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t. In this paper, we propose a new algorithm to 
omputea trun
ated singular value de
omposition (T-SVD) of the Born matrixbased on a low-rank arithmeti
. This algorithm is tested in the 
ontextof a
ousti
 media. Theoreti
al ba
kground to the low-rank SVD methodis presented: the Born matrix of an a
ousti
 problem 
an be approxima-ted by a low-rank approximation derived thanks to a kernel independentmultipole expansion. The new algorithm to 
ompute T-SVD approxima-tion 
onsists of four steps, and they are des
ribed in detail. The largestsingular values and their left and right singular ve
tors 
an be approxima-ted numeri
ally without performing any operation with the full matrix.The low-rank approximation is 
omputed due to a dynami
 panel strategyof 
ross approximation (CA) te
hnique.At the end of the paper, we present a numeri
al experiment to illustratethe e�
ien
y and pre
ision of the algorithm proposed.Keywords: Born matrix, SVD algorithm, 
ross approximation (CA),low-rank approximation, high-performan
e 
omputing, parallel 
omputa-tions. 1. Introdu
tionComputing the exa
t SVD or the T-SVD in full-arithmeti
 is a pretty expensivetask. A standard way to 
ompute the SVD 
onsists of the two steps: �rst, thematrix is redu
ed to a bidiagonal form, then the SVD of the bidiagonal matrix isSolovyev S.A., Tordeux S., An effi
ient Trun
ated SVD of large matri
es basedon the low-rank approximation for inverse geophysi
al problems.
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AN EFFICIENT TRUNCATED SVD 593
omputed. Usually, the �rst step is done by the Householder re�e
tions and 
osts
(4/3)n2(3m−n) arithmeti
 operations (FLOPS). The se
ond step 
an be performedby an iterative re�nement algorithm with stoping 
riteron equal to the ma
hinepre
ision, it takes about O(n) iterations, ea
h 
osts O(n) FLOPS [3℄. Anotherversion of the se
ond step is a QR algorithm for the 
omputation of eigenvaluesand takes O(n2) FLOPS [4℄,[10℄. There are various modi�
ations of them, usinga divide-and-
onquer method, pre
onditioned and Ja
obi plane rotation methods.These ones are implemented in LAPACK routines. To 
ompare with own developedalgorithm we use the LAPACK fun
tionality from Intel MKL. However, it is almostimpossible to 
ompute su
h a de
omposition for large-s
ale problems using a robustarithmeti
.The obje
tive of this paper is designing an e�
ient algorithm to 
ompute anapproximation of the T-SVD based on a low-rank arithmeti
.More pre
isely, in this paper we aim at looking for matri
es Uk = {ū1, . . . ūk} ∈
C

I×k, V k = {v̄1, . . . v̄k} ∈ C
J×k and Dk = diag{di}ki=1 ∈ R

k×k whi
h approximate
Uk, Vk, Dk of the T-SVD (28) in the following sense:I The di�eren
e between approximate singular values and exa
t singular valuesis smaller than a small parameter η1(1) di − d̄i < η1, 1 < i ≤ k and di < δ, k < i ≤ nII The angles between the approximated and exa
t left and right singular spa
esare smaller than a small parameter η2(2) ∠(Uk, Uk) < η2 and ∠(Vk, V k) < η2where ∠(A,B) = arccos(σ) with the smallest singular value σ of A∗B.The major appli
ation of the algorithm proposed is the geophysi
al inverseproblem. It 
onsists in determining the physi
al 
hara
teristi
s of a propagationmedium by interpreting the measured data by re
eivers for di�erent sour
es. Oneof the main features of this problem is the huge number of re
eivers, sour
es andparameters of the model whi
h is under study. Among all di�erent te
hniques thatexist, the Full Waveform Inversion (FWI) is one of the most 
ostly. It 
onsists in aninterative Newton-type pro
edure whi
h requires the 
omputation of the so-
alledBorn Matrix asso
iated with the fullwave equation.It is known that be
ause of its poor 
onditioning this very large s
ale problem isdi�
ult to solve: some (
ombinations) of the sour
es, re
eivers or model parametersare very important to take into a

