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Abstract. This paper presents two transmission interface treatments, Dirichlet-Robin and 
Neumann-Robin procedures, that may be employed for conjugate heat transfer problems. These 
conditions are analyzed on the basis of a 1D simplified model problem. In the first part of the paper, 
the Dirichlet-Robin procedure is presented. This interface treatment is the most widely employed in 
the literature. The same analysis is then performed  with a Neumann-Robin procedure. On the basis of 
the model problem, the general expression of the amplification factor, the stability bounds and the 
optimal coefficients are  provided. It is shown that the two interface treatments are opposite and 
complementary. Moreover, the so-called optimal coefficient provides the best results in terms of 
stability and convergence in the Dirichlet-Robin procedure. A criterion is expressed to choose the 
most appropriate transmission procedure and its importance is underlined by a test case. 
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1 INTRODUCTION 

Conjugate heat transfer (CHT) analysis refers to the ability to address the thermal interac-
tion between a body and a fluid flowing over or through it. The objective of CHT modeling is 
the accurate prediction of temperature and heat flux distribution in space and time in a body 
and on its boundaries. Conjugate heat transfer problems occur whenever the fluid convection 
and the solid material conduction are taken into account simultaneously. This mutual interac-
tion is becoming increasingly important because in many numerical simulations it is no longer 
acceptable to consider heat transport in the fluid only, with some ideal conditions at the fluid-
solid interface. 

 
Even if coupled procedures are the most correct and reasonable way to use when accurate 

heat transfer predictions are needed, in most cases, arbitrary relaxation parameters are used to 
stabilize the coupling procedure. This may have a significant negative impact on the numeri-
cal properties (low convergence rate, oscillations, and instabilities). Our goal in this paper is 
to present two interface conditions derived from a stability analysis and to present their main 
numerical characteristics.  

 
Recently, we have shown [1] using a 1D thermal model problem that in a coupled system, 

a numerical transition can be identified. This fundamental result has been derived from a 
normal mode stability analysis based on the theory of Godunov-Ryabenkii [2][3]. This transi-
tion can be regarded as an optimal choice in terms of stability and convergence. Ideally, a 
Robin condition on each side of the interface should be considered. But in this case, a general 
Robin-Robin interface condition leads to a too large family of schemes. Thus, in this paper we 
will confine ourselves to two commonly used conditions : 

- Dirichlet-Robin procedure : the temperature coming from the solid is applied on the fluid 
side and a "relaxed heat flux" is in turn used as a boundary condition for the solid. 

- Neumann-Robin procedure : the heat flux coming from the solid is applied on the fluid 
side and a Robin condition is in turn used as a boundary condition for the solid. 

These conditions have been chosen in order to deal with most situations likely to arise. 
They will be analysed on the basis of a 1D coupled aerothermal model problem. In the first 
part of the paper, Dirichlet-Robin interface treatments are presented. This transmission interface 
treatment is the most widely employed in the literature. The same analysis is then performed in 
the second part with a Neumann-Robin procedure. These two treatments will then be compared. 

2 MODEL EQUATIONS 

2.1 Model problem 

It has been often been stressed that the nature of instabilities derived from a 1D model can 
give insight into the potential instabilities in 2D/3D computations. As a result, the behavior of 
interface conditions in CHT is often studied using a normal mode analysis. This is because 
one may reasonably assume that the modes that may be unstable are those whose variation is 
in the direction normal to the coupled interface. A 1D model is composed of two partitions 
with a shared interface. Partitioned techniques [4][5] are very popular, because they allow the 
direct use of specifically designed solvers for different fields and may offer significant 
benefits in terms of efficiency over the monolithic techniques. In this study, the fluid-solid 
system will be decomposed into two partitions: the (+) subdomain (Ω+, index 0≥j  ; 0≥x ) 
and the (–) subdomain  (Ω–, index 0≤j  ; 0≤x ) as illustrated in Figure 1. 
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2.2 Interface conditions on the solid side  

Interface conditions are needed on either side of the shared interface (x = 0), where 
coupling conditions are applied. Our goal is to ensure a stable CHT process and to avoid 
destabilizing effects. It is well known that Robin conditions have many attractive features 
since such a condition introduces an interface stiffness forcing the boundary to behave in the 
same way as the boundary of the other domain resulting in much better stability properties. A 
Robin condition on the solid side is written simply as  

   [ ] [ ]fffsfs TQTQ αα +=+ ˆˆ  (1)  
 

The subscripts f and s denote the fluid and solid domain respectively and the (̂ ) notation 
indicates the sought values. Q  is the interfacial heat flux (W.m-2) and T is the interface 
temperature. The general Robin condition (1) introduces the numerical coupling parameter 

fα  (W.m-2.K-1) the choice of which directly influences the stability of the coupling process.  

