri�ed decision procedures such as the ring ([8]) and field ([4]) Coq
tactics. However, these decision procedures are often designed in a monolithic fashion: they rely on
ad-hoc data-structures to which speci�c transformations are applied. To implement variations and/or
improvements, one has to dive into the core of such procedures and change the structures/proofs.
This may require the development of an extensive theory of the involved structures.

In this paper we propose a more modular methodology for re�ection, on the particular case of the
ring tactic. This methodology relies on CoqEAL re�nement framework and makes a clear distinction
between the proofs of soundness for decision procedures and the computations they will perform.
Section 2 presents brie�y CoqEAL. Then, Section 3 explains how we built a tactic around it. Finally,
Section 4 compares our approach to the historical one.
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2. The CoqEAL re�nement framework

CoqEAL1 is built on top of the Mathematical Components library and the SSReflect
extension of Coq tactic language ([6]). It contains e�cient data-structures and some optimized
algorithms in polynomial and matrix computations, and it provides a framework for changing the
representation of objects.

�Re�nement� is a term usually used to describe a step-by-step approach in the veri�cation of a
program. One starts with an abstract representation of the program and its speci�cation and then
re�nes the program to more concrete representations, �nally reaching an actual implementation. Each
step is proven correct with respect to the previous one. What we mean by re�nement here ([5]) is
only a veri�ed step for changing the representation of some data-type or the algorithm that is used,
typically going from a proof-oriented version of your object to a computation-oriented one.

CoqEAL's version of re�nement is of interest to us because of its modularity and its
automation ([3]). Indeed, thanks to the use of parametricity ([12]), a reformulation of Reynolds'
abstraction theorem ([9]), it is possible to get �for free� soundness results on the goal representation of
your object if you have proven them on its initial representation. We extended the work of Cohen et
al. ([3]) with a better automation of the use of parametricity, thanks to Keller and Lasson's plugin ([7])
generating the needed instantiations of the parametricity theorem.

Moreover, we also use Coq type class mechanism ([10]) in CoqEAL to keep a data-base of
re�nement theorems. We use a type class refines, where refines P C stands for �the computation-
oriented object C is a re�nement of the proof-oriented object P�. Together with particular instances
de�ning rules to guide the inference, this gives us a logical program computing re�nements. Thanks
to this logical program, expressions are decomposed into smaller parts for which re�nement theorems
are needed. This means that each speci�c operation can be considered independently from the others,
thus simplifying the proof process. For instance, if we want to get a re�nement for the polynomial
expression X + Y - (1 * Y), it is su�cient to give respective re�nements X', Y', 1', +', -' and *'

for X, Y, 1, +, - and *.

We will use re�nement to normalize polynomials by computation. It is thus interesting to be able
to get back proof-oriented polynomials after normalization. For this, we use a speci�c re�nement spec
of the identity function, together with the following lemma:

Lemma refines_spec P C : refines P C -> P = spec C.

When given P (e.g. X + Y - (1 * Y)), rewriting with this lemma will trigger type class inference,
thus inferring C (e.g. X' +' Y' -' (1' *' Y')) together with a proof of refines P C, and replace
P with spec C. Computation will then result in a proof-oriented object P' replacing P (e.g. X). We
wrote a tactic, coqeal_simpl, which goes through these two steps, re�nement and computation, using
simpl as strategy of evaluation (see Figure 1).

Proof-oriented structure Computation-oriented structure

Proof-oriented structure Computation-oriented structure

X + Y - (1 * Y)

re�nement

X' +' Y' -' (1' *' Y')

computation

X'

spec and simpl

X

coqeal_simpl

Figure 1: The coqeal_simpl tactic

1https://github.com/CoqEAL/CoqEAL
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3. A modular methodology

Figure 2 illustrates the methodology we used in a prototype2 of a re�ection-based tactic for
reasoning modulo the axioms of rings. Details of implementation are highlighted in gray. This
methodology decomposes into the following three main steps, highlighted in red in Figure 2, the
second one being independent from the others:

� polyfication: turns a ring expression into an iterated polynomial (Z[X1][X2] : : : [Xn]) and
computes a mapping from variables to ring elements;

� coqeal_simpl: normalizes the polynomial using CoqEAL with the simpl reduction strategy;

� depolyfication: evaluates the iterated polynomial on arguments provided by the variable map.