ount whereas some other (
ombinations) donot have so strong impa
t. The numeri
al method proposed in this paper needs
omputing the Singular Value De
omposition [14, 7℄ of the Born matrix to redu
ethe 
omplexity of this problem by identifying the most important model parameters,sour
es and re
eivers.This paper will is 
omposed as follows: In Se
tion 2, we brie�y re
all whatis a low-rank approximation of a matrix and some algorithms to 
ompute theseapproximations. Se
tion 3 is the "
ore"of this paper. We des
ribe an algorithm to
ompute a numeri
al approximation of the Trun
ated Singular Value de
ompositionbased on a low-rank arithmeti
. In Se
tion 4, some numeri
al results are presented.These results illustrate the e�
ien
y and a

ura
y of the method. There are threeappendi
es: in Appendix A, we des
ribe in detail the Singular Value De
ompositionand the Trun
ated Singular Value De
omposition. Appendix B is 
on
erned with atheoreti
al result about the Born a
ousti
 matrix. We re
all that the Born matrix



594 S.A. SOLOVYEV AND S. TORDEUXasso
iated with homogeneous a
ousti
 media 
an be approximated by a low-rankapproximation under suitable assumptions. Finally, Appendix C brie�y re
alls 
lassi-
al results about the Chebyshev tensorial interpolation.2. The low rank approximation of a matrixIn what follows, we will make an intensive use of the low-rank approximation.2.1. De�nition of the ε-rank of a matrix and low-rank approximation. Let
A ∈ CI×J be a matrix with I rows and J 
olumns with J ≤ I. The matrix A has
ε-rank k if k is the smallest integer su
h that there exists a matrix Ak ∈ CI×J withthe rank k satisfying(3) ‖A−Ak‖

‖A‖ < ε.When ‖ · ‖ is the eu
lidean matrix norm ‖ · ‖2, the ε-rank of a matrix A is expli
itlygiven by the number of singular values whi
h are larger than ε. Moreover, the matrix
Ak 
an be dedu
ed from the T-SVD of the matrix A(4) Ak = Uk Dk V ∗

k with Uk ∈ C
I×k, Dk ∈ R

k×k
+ and Vk ∈ C

J×k.In reality, the 
omputation of the T-SVD of a large-size matrix is very expensive,many authors have proposed other algorithms to 
ompute non-optimal (in thesense of the matrix eu
lidean norm) low-rank approximation of a matrix A. Thesemethods 
onsist in looking for a matrix Ak as a produ
t of the two matri
es
Bk ∈ CI×k and Ck ∈ CJ×k, whi
h minimize k, satisfying(5) ‖A−BkC

T
k ‖

‖A‖ < ε.The norm ‖A‖2 is given by the largest singular value of the matrix A and its
omputation is pretty expensive. So, we prefer to use ‖A‖ = max
i≤I,j≤J

|Ai,j | norm.The two 
ommon te
hniques to obtain this fa
torization are the QR fa
torizationwith pivoting of the matrix and the Cross Approximation (CA) te
hnique whi
h issimilar to the in
omplete LU fa
torization with pivoting. To determine ε-rank ofa matrix and obtain low-rank approximation, the rank-revealing QR modi�
ationwith pivoting is used (RRQR-piv) [8℄. The approximate number of �oating-pointoperations for real �avors is (2/3)n2(3m− n),m ≥ n. The RRQR-piv algorithm isslow (however faster than the 
omputation of the T-SVD of a matrix A) algorithmand is almost optimal in terms of the rank k, whereas the CA algorithm is rapid,but 
an give rise to non-optimal k.Lets us brie�y des
ribe the RRQR-piv algorithm and des
ribe in detail variousmodi�
ations of the CA approa
h.Cross approximation.The 
ross approximation algorithm [11℄ takes the follow-ing form.
• Initialization:(6) R0 = A ∈ C

I×J , n = 0

• While stopping-
riteria (Rn) > ε‖A‖Step 1. Choose a pivot (i⋆, j⋆) in Rn



AN EFFICIENT TRUNCATED SVD 595Step 2. De�ne two ve
tor 
olumns bn+1 ∈ CI and cn+1 ∈ CJ(7) (bn+1)i = (Rn)i,j⋆ and (cn+1)j =
(Rn)i⋆,j
(Rn)i⋆,j⋆Step 3. In
rement n: n = n+1. De�ne the matri
esBn ∈ CI×n and Cn ∈ CJ×nand(8) Bn = [b1, b2, · · · , bn] and Cn = [c1, c2, · · · , cn]Step 3. Update(9) Rn = A−Bn CT

n .As a result, we obtain both matri
es Bk and Ck that are involved in the low-rankapproximation of A.Like for the in
omplete LU fa
torization algorithm, we have the following optionsfor this algorithm:I Total pivoting: The stopping 
riterion is the following:(10) stopping-
riterion(Rn) = max
i≤I,j≤J