2.3 Interface conditions on the fluid side 

A similar expression could be used on the fluid side 

   [ ] [ ]sssfsf TQTQ αα +=+ ˆˆ  (2)  
 

Condition (2) introduces another coefficient sα computed in the solid side and 

implemented in the fluid side. The simultaneous consideration of two coefficients could be 
complicated and thus it has been decided in this paper to focus on two complementary 
treatments : 

A Dirichlet condition on the fluid side, obtained easily by setting ∞=sα  in (2) 

   sf TT =ˆ  (3)  
 

and a Neumann condition on the fluid side, obtained by setting 0=sα  in (2). We readily 

obtain  

   sf QQ =ˆ  (4)  
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Fig.1 : Schematic of the fluid  & solid domains 
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2.4 Equations in the fluid and solid domains 

The CHT strategy used to obtain rapidly a fluid-structure steady solution relies on the  
significant discrepancy of the characteristic physical times of the two domains, namely a fast 
transient process in the fluid, a very slow one in the structure. In the fluid subsystem, the 
Navier-Stokes (NS) equations are solved generally to steady-state by a time marching scheme. 
As a consequence, a time marching scheme will be employed here in the fluid domain in the 
CHT model.  

 
 On the contrary, in the solid domain, if we are only interested in computing the steady-

state solution, then a second order ordinary differential equation can be solved directly and 
coupled to the unsteady fluid domain. Thus, only a Laplace equation is considered in the 
solid. 

2.5 Characteristic factors 

Three dimensionless numbers play a major role in CHT problems and appear in the stabil-
ity analysis performed in this paper. 
 

The first one is the mesh Fourier number defined as follows  

   2
ffff xtaD ∆∆=  (5)  

 
where fa is the fluid diffusivity (m2.s-1). fD  is the mesh Fourier number that characterizes 

transient heat diffusion in the fluid domain. 

The second one is a conventional Biot number defined by 

   sKhBi =  (6)  
 

where h (W.m-2.K-1) is the heat transfer coefficient and sK is the thermal conductance of the 

solid. Bi  determines whether or not the temperatures inside a solid body vary significantly in 
space, while the body heats or cools over time, from a thermal gradient applied to its surface. 

The third number, a local Biot number, naturally appears in the stability analysis per-
formed hereafter and takes the following form 

   sf KKBi =∆)(  (7)  
 

)(∆Bi is a "new" parameter that can be regarded as the ratio of the thermal conductance of the 
1st fluid cell over the thermal conductance of the whole solid domain. This number represents 
the balance at each coupling time between the solid resistance of the entire solid body (only a 
steady-state is considered in this domain) and the resistance of the transient fluid domain rep-
resented by the diffusion in the first near wall interface. 
 

It is also interesting to introduce a normalized Fourier number fD (see [6] for more details) 

defined by 

   
ff

f
f

DD

D
D

211 +++
=  (8)  

 

The domain of fD is 0≥fD  and the range is 10 <≤ fD . 
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2.6 Normal mode analysis 

We have performed a stability analysis by considering normal mode solutions in the form  
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where z  and κ  are two complex functions. z  is the “temporal amplification factor” and κ  is 
the “spatial amplification factor”. The stability analysis is very similar to the standard Fourier 
stability method except that the Fourier analysis ignores boundary conditions and as these 
may affect stability, the theory of Godunov & Ryabenkii [2][3] is preferable. After elementary 
transformations not reported in this paper (see details in [1]), we find that the temporal ampli-
fication factor z  (i.e. each mode increases in amplitude by a ratio z ) takes the following 

forms in the two interface conditions considered in this paper : 
 
(1)  Dirichlet-Robin interface condition : ( ) ( )∞≥= ,0, fsf ααα  

 
The temporal amplification factor can be written as   

   [ ])(),(
1

),( ffff
fs

f Kz
K

zgz αακ
α

α −−
+

==  (10) 
 

 
(2)  Neumann-Robin interface condition : ( ) ( )0,0, >= fsf ααα  

 
The temporal amplification factor can be written as   
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2.7 A fundamental transition 

The complex functiong is a rather complicated nonlinear equation for z.  After the change 

of variable zz 1→ , this function becomes holomorphic on the open set 1<z . As a result, 

on the basis of the maximum modulus principle in complex analysis, the maximum value 
of g is achieved on the boundary, i.e., at some point on the unit circle 1=z .  