Arithmetic expression

AST

Proof-oriented polynomial Computation-oriented polynomial

Computation-oriented polynomialProof-oriented polynomialArithmetic expression

metai�cation computation

depolyfication

polyfication

coqeal_simplcoqeal_ring

re�nement

computation

spec and simpl

Figure 2: The coqeal_ring tactic

The prototype we implemented performs poly�cation by �rst computing an abstract syntax
tree (AST) together with a variable map, in order to interpret the variables into terms, and then
turning it into a Mathematical Components polynomial.

This �rst step of poly�cation, called metai�cation ([2]), is performed by recursion on the
head of the ring expression. The tactic recognizes terms generated by the following grammar
e ::= 0 j 1 j e1 + e2 j e1 � e2 j e1 � e2 j �e j en j c ; where n ranges over natural numbers and

c over integers, and terms that do not �t this grammar are metai�ed as variables. For
example, the metai�cation of a + b - (1 * b) gives the variable map [a; b] with the AST
Plus (Var 0) (Plus (Var 1) (Opp (Mul (Const 1) (Var 1)))).

The second step of poly�cation computes a Mathematical Components polynomial from the
AST (using ast_to_poly) evaluated (using eval_poly) with the variable map to �nish poly�cation.
In our example, we get the polynomial X + Y - (1 * Y) (with adapted notations). This approach
is the fastest implementation of poly�cation we found. Our structure of AST also comes with an
interpretation function to original expressions (ast_to_expr), so the soundness of poly�cation is
justi�ed by the equality of the original expression and the evaluation of the resulting polynomial:

Lemma polyficationP env ast : ast_to_expr env ast = eval_poly env (ast_to_poly ast).

In the second step of our tactic, we simply call CoqEAL simpli�cation tactic on the polynomial
obtained by poly�cation, resulting in the previous example in the polynomial X. The last
step, depoly�cation, is implemented for now as a set of rewriting rules to push Mathematical

Components polynomial evaluation through the polynomials and get back an expression in the
original ring, for instance a in our example.

2https://raw.githubusercontent.com/CoqEAL/CoqEAL/test_ring/refinements/ring.v
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4. Comparison to the existing

Re�ection, as presented in the work of Boutin ([2]), is performed through the following three steps.
First, translate your goal into a well-suited structure for the computations you want to perform; this
is called metai�cation. Then, convert your object to a normal form by computation and �nally get a
result on your initial object.

As show in Figure 3, in the case of the ring ([8]) Coq tactic, metai�cation results in an AST
representing polynomial expressions over a ring of coe�cients. Then, it interprets the resulting AST
as a sparse Horner polynomial, giving it a normal form. With names adapted to our description, the
following soundness theorem from the Coq sources justi�es the replacement of the initial expression
with the evaluation of the polynomial.

Lemma ring_correct env t p : poly_of_ast t = p -> interp env t = eval env p.

Arithmetic expression Abstract Syntax Tree (AST)

Arithmetic expression Sparse Horner polynomial

metai�cation

computation

interpretation

ring

Figure 3: The ring tactic

The fundamental steps are the construction of the AST and its evaluation as a sparse Horner
normal form. Since, these two datatypes are ad-hoc, any modi�cation of metai�cation, hence of the
AST, would require a new proof of soundness. Adapting proofs is not much of an issue, but doing so on
computation-oriented data-structures implies writing the theory of these structures, which signi�cantly
increases the amount of proofs.

Our approach has the following bene�ts. First, one can reuse the results of libraries such as
Mathematical Components to prove soundness. This reduces the amount of lemmas to be proven.
Moreover, such libraries usually contain structures that are well-suited for proofs, which means that
you don't have to bother with the subtleties of your speci�c data-structures. Then, as we saw in
Section 2, in this framework the soundness of each computable operation can be proven independently
from the others. Thus, not only soundness is easier to prove but adding/removing/changing an
operation has less impact in terms of proofs than with the former methodology.