(|(Rn)i,j |)At ea
h iteration, the pivot is 
hosen by maximizing |(Rn)i,j | over whole thematrix(11) |(Rn)i⋆,j⋆ | = max
i≤I, j≤J

|(Rn)i,j |II Dynami
 panel strategy: The algorithm is more 
omplex to des
ribe. This
orresponds to a partial pivoting. First, as for the total pivoting we de�ne
i� and j� su
h that(12) |(Rn)i�,j� | = max

i≤I, j≤J
|(Rn)i,j |We then de�ne a panel J� ⊂ [1, J ] of width 2K + 1 ∈ [1, J ]:(13) J� =






[1, 2K + 1] if j� ≤ K,

[j� −K, j� +K] if K < j� ≤ J −K,

[J − 2K, J ] if j� > J −K.As long as a maximum of |Rn| over this panel is larger than ε(14) max
i≤I, j∈J�

|(Rn)i,j | > ε,the pivot (i⋆, j⋆) will be 
hosen into this panel of 
olumns(15) |(Rn)i⋆,j⋆ | = max
i≤I, j∈J�

|(Rn)i,j |.When (14) is not ful�lled anymore, another panel is 
onsidered in the sameway until(16) max
i≤I, j≤J

|(Rn)i,j | < ε.III Cross pivoting: The pivot is 
hosen in the following way: Pi
k by hazard anon-zero 
olumn (Rn)·,j△ of Rn, with j△ ∈ J . De�ne the integer i⋆ ∈ I bylooking for a maximum of |Rn| in this 
olumn(17) |(Rn)i⋆,j△ | = max
i∈I

|(Rn)i⋆,j△ |



596 S.A. SOLOVYEV AND S. TORDEUXDe�ne the integer j⋆ ∈ J by looking for a maximum of |Rn| in this row(18) |(Rn)i⋆,j⋆ | = max
j∈J

|(Rn)i⋆,j |The stopping 
riterion is then the following:(19) |(Rn)i⋆,j⋆ | > εRemark 1. The sear
h for a maximum and the update of the matrix Rn is theperforman
e of the bottle-ne
k of the CA algorithm. The total pivoting strategy ismu
h slower than the two other strategies be
ause of
• the sear
h for the maximum is made over the full matrix.
• at ea
h iteration the matrix should be fully updatedThe dynami
al panel strategy is more e�
ient sin
e
• the sear
h for the maximum is made over a small subset of the full matrix.
• only the panel of the matrix needs to be updated at ea
h iterationSin
e the panel is formed of a group of 
olumns, it is important to optimize thea

ess to memory in storing the matrix in the RAM 
olumn-by-
olumn. If a matrixis stored rows-by-rows, the panel should be 
onstru
ted of a group of rows.The 
ross partial pivoting strategy is also very e�
ient sin
e
• the sear
h for the maximum is made over a 
ross whi
h is a small subset ofthe full matrix.
• the matrix Rn does not need not to be updated but only needs to beevaluated for a small number of indi
es at ea
h iteration.3. DESCRIPTION OF THE ALGORITHMThe algorithm 
an be de
omposed into four steps.The �rst step 
onsists in de
omposing verti
ally the matrix A into blo
ks Ai,

A =
A6

A5

A4

A3

A2

A1

Fig. 1. De
omposition of the matrix A by blo
ks



AN EFFICIENT TRUNCATED SVD 597(Figure 1), and in performing a low-rank approximation of ea
h blo
k Ai ∈ Cmi×J ,(Figure 2).
Ai ≃ Bi C

