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Abstract. This paper presents two transmission interface treatments, Dirichlet-Robin and
Neumann-Robin procedures, that may be employed for conjugate heat transfer problems. These
conditions are analyzed on the basis of a 1D simplified model problem. In thefirst part of the paper,
the Dirichlet-Robin procedure is presented. This interface treatment is the most widely employed in
the literature. The same analysisis then performed with a Neumann-Robin procedure. On the basis of
the model problem, the general expression of the amplification factor, the stability bounds and the
optimal coefficients are provided. It is shown that the two interface treatments are opposite and
complementary. Moreover, the so-called optimal coefficient provides the best results in terms of
stability and convergence in the Dirichlet-Robin procedure. A criterion is expressed to choose the
most appropriate transmission procedure and itsimportance is underlined by a test case.
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1 INTRODUCTION

Conjugate heat transfer (CHT) analysis refers ¢oathility to address the thermal interac-
tion between a body and a fluid flowing over ortingh it. The objective of CHT modeling is
the accurate prediction of temperature and heatdlstribution in space and time in a body
and on its boundaries. Conjugate heat transferlgmaboccur whenever the fluid convection
and the solid material conduction are taken intmant simultaneously. This mutual interac-
tion is becoming increasingly important becausmany numerical simulations it is no longer
acceptable to consider heat transport in the fhmly, with some ideal conditions at the fluid-
solid interface.

Even if coupled procedures are the most correctraasbnable way to use when accurate
heat transfer predictions are needed, in most cadafrary relaxation parameters are used to
stabilize the coupling procedure. This may havegaificant negative impact on the numeri-
cal properties (low convergence rate, oscillatiars] instabilities). Our goal in this paper is
to present two interface conditions derived frostability analysis and to present their main
numerical characteristics.

Recently, we have shown [1] using a 1D thermal rhpdeblem that in a coupled system,
a numerical transition can be identified. This famekntal result has been derived from a
normal mode stability analysis based on the theb@odunov-Ryabenkii [2][3]. This transi-
tion can be regarded as an optimal choice in tesfrstability and convergence. Ideally, a
Robin condition on each side of the interface sthdnd considered. But in this case, a general
Robin-Robin interface condition leads to a too éafgmily of schemes. Thus, in this paper we
will confine ourselves to two commonly used corafis :

- Dirichlet-Robin procedure : the temperature cagrfrom the solid is applied on the fluid
side and a "relaxed heat flux" is in turn used bBsundary condition for the solid.

- Neumann-Robin procedure : the heat flux comimgnfithe solid is applied on the fluid
side and a Robin condition is in turn used as atlaty condition for the solid.

These conditions have been chosen in order towligalmost situations likely to arise.
They will be analysed on the basis of a 1D couplebthermal model problem. In the first
part of the paper, Dirichlet-Robin interface treatts are presented. This transmission interface
treatment is the most widely employed in the lign@ The same analysis is then performed in
the second part with a Neumann-Robin procedures@tweo treatments will then be compared.

2 MODEL EQUATIONS

21 Modéd problem

It has been often been stressed that the natunstabilities derived from a 1D model can
give insight into the potential instabilities in D computations. As a result, the behavior of
interface conditions in CHT is often studied usagormal mode analysis. This is because
one may reasonably assume that the modes that enagdbable are those whose variation is
in the direction normal to the coupled interfacell® model is composed of two partitions
with a shared interface. Partitioned techniquefb]4re very popular, because they allow the
direct use of specifically designed solvers forfaetént fields and may offer significant
benefits in terms of efficiency over the monolithéchniques. In this study, the fluid-solid
system will be decomposed into two partitions: thesubdomainQ., index j =20 ; x=0)

and the (-) subdomaif€2_, index j < 0;x<0) as illustrated in Figure 1.
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Fig.1 : Schematic of the fluid & solid domains

2.2 Interface conditionson the solid side

Interface conditions are needed on either sidehef gdhared interfacex (= 0), where
coupling conditions are applied. Our goal is toueasa stable CHT process and to avoid
destabilizing effects. It is well known that Roleonditions have many attractive features
since such a condition introduces an interfacénstis forcing the boundary to behave in the
same way as the boundary of the other domain negutt much better stability properties. A
Robin condition on the solid side is written simply

[Qs +affsl :le taTy J (1)

The subscript$ ands denote the fluid and solid domain respectively #ral (*) notation
indicates the sought value®. is the interfacial heat flux (W.f) and T is the interface

temperature. The general Robin condition (1) intice$ the numerical coupling parameter
a, (W.m2K™) the choice of which directly influences the sli#pbf the coupling process.