As a consequence, our proof of soundness of polyfication (implemented via metai�cation) is
very short (less than 300 lines), and computations came for free, because a re�nement was already
implemented in CoqEAL.

Presently, this implementation is incomplete. To be as powerful as the ring tactic, our prototype
lacks some re�nements for coqeal_simpl, like the power function and some coercions, as well as
the possibility to declare translations for ring-speci�c constants or to use other rings than the set
of integers as the ring of coe�cients for the polynomials. Also, because of the structure of iterated
univariate polynomials, the lemma polyficationP holds only for commutative rings.

Concerning e�ciency, we cannot yet compare to the existing because CoqEAL still su�ers some
problems of e�ciency in the re�nement of nested data-structures (polynomials over polynomials
over : : : over integers). Because of this, the bottleneck of our current prototype is the re�nement
of polynomial operations which looks exponential in the number of indeterminates, whereas it could
be made linear using a better proof-search strategy, which implementation is work in progress. As of
today, depoly�cation is instantaneous on our small examples. But we expect that for bigger terms it
could become slower. We suggest to replace this step either by the same process as poly�cation (going
through an AST to replace rewriting by computation), or by a re�nement of polynomial evaluation.
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5. Future work

To improve the proof power of our tactic, the �rst step is to catch up with the ring tactic by adding
the aforementioned missing parts and using a better mathematical representation of polynomials, for
instance multinomials3 ([1]), provided there is a re�nement for them4. Then, a slight modi�cation
of poly�cation would allow us to handle morphisms, making it possible to translate the expression
f(x + y) - f(y) into X + Y - Y with the variable map [f(x); f(y)] and thus to simplify it into
f(x). Another possible improvement would be the use of Gröbner bases5 to reason modulo equations.
The current ring tactic already deals with hypotheses of the form m = p where m is a monomial and
p a polynomial (after metai�cation), but thanks to Gröbner bases m could be any polynomial. This
would require a modi�cation of poly�cation, and the algorithms on Gröbner bases would be proven
thanks to the re�nement framework.

Finally, we could bring �exibility to the reduction strategy. We could easily replace simpl in
coqeal_simpl with compute, vm_compute or native_compute, with some locking. Moreover, instead
of using the coqeal_simpl reduction strategy, we suggest the user could de�ne his own transformation,
like root �nding or factoring, which would make it possible to go from an equation of the form
x2 + 2bx + c = 0 to the conjunction of b2 � c > 0 and x = �b � p

b2 � c. One can even imagine
plugging here an external tool which produces a proof witness.

Conclusion

We refactorized a widespread re�ection methodology ([2]) in order to introduce re�nement in the
core of re�ection-based tactics. We think that they could bene�t in di�erent ways from the use of
re�nement. The major perk of this framework is the possibility to reuse well-developped libraries to
prove the soundness of a re�ection-based procedure while keeping the e�ciency of structures that are
speci�c to the problematic. Thanks to the automation of re�nement ([3]), that we have improved, the
proof process is also simpli�ed.

In the case of our procedure for reasoning using ring axioms, we turned a syntactic step,
metai�cation, into the semantic translation we call poly�cation. This results in a better distinction
between the translation of the object, where only soundness of the encoding has to be proven, and the
computation step that follows, which is proven sound independently. While working on poly�cation,
we also learnt the importance of replacing systematic rewriting with computation (i.e. in our case by
going through an AST), using rewriting only in the proofs of theorems about functions performing
the computation (as in the proof of polyficationP).

As illustrated by the example of the ring tactic, we believe that this access to existing libraries and
the gain in modularity in the proof process should make it easier to implement and prove variations
of decision procedures. We plan to study the possibility to extend this methodology to other decision
procedures (such as field, lra, etc...).
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3https://github.com/math-comp/multinomials
4Work in progress by Pierre Roux and Erik Martin-Dorel: https://sourcesup.renater.fr/plugins/scmgit/

cgip-bin/gitweb.cgi?p=validsdp.git;a=blob_plain;f=theories/multipoly.v
5https://github.com/thery/grobner/
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