T
i with Bi ∈ C

mi×ki and Ci ∈ C
J×kiTo 
ompute a low-rank approximation of blo
ks we have the three options:i) T-SVD in the full arithmeti
;ii) RRQR-piv algorithm;iii) Cross Approximation (CA) te
hnique.Remark 2. The algorithm will only be e�
ient if the integer ki is less than J . Inpra
ti
e, this number is small.Remark 3. The a

ura
y of the low-rank approximation of the matrix A is 
hara
te-rized by a small parameter ε and by the stopping 
riterion. For SVD-
ompression,QR-piv and CA algorithm, it takes the form(20) 




‖Ai −BiC
T
i ‖2 ≤ ε for T-SVD and RRQR algorithm,

‖Ai −BiC
T
i ‖∞ ≤ ε for CA algorithm,with ‖ · ‖2 the eu
lidean matrix norm and ‖A‖∞ = max

i≤I,j≤J
|Ai,j |.

Ai

=

Bi CT
iFig. 2. Low-rank approximation of AThe result of the �rst step is depi
ted in Figure 3. In this pi
ture and in the nextones, the "plotted"parts of matri
es mean dense non-zero blo
ks. The "white"blo
ksmean zero �ll-in.At the se
ond step, we orthogonalize the matri
es B and C. More pre
isely,we perform a QR de
omposition of the matri
es Bi and C

Bi = B̃i Ri and CT = L C̃T ,with B̃i ∈ Rmi×ki , C̃ ∈ RJ×k being orthogonal, Ri ∈ Rki×ki � the upper triangularand L ∈ Rk×k � the lower triangular, where k =
∑

ki. The matri
es B̃i and Riare 
olle
ted into the orthogonal matrix B̃ and into the upper triangular matrix R,(see Figure 4). This result in that the Low-rank approximation of A should be(21) A ≃ B̃ (R L) C̃T ,with B̃ ∈ RI×k, C̃ ∈ RJ×k and RL ∈ Rk×k being full.At the third step, a robust T-SVD with the a

ura
y δ of the produ
t RL isperformed(22) RL = URLDRLV
∗
RL with ‖URLDRLV

∗
RL −RL‖ < δ.The result of the third step is presented in Figure 5.Remark 4. When the matrix RL is mu
h smaller than the initial matrix A (thisis a wide-spread in the pra
ti
e 
ase), the 
omputation of the T-SVD in the fullarithmeti
 of the produ
t RL is less expensive than the 
omputation of the T-SVDof the matrix A.
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A = =

A6

A5

A4

A3

A2

A1

Bi

B

Ct
i

Ct

Fig. 3. Low-rank approximation of the matrix A

A = =
A6

A5

A4

A3

A2

A1

B̃

B̃i

R

Ri

L C̃T

Fig. 4. The result of the se
ond stepAt the fourth step, we 
onstru
t the �nal matri
es by 
omputing the produ
ts
U = B̃URL, V ∗

= V ∗
RLC̃

T and D = DRL. As a result, the matri
es U and V haveorthogonal 
olumns.Our statement is that the de
omposition U D V
∗ approximates the exa
t T-SVDof A in the sense of (1) and (2).
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A = =

A6

A5

A4

A3

A2

A1

B̃

B̃i

URL DRL V ∗
RL C̃T

Fig. 5. The result of the third step4. NUMERICAL EXPERIMENTSThe numeri
al experiments are aimed at demonstrating the performan
e of ouralgorithm in terms of 
omputation time and pre
ision.We have not developed our own linear algebra library but have used the LAPACKand BLAS fun
tions of Intel MKL. The performan
e was measured on Intel Core i7-3770K CPU 3.5 GHz, (Ivy Bridge). We have avoided the impa
t of OMP paralleliza-tion of all MKL fun
tions by swit
hing o� threading by setting OMP_NUM_TRE-ADS=1.The Born matrix A asso
iated with a 2D elasti
ity verti
ally inhomogeneous(layered) isotropi
 medium, one sour
e, 1450 re
eivers and 10 di�erent frequen
ies,has been 
onsidered. The target domain, 
ontaining 120x20 points, is a part of ahuge real model whi
h we would like to image. Details of this model are des
ribedin [13℄. The full matrix A has 29,000 lines and 7,200 
olumns. At the preliminarystep, the matrix A is separated into p = 10 blo
ks.4.1. Computational time. In the �rst test, the a

ura
y ε of the low-rank appro-ximation is 10−6 and the threshold δ of the 
ropped exa
t SVD UkDkV
∗
k and ofthe 
ropped low-rank SVD U D V

∗ is 10−6. Di�erent options for the �rst stepare tested: the 
omputational time for the SVD, the QR and the CA 
ompressionmethods are 
omputed. These 
omputational times should be 
ompared to 970 s,i.e. the time of a robust SVD by the gesvd 
omputational optimized routine of IntelMKL.The performan
e results show the advantage of using partial pivoting in the CAover the 
ross pivoting and 
lassi
al total pivoting. Additionally, the performan
eresults 
on�rm the high a

eleration of the CA approa
h in 
omparison with theSVD and the QR-piv te
hniques.