2.3 Interface conditionson thefluid side
A similar expression could be used on the fluigsid

[Qf + aS-l:f ]: [Qs +agTs ] (2)

Condition (2) introduces another coefficiemt, computed in the solid side and

implemented in the fluid side. The simultaneoussideration of two coefficients could be
complicated and thus it has been decided in thgemp#&o focus on two complementary
treatments :

A Dirichlet condition on the fluid side, obtainedsgly by settinga, = o in (2)
T, =T, 3)

and a Neumann condition on the fluid side, obtaibgdsettinga, = Oin (2). We readily
obtain

A~

Qf =Qs 4)
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2.4 Equationsin thefluid and solid domains

The CHT strategy used to obtain rapidly a fluidisture steady solution relies on the
significant discrepancy of the characteristic pbgktimes of the two domains, namely a fast
transient process in the fluid, a very slow ondha structure. In the fluid subsystem, the
Navier-Stokes (NS) equations are solved generalstg¢ady-state by a time marching scheme.
As a consequence, a time marching scheme will jgoy@d here in the fluid domain in the
CHT model.

On the contrary, in the solid domain, if we ardyonterested in computing the steady-
state solution, then a second order ordinary diffeal equation can be solved directly and
coupled to the unsteady fluid domain. Thus, onliaplace equation is considered in the
solid.

25 Characteristic factors

Three dimensionless numbers play a major role i @kbblems and appear in the stabil-
ity analysis performed in this paper.

The first one is the mesh Fourier number definetbb@wvs

D; =a;At; /Ax} (5)

where a; is the fluid diffusivity (nf.s%). D, is the mesh Fourier number that characterizes
transient heat diffusion in the fluid domain.

The second one is a conventional Biot number ddfine
Bi = h/K, (6)

whereh (W.mi”.K™) is the heat transfer coefficient akdis the thermal conductance of the

solid. Bi determines whether or not the temperatures irsisidid body vary significantly in
space, while the body heats or cools over timenfacthermal gradient applied to its surface.

The third number, a local Biot number, naturallypegars in the stability analysis per-
formed hereafter and takes the following form

BI® =K /K, (7)

Bi”is a "new" parameter that can be regarded as tlreafthe thermal conductance of the
1% fluid cell over the thermal conductance of the lghsolid domain. This number represents
the balance at each coupling time between the sedidtance of the entire solid body (only a
steady-state is considered in this domain) andehbistance of the transient fluid domain rep-
resented by the diffusion in the first near watenfiace.

It is also interesting to introduce a normalizedifier numberD;, (see [6] for more details)

defined by
_ D,

' 1+D, +,/1+2D, ®

The domain ofD, is D, =0 and the range i§< D, <1.
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2.6 Normal mode analysis
We have performed a stability analysis by consigdgrniormal mode solutions in the form

{z“‘ll(fj , >0
Tjn = ' . 9
k!, j<0

where z and k are two complex functions is the “temporal amplification factor” am is

the “spatial amplification factor”. The stabilityalysis is very similar to the standard Fourier
stability method except that the Fourier analygisores boundary conditions and as these
may affect stability, the theory of Godunov & Ryakie [2][3] is preferable. After elementary
transformations not reported in this paper (seailden [1]), we find that the temporal ampli-

fication factorz (i.e. each mode increases in amplitude by a tz{ﬁdakes the following
forms in the two interface conditions considerethis paper :

(1) Dirichlet-Robin interface condition(a'f ,as): (af >0, oo)

The temporal amplification factor can be written as
1

S

z=9(z,a;)= [Kf(z’af)_(Kf_af)] (10)

(2) Neumann-Robin interface conditim(naf ,as)= (af >0, O)

The temporal amplification factor can be written as

1 +Kf_af
0 a, K (za;) B (11)

z=9g(za;)= K +

s f

2.7 A fundamental transition

The complex functiogis a rather complicated nonlinear equationZfoAfter the change
of variable z - 1/z, this function becomes holomorphic on the operiztsell. As a result,

on the basis of the maximum modulus principle imptex analysis, the maximum value
of|g|is achieved on the boundary, i.e., at some poirtherunit circlejz] = 1.