 
Actually, the maximum is obtained either at 1+=z  or 1−=z . But, under certain condi-

tions, there is a sudden transition from one point to another resulting in an amplification fac-
tor composed of two half-lines with a singular point at the intersection of these two lines. At 
this intersection the amplification factor turns back and attains its absolute minimum always 
located in the stable zone 1<z .  

 
The point where the maximum is transferred from 1−=z   to 1+=z  is a fundamental 

transition in the aerothermal coupling. 
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3 DIRICHLET-ROBIN INTERFACE CONDITIONS  

3.1 Stability bounds  

The stability condition 1),( <fzg α  applied to Eq.(10) leads, after some basic calculus ma-

nipulations, to a lower stability bound min
fα  

   >fα
2

)1(
2

min s
f

f
f

K
D

K
−−=α  (12) 

 

3.2 A dynamical Biot number 

Substituting the definition of )(∆Bi (Eq.(7)), min
fα becomes  

   min
fα = [ ]1)1(

2
)( −−∆

f
s DBi

K
 (13) 

 
As the coupling coefficient is always positive, two zones are clearly identified : 
 
• 1)1()( ≤−∆

fDBi  : the coupling process is stable 0≥∀ fα  

• 1)1()( ≥−∆
fDBi  : the coupling procedure exhibits a lower stability bound min

fα  

 
This demonstrates how stability depends mainly on the ratio of thermal resistances, but also 
on the dynamics of the transient fluid system. The higher the local Biot number, the more dif-
ficult it will be to stabilize the coupling. Of course, the transient effects of the fluid system 
also play a major role and can stabilize any process via the term )1( fD− , but at a significant 

cost.   

3.3 Optimal procedure 

It is very noteworthy that the modulus of the amplification factor does not have a mono-
tonic variation (in terms of fα ) but goes through an absolute minimum, denoted opt

fα . In 

other words, the existence of a transition value for fα  can be identified. At this transition 

value, the shape of the curve of the amplification factor switches and turns back as can be 
seen in Figure 1. In this Figure, the two curves have been plotted using the following charac-
teristics : 

• Local Biot number 2)( 1025.1=∆Bi  

• Mesh Fourier numbers : (1) ⇒= 40fD  8.0=fD       (2) ⇒= 000,40fD  992.0=fD  

Thus, the stabilizing effect of the term )1( fD− is noticeable. The most striking point is that 

at the remarkable coefficient opt
ff αα = , the modulus of the amplification attains its absolute 

minimum value, always less than one. 

Low values of fα )( opt
ff αα <  will result in a rapid convergence, but in this case how-

ever fD  must be sufficiently large to allow heat diffusion on the fluid side. Otherwise, a low 

Fourier number will soak up a lot of heat. It will be then necessary to enhance stability by in-
creasing the coupling parameter.  
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But, likewise, large values of fα  )( opt
ff αα >> will always lead to an extremely slow con-

vergence since this corresponds to a slow diffusion of heat through the fluid subsystem. But it 
should be pointed out that relatively large Fourier numbers ( )1≈fD indicate fast propagation 

and energy in this case will be unnecessarily frozen by fα .  

 
 

 
 
 
 
 
It should be noted that these situations might occur in the same coupled computation or 

even in the same fluid-structure interface. It is the reason why it is crucial to use local cou-
pling coefficients and it has been shown that opt

ff αα =  is the optimal choice in the case of the 

model equation adopted herein.  
 
 
 

Figure 1: Amplification factor for 40=fD  & 40=fD .000 
   Dirichlet-Robin procedure 
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3.4 Summary 

The general behavior of the Dirichlet-Robin coupling procedure for steady CHT, in terms 
of fα  is illustrated in Table 1. 

 

fα   0   min
fα  ---------------- opt

fα  -----------------
- 

∞  c o n d i t i o n  

g      
U N S T A B L E 

  1  
 
 

optg  

   1 
1)1()( ≥−∆

fDBi  

g  
0g   

 
 

optg  
     

 1 
1)1()( ≤−∆

fDBi  

 

  

  
 

 

Table 1: Numerical behavior of Dirichlet-Robin procedure vs fα ( )0; ≥∞= fs αα  

4 NEUMANN-ROBIN INTERFACE CONDITIONS  

4.1 Stability bounds  

The stability condition 1),( <fzg α  applied to Eq.(10) leads, after some basic calculus 

manipulations, to an upper stability bound max
fα  

   <fα
)1(

2max

ffs

fs
f DKK

KK

+−
=α  (14) 

 

Substituting the definition of )(∆Bi (Eq.(7)),  max
fα becomes  

   
max
fα =

)1(1

2
)(

f

f

DBi

K

+− ∆  (15) 
 

As the coupling coefficient is always positive, two stability regions are highlighted : 
 
• 1)1()( ≥+∆

fDBi  : the coupling process is stable 0≥∀ fα  

• 1)1()( ≤+∆
fDBi  : the coupling procedure exhibits an upper stability bound max

fα  

4.2 Optimal procedure 

This time, in the framework of the Neumann-Robin procedure, three zones can be identi-
fied. The first zone exhibits an upper stability limit as just mentioned. There is also in this 
zone an optimal coefficient for which the modulus of the amplification factor attains an abso-
lute minimum. 