600 S.A. SOLOVYEV AND S. TORDEUXTable 1. Comparison of performan
e algorithms of Low-rankSVD-based on SVD/QR/CA approa
hesSteps, des
ription SVD RRQR CA CA CA
\ Approa
hes Total Cross Partialpivot. pivot. pivot.1-st, Get SVD/QR/CA of all Ai 605s 255s 90s 44s 18s2-nd, Make QR of B and T-QR of C: 18s 20s 19s 20s 25s3-rd, Perform SVD of RL: 16s 13s 13s 13s 15s4-th, Gathering U ,D,V 7s 6s 6s 6s 6sTotal time 651s 294s 130s 84s 66sFinally, we point out that the �rst step of the method proposed is easily paralleli-zable: sin
e the 
ompression of all blo
ks 
an be done by di�erent pro
essors asopposed to the last three steps.4.2. Pre
ision. In the se
ond test our attention will be fo
ussed on two di�erenterror indi
ators. Only the results for the most e�
ient 
ase (Cross Approximationwith dynami
 panel partial pivoting) will be presented.First, we are interested in the error resulted from approximate singular values.Denoting by Iε the ε-rank of the matrix A, the following quantities(23) 





max
i≤Iε

|di − di|
|d1|

(absolute error)
max
i≤Iε

|di − di|
|di|

(relative error)have been plotted with respe
t to ε, the parameter relating to the a

ura
y ofthe Cross Approximation parameter and with respe
t to δ, i.e. the �nal thresholdparameter. The results are reported in Figure 6 for the absolute error and in Figure7 � for the relative error. It seems that the absolute error does mostly depend on
ε. On 
ontrary, the relative error is su�
iently related to the ratio ε/δ. Se
ond, wequantify the quality of the approximation of the left singular spa
e. The results forthe right singular values are quite similar and are not presented. We 
ompute theangle (in degrees) between the subspa
e generated by the 
olumns of U and thesubspa
e generated by the 
olumns of Uk(24) ∠(U,Uk) = arccos(σ)

180

πwith the smallest singular value σ of the matrix U
∗
Uk.Numeri
al measurements (Figure 8) show that the angle α = ∠(U,Uk), forany threshold δ, 
an be de
reased via improving the a

ura
y ε of the low-rankapproximation. The numeri
al results reveal that the error depends mostly on ε/δlike the relative error for the singular values (Figure 7).4.3. Evolution of ε-rank. In the last test we investigate the ranks of trun
atedmatri
es.They are presented in Tables 2 and 3 for di�erent low-rank approximations.The SVD approa
h is the most optimal in terms of ε-rank, whereas the CA te
hniqueis the worst (the rank after the �rst step in the Tables). For ε = 10−6 and δ = 10−6,the �nal ranks asso
iated with di�erent 
ompressions are slightly di�erent. For



AN EFFICIENT TRUNCATED SVD 601

Fig. 6. The CA partial pivoting: Dependen
e of the singular valueabsolute error on a

ura
y ε and threshold δ.

Fig. 7. The CA partial pivoting: Dependen
e of the singular valuerelative error.
ε = 10−9 and δ = 10−6, the �nal ranks are equal. This will be the 
ase when the
ompression ε is mu
h smaller than δ. The �nal rank of a low-rank SVD should be
ompared to a rank obtained by trun
ated full arithmeti
 SVD, i.e. 1984. In the
ontext of seismi
 imaging, a small mis�t of the rank will not have, in our opinion,a large impa
t on the solution of the inverse problem.5. CONCLUSIONWe have presented an algorithm to 
ompute the trun
ated SVD of the Bornmatrix. This method is based on a low-rank arithmeti
 and the CA te
hnique.To perform the low-rank approximation, we have proposed a dynami
 panel CAalgorithm. This approa
h is similar to the panel lo
al pivoting LU de
omposition