Actually, the maximum is obtained either &t +1 or z=-1. But, under certain condi-
tions, there is a sudden transition from one pmrdnother resulting in an amplification fac-
tor composed of two half-lines with a singular gaah the intersection of these two lines. At
this intersection the amplification factor turnschand attains its absolute minimum always

located in the stable zore <1.

The point where the maximum is transferred frem-1 to z=+1 is a fundamental
transition in the aerothermal coupling.
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3 DIRICHLET-ROBIN INTERFACE CONDITIONS

3.1 Stability bounds
The stability conditio*g(z,a'f )‘<1 applied to Eq.(10) leads, after some basic cascuha-

nipulations, to a lower stability boura™

K _ K
a;>a™" :7]‘(1_ Df)_7S (12)

3.2 A dynamical Biot number
Substituting the definition oBi® (Eq.(7)), ™ becomes

o™ :%[Bi ®@-D,)-1| (13)
As the coupling coefficient is always positive, taanes are clearly identified :

« Bi®”(@1-D,)<1:the coupling process is staliler, > 0

min

+ Bi®”(1-D,)=1: the coupling procedure exhibits a lower stapitiounda!

This demonstrates how stability depends mainlyhenratio of thermal resistances, but also
on the dynamics of the transient fluid system. Tigher the local Biot number, the more dif-
ficult it will be to stabilize the coupling. Of coge, the transient effects of the fluid system

also play a major role and can stabilize any pees the term(1- D, ), but at a significant
cost.

3.3 Optimal procedure

It is very noteworthy that the modulus of the ariqadition factor does not have a mono-
tonic variation (in terms ofr;) but goes through an absolute minimum, denatg&t. In
other words, the existence of a transition valuedp can be identified. At this transition

value, the shape of the curve of the amplificafiactor switches and turns back as can be
seen in Figure 1. In this Figure, the two curvegehlaeen plotted using the following charac-
teristics :

 Local Biot numberBi® =125 1¢°
+ Mesh Fourier numbers : (I), =40= D, =08 (2) D, = 40000= D, = 0992

Thus, the stabilizing effect of the ter(h— D, ) is noticeable. The most striking point is that

at the remarkable coefficiemt, = a?™, the modulus of the amplification attains its dbto
minimum value, always less than one.

Low values ofa, (a, <a®™) will result in a rapid convergence, but in thisseahow-

ever 5f must be sufficiently large to allow heat diffusion the fluid side. Otherwise, a low

Fourier number will soak up a lot of heat. It ok then necessary to enhance stability by in-
creasing the coupling parameter.
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But, likewise, large values af, (a, >>a{™)will always lead to an extremely slow con-

vergence since this corresponds to a slow diffusfdmeat through the fluid

subsystem. But it

should be pointed out that relatively large Fouriembers D, =1) indicate fast propagation

and energy in this case will be unnecessarily fndzea; .

10

max (lgl)

.......

éptibiél

coupling coefficient

| d:agt
Ll Lol Ll Lpi Lol j
10° 10' 10° 10° o 10° 10°
f

10°

Figure 1: Amplification factor foD, =40 & D, =40.000
Dirichlet-Robin procedure

It should be noted that these situations might patuihe same coupled computation or
even in the same fluid-structure interface. Ithe teason why it is crucial to use local cou-

opt

pling coefficients and it has been shown that= a;

model equation adopted herein.

is the optimal choice in the case of the
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34 Summary

The general behavior of the Dirichlet-Robin couglprocedure for steady CHT, in terms
of a, isillustrated in Table 1.

as o a™ a™ 0 condition
1 1 W)=

|g| UNSTABLE \ gopt / Bi'*(1-D¢)=21
0 1 _

g | ° \ - / B®@a-D,)<1

Table 1: Numerical behavior of Dirichlet-Robin pealure vsa'; (ag = ;a; 20)

4 NEUMANN-ROBIN INTERFACE CONDITIONS

4.1 Stability bounds
The stability conditiodg(z,af)‘<1 applied to Eqg.(10) leads, after some basic casculu

manipulations, to an upper stability bouad®

max 2KSKf
a, <af™= KK, (+D)) (14)
Substituting the definition oBi “ (Eq.(7)), o™ becomes
max 2Kf
"o (1+D,) (15)