The second zone is very narrow. It also presents an optimal coefficient, but in contrast to 
the previous case, there is no stability bound. 

The third zone is also unconditionally stable but no optimal coefficient can be defined. 
That is to say the minimum of the amplification factor is obtained for ∞=fα , i.e. for the 

Neumann-Dirichlet procedure (heat flux imposed on the fluid side & temperature imposed  on 
the solid side) with no relaxation. Another way of explaining it, is that the amplification factor 
is a monotonic function.   
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4.3 Summary 

The general behavior of the Neumann-Robin coupling procedure for steady CHT, in terms 
of fα is illustrated in Table 2. 

fα   0   opt
fα  --------------

-- 
max
fα  -----------------

- 
  ∞  c o n d i t i o n  

g  
  
1   

 

     
optg   

 

   1 
          

U N S T A B L E 
  

 
1)1()( ≤+∆

fDBi  

g  1 
 

 

optg  
 

)(∞g  2)1(1 )( ≤+≤ ∆
fDBi  

g  1  
 
     

)(∞g  2)1()( ≥+∆
fDBi  

 
 

 

5 COMPARISON OF THE TWO INTERFACE CONDITIONS 

5.1 Stabilizing effect of the Fourier number 

As just stated, the two interface conditions considered in this paper may be regarded as 
two complementary conditions, and it seems that we can go as far as to say that they are al-
most opposite. The first condition is unconditionally stable at small Biot number while the 
second one is unconditionally stable at large Biot numbers. But there is one major difference. 
In the case of the Dirichlet-Robin procedure, the term )1( fD−  may become as small as nec-

essary and as a result the unconditional stability condition 1)1()( ≤−∆
fDBi (2nd row of Table 1) 

can always be satisfied. In other words, the lower stability bound can always be removed by 
an appropriate choice of fD . Conversely, in the condition 1)1()( ≤+∆

fDBi  (1st row of Ta-

ble 2), the term )1( fD+  has no stabilizing effect. 

5.2 Overlapping zone 

It is not quite accurate to say that the two interface conditions are opposite. Actually they 
exhibit an overlapping zone where both may be considered as stable. On the basis of the sta-
bility limits presented in the preceding sections, it is seen that there is an overlapping zone 
where both procedures are unconditionally stable and defined by  

   
ff D

Bi
D −

≤≤
+

∆

1

1

1

1 )(  (16) 
 

This overlapping zone gets narrower as the normalized Fourier number fD  gets smaller. 

On the contrary, this zone is significantly extended for large Fourier numbers. 

5.3 Existence and non-existence of optimal procedures 

The two interface conditions presented in this paper exhibit 5 different zones (2 in Table 1 
& 3 in Table 2). In one of them (3rd row of Table 2), there is no optimal coefficient. This does 
however not mean that the coupling procedure will converge slowly but simply that the condi-

             Table 2: Numerical behavior of Neumann-Robin procedure vs fα ( )0;0 ≥= fs αα  
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tion ∞=fα  is a relevant choice. In other words the Neumann-Dirichlet transmission is rec-

ommended. In the first procedure, the optimal choice requires a certain amount of relaxation 
and this time a Dirichlet-Robin procedure is recommended in conjunction with the use of the 
optimal coefficient. 

 
Actually, there exist two types of optimal procedures. The first one is not subject to any 

condition and always exhibits an optimal coefficient. The second one presents a conditional 
optimal coefficient. Clearly, the transient effects of the fluid system play a major role in the 
stability analysis. 

5.4 Criterion for a relevant interface treatment 

We have just seen how to optimize a specific transmission condition procedure. But this 
study suggests that it can be interesting to select adequately the most relevant procedure and 
not necessarily to optimize a particular one, more or less arbitrarily chosen. Two options 
might be considered : 

(1) A "dynamic" option 

The dynamic option is supported by the fact that the optimal coefficient of the Dirichlet-
Robin condition is able to stabilize any procedure. 