As the coupling coefficient is always positive, tatability regions are highlighted :

« Bi”(@+D,)=>1:the coupling process is staliler, > 0

+ Bi®”@+D,)<1: the coupling procedure exhibits an upper stgtfilound a™

4.2 Optimal procedure

This time, in the framework of the Neumann-Robingadure, three zones can be identi-
fied. The first zone exhibits an upper stabilityili as just mentioned. There is also in this
zone an optimal coefficient for which the moduldghe amplification factor attains an abso-
lute minimum.

The second zone is very narrow. It also presentspéimal coefficient, but in contrast to
the previous case, there is no stability bound.

The third zone is also unconditionally stable bataptimal coefficient can be defined.
That is to say the minimum of the amplification ttacis obtained forr, =, i.e. for the
Neumann-Dirichlet procedure (heat flux imposedlonftuid side & temperature imposed on

the solid side) with no relaxation. Another wayeaplaining it, is that the amplification factor
is a monotonic function.
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43 Summary

The general behavior of the Neumann-Robin cougdmagedure for steady CHT, in terms
of a, is illustrated in Table 2.

a; 0 a(f)pt a?nax 0 condition

ol |1 \ g / 1 UNSTABLE Bi®@w+D,)=<1

o | —— || [1B®@+D))<2
|9 lg() | Bi®@+D;)=2

Table 2: Numerical behavior of Neumdgwbin procedure ver; (as =0;a¢ 20)

5 COMPARISON OF THE TWO INTERFACE CONDITIONS

51 Stabilizing effect of the Fourier number

As just stated, the two interface conditions coasd in this paper may be regarded as
two complementary conditions, and it seems thatarego as far as to say that they are al-
most opposite. The first condition is unconditidpatable at small Biot number while the
second one is unconditionally stable at large Bighbers. But there is one major difference.

In the case of the Dirichlet-Robin procedure, twent(1- D,) may become as small as nec-
essary and as a result the unconditional stalaitidition Bi” (1- D, ) <1(2"row of Table 1)
can always be satisfied. In other words, the lostability bound can always be removed by
an appropriate choice @, . Conversely, in the conditioBi® (1+ D,) <1 (1* row of Ta-

ble 2), the term(l+ D, ) has no stabilizing effect.

5.2 Overlapping zone

It is not quite accurate to say that the two irgteef conditions are opposite. Actually they
exhibit an overlapping zone where both may be ctamed as stable. On the basis of the sta-
bility limits presented in the preceding sectioiss seen that there is an overlapping zone
where both procedures are unconditionally stabtedsiined by

1 . 1
1+D, 1-D, (16)
This overlapping zone gets narrower as the normelFzourier numbeD, gets smaller.
On the contrary, this zone is significantly exteséier large Fourier numbers.

5.3 Existence and non-existence of optimal procedures

The two interface conditions presented in this papéibit 5 different zones (2 in Table 1
& 3 in Table 2). In one of them Trow of Table 2), there is no optimal coefficiefihis does
however not mean that the coupling procedure witiverge slowly but simply that the condi-
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tion a; = is a relevant choice. In other words the Neumairieiilet transmission is rec-

ommended. In the first procedure, the optimal cheequires a certain amount of relaxation
and this time a Dirichlet-Robin procedure is recagnaied in conjunction with the use of the
optimal coefficient.

Actually, there exist two types of optimal proceekirThe first one is not subject to any
condition and always exhibits an optimal coeffitiehhe second one presents a conditional
optimal coefficient. Clearly, the transient effeofsthe fluid system play a major role in the
stability analysis.

5.4 Criterion for arelevant interface tr eatment

We have just seen how to optimize a specific trassion condition procedure. But this
study suggests that it can be interesting to sel@etuately the most relevant procedure and
not necessarily to optimize a particular one, mardess arbitrarily chosen. Two options
might be considered :

(1) A "dynamic" option

The dynamic option is supported by the fact thatdptimal coefficient of the Dirichlet-
Robin condition is able to stabilize any procedure.

+ Bi®”(@-D,)<1: Dirichlet-Robin procedure witw, = a™

+ Bi®”@-D,)>1:
if (a™ >>K,) : Neumann-Robin procedure with, sufficiently great
else

Dirichlet-Robin procedure witlw, = a™
endif

Note that in the overlapping zone, the proceduth thie term(l- D, ) has been retained.

(2) A "static" option

The other option does not take into consideration dynamics of the fluid system
(D, =0). The preceding conditions thus become :

+ Bi” <1 : Dirichlet-Robin procedure witly, = a™

- Bi®>1
if (K; >>K,) : Neumann-Robin procedure with, sufficiently great
else
Dirichlet-Robin procedure witlr, = a{™
endif

The first option takes advantage of the stabilizifigct of the mesh Fourier number in the

transient fluid domain. The second option is maeuse especially when the rat®® is
very high, for instance in CFD computations in whie high wall resolution is adopted. In
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this case, it is always possible to exploit to adage the term(l-D,) such that
Bi”(@-D,) <1 but this can have a substantial cost.

55 Link between thelocal and the conventional Biot numbers

This local Biot number introduced by Eq. (7) taki®ctly into account the thermal and
dynamic response of the boundary layer and dirgulyicipates in the stability of the cou-
pled process. If a transient fluid flow is employdding the CHT computation it is this num-
ber that will drive and control the stability otlCHT problem.

On the other hand, the conventional Biot definedEly(6) is a measure of the resistance
to heat flow within the solid relative to the reaisce presented by the convection processes at
the surface. This parameter is also a key paramnimieonly at steady state since it determines
the stability of the fluid-solid equilibrium. Howey, it is clear that this conventional Biot
number, not easily defined during the transierasinot be used to set up a numerical CHT
procedure, as long as a transient fluid statevislued in this procedure.

At steady state, the thermal fluid resistance isaétp 1h and thus the various stability
criteria and stability bounds presented in thisgrapay easily be extended to steady state by

simply imposingD, =0 andK, =h.

5.6 Numerical example

A complex CHT computation has been performed ilDaest case representing an indus-
trial reheat furnace with heteroclite fluid-strueunterface (details can be found in [7]). As a
first step, the Dirichlet-Robin condition has bemsed and a systematic and comparative study
of various coupling coefficients has been underaHdis first study showed that the optimal
coupling coefficient presented in this paper wasdnythe best-performing procedure.

But by looking more closely at the fluid-solid infigces of the furnace, high local Biot
number can be found, for instance

K
Bi® = K—f =125 10° (17)
This ratio strongly suggests the use of a Neumainictlet procedure as mentioned in
8 5.4. Figure 2 presents the convergence histothese CHT tests. All the tests performed
are not indicated in this figure. It is sufficiglotmention that the so-called, optimal Dirichlet-
Robin procedure is always stable and oscillati@e-fand clearly the most efficient coupling
method.
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Figure 2 : Convergence histamgl aomparison between Dirichlet and Neumann prossdu

But, as suggested by the criterion proposed indfudy, it is instructive to see that a rele-
vant procedure, even with no relaxation parametarlie even more performing. This means
that when the local Biot numbéi®is high, stabilitycan be obtained with the Dirichlet-
Robin condition but at the expense of computatiaffitiency (CPU time)ln this case, a
natural physics-based approach is to impose a Newng@ndition.

6 CONCLUSIONS

On the basis of a simplified model problem, theegahexpression of the amplification
factor, the stability bounds, the optimal coefintiand the general numerical behavior have been
presented for two different and complementary fater treatments. It was shown that the
numerical properties depend on the ratio of flumll ahermal resistances and that the mesh
Fourier number plays a crucial role. Furthermodegcal Biot number has been introduced and it
was shown that this number "drives" the overallptiog process.

The two interface treatments have been compared had been highlighted that these inter-
face treatments are almost opposite and complergeiténen the first method is uncondition-
ally stable, the second one exhibits an upper Igyalbound. When the second method is
unconditionally stable, the first one exhibits wéw stability bound. These two interface schemes
present an overlapping area where both of themstalde. It is also shown that the so-called op-
timal coefficient provides the best results in terof stability and convergence in the Dirichlet-
Robin procedure. The numerical criteria establghire nature and character of the most rele-
vant interface treatment have been identified aquiessed. A comparison in a CHT test case
has emphasized the importance of a physics-basedrinal approach.
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