• 1)1()( ≤−∆
fDBi  : Dirichlet-Robin procedure with opt

ff αα =  

• 1)1()( >−∆
fDBi  :  

 if ( )s
opt
f K>>α  : Neumann-Robin procedure with fα sufficiently great 

 else 
 Dirichlet-Robin procedure with opt

ff αα =  

 endif 

Note that in the overlapping zone, the procedure with the term )1( fD− has been retained. 

(2) A "static" option 

 The other option does not take into consideration the dynamics of the fluid system 
( )0=fD . The preceding conditions thus become : 

• 1)( ≤∆Bi  : Dirichlet-Robin procedure with opt
ff αα =  

• 1)( >∆Bi    : 
 if ( )sf KK >>  : Neumann-Robin procedure with fα  sufficiently great  

 else 
 Dirichlet-Robin procedure with opt

ff αα =  

 endif 

The first option takes advantage of the stabilizing effect of the mesh Fourier number in the 
transient fluid domain. The second option is more secure especially when the ratio )(∆Bi is 
very high, for instance in CFD computations in which a high wall resolution is adopted. In 
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this case, it is always possible to exploit to advantage the term )1( fD− such that 

1)1()( ≤−∆
fDBi  but this can have a substantial cost. 

5.5 Link between the local and the conventional Biot numbers 

This local Biot number introduced by Eq. (7) takes directly into account the thermal and 
dynamic response of the boundary layer and directly participates in the stability of the cou-
pled process. If a transient fluid flow is employed during the CHT computation it is this num-
ber that will drive and control the stability of the CHT problem. 

 
On the other hand, the conventional Biot defined by Eq.(6) is a measure of the resistance 

to heat flow within the solid relative to the resistance presented by the convection processes at 
the surface. This parameter is also a key parameter, but only at steady state since it determines 
the stability of the fluid-solid equilibrium. However, it is clear that this conventional Biot 
number, not easily defined during the transients, cannot be used to set up a numerical CHT 
procedure, as long as a transient fluid state is involved in this procedure. 

 
At steady state, the thermal fluid resistance is equal to 1/h and thus the various stability 

criteria and stability bounds presented in this paper may easily be extended to steady state by 
simply imposing 0=fD  and hK f = . 

5.6 Numerical example 

A complex CHT computation has been performed in a 3D test case representing an indus-
trial reheat furnace with heteroclite fluid-structure interface (details can be found in [7]). As a 
first step, the Dirichlet-Robin condition has been used and a systematic and comparative study 
of various coupling coefficients has been undertaken. This first study showed that the optimal 
coupling coefficient presented in this paper was by far, the best-performing procedure.  

 
But by looking more closely at the fluid-solid interfaces of the furnace, high local  Biot 

number can be found, for instance 

   2)( 1025.1==∆

s

f

K

K
Bi  (17) 

 
This ratio strongly suggests the use of a Neumann-Dirichlet procedure as mentioned in 

§ 5.4. Figure 2 presents the convergence history of these CHT tests. All the tests performed 
are not indicated in this figure. It is sufficient to mention that the so-called, optimal Dirichlet-
Robin procedure is always stable and oscillation-free and clearly the most efficient coupling 
method. 
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                   Figure 2 : Convergence history and comparison between Dirichlet and Neumann procedures 
 
 
But, as suggested by the criterion proposed in this study, it is instructive to see that a rele-

vant procedure, even with no relaxation parameter can be even more performing. This means 
that when the local Biot number )(∆Bi is high, stability can be obtained with the Dirichlet-
Robin condition but at the expense of computational efficiency (CPU time). In this case, a 
natural physics-based approach is to impose a Neumann condition. 

 

6 CONCLUSIONS  

On the basis of a simplified model problem, the general expression of the amplification 
factor, the stability bounds, the optimal coefficient and the general numerical behavior have been 
presented for two different and complementary interface treatments. It was shown that the 
numerical properties depend on the ratio of fluid and thermal resistances and that the mesh 
Fourier number plays a crucial role. Furthermore, a local Biot number has been introduced and it 
was shown that this number "drives" the overall coupling process. 

The two interface treatments have been compared and it has been highlighted that these inter-
face treatments are almost opposite and complementary. When the first method is uncondition-
ally stable, the second one exhibits an upper stability bound. When the second method is 
unconditionally stable, the first one exhibits a lower stability bound. These two interface schemes 
present an overlapping area where both of them are stable. It is also shown that the so-called op-
timal coefficient provides the best results in terms of stability and convergence in the Dirichlet-
Robin procedure. The numerical criteria establishing the nature and character of the most rele-
vant interface treatment have been identified and expressed. A comparison in a CHT test case 
has emphasized the importance of a physics-based numerical approach. 
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