602 S.A. SOLOVYEV AND S. TORDEUX

Fig. 8. The CA partial pivoting: Dependen
e of the angle betweensubspa
es spanned on singular ve
tors of the 
ropped exa
t SVDand Low-rank SVD.Table 2. The rank of matri
es at intermediate steps, ε = δ = 10−6Matrix rank SVD RRQR CA CA CA
\ Approa
hes Total Cross Partialpivot. pivot. pivot.After the 1-st step 2366 2424 2444 2454 2795After the 2-nd step 2041 2041 2022 1961 2013After the 3-th step 1963 1963 1953 1936 1950Table 3. The rank of matri
es at intermediate steps, ε = 10−9,

δ = 10−6Matrix rank SVD RRQR CA CA CA
\ Approa
hes Total Cross Partialpivot. pivot. pivot.After the 1-st step 2963 3030 3052 3052 3565After the 2-nd step 2619 2619 2586 2541 2581After the 3-th step 1964 1964 1964 1964 1964te
hnique [12℄. The algorithm proposed is an alternative to a very popular ande�
ient randomized SVD approa
h proposed by Rokhlin [6℄. The main advantagesare: (i) the ε-rank of a matrix has not to be known in advan
e, (ii) the 
omputationof a redu
ed matrix is less expensive (this has been 
on�rmed by preliminarynumeri
al tests whi
h are not in
luded in this paper).For a representative 
on�guration we have 
ompared the results generated by theproposed trun
ated SVD algorithm to the results obtained by an exa
t SVD. Wehave observed that the method is a

urate and the a

eleration of the 
omputationhas in
reased by the fa
tor 10 on one-thread systems. The algorithm has a good



AN EFFICIENT TRUNCATED SVD 603opportunity for parallelization both on shared memory systems (using OMP paralle-lization) and on distributed ones (MPI parallelization).Appendix A. The Singular Value De
omposition and the Trun
atedSingular Value De
ompositionThe SVD of a matrix A ∈ CI×J with J ≤ I is a fa
torization of the form(25) A = UDV ∗,where the matri
es U and V 
ontain the left and right singular ve
tors ui and vi;the matrix D is diagonal and 
ontains the singular values di(26) U = {u1, · · · , uJ} ∈ CI×J with U∗U = I ∈ CJ×J

V = {v1, · · · , vJ} ∈ CJ×J , with V ∗V = I ∈ CJ×J

D = diag{di}Ji=1 ∈ R
J×J
+ .The singular values di are all positive and ordered(27) d1 ≥ d2 ≥ · · · ≥ dJ ≥ 0.The T-SVD of the matrix A is obtained from the SVD by removing the singularvalues dk+1, dk+2, . . . whi
h are lower than a small parameter δ(28) Ak = UkDkV

∗
k ,(29) Uk = {u1, · · · , uk} ∈ CI×k with U∗

kUk = I ∈ Ck×k

Vk = {v1, · · · , vk} ∈ CJ×k with V ∗
k Vk = I ∈ Ck×k

Dk = diag{di}ki=1 ∈ Ck×k.The matrix Ak is an approximation of the matrix A in the following sense(30) ‖A−Ak‖2 ≤ δwith the Eu
lidean matrix norm ‖ · ‖2 :(31) ‖A‖2 = sup
x 6=0

‖Ax‖2
‖x‖2Appendix B. Some theoreti
al results involving the a
ousti
 BornmatrixLet us show on a simple example that the Born matrix of an a
ousti
 problem
an be approximated by a low-rank approximation derived thanks to a kernelindependent multipole expansion.The model parameters. The 
onsidered propagation domain 
onsists of unbo-unded three-dimensional (3D) a
ousti
 media governed by the Helmholtz equationwith varying physi
al 
hara
teristi
s µ(y) (the square of the wave-number).The model is parametrized on a regular grid with the spatial step δy ∈ R+
omposed of J 
ells Kj ⊂ R3 (Figure 9),(32) Kj = [j1δy, (j1 + 1)δy]× [j2δy, (j2 + 1)δy]× [j3δy, (j3 + 1)δy]with the integer j ∈ [1, J ] related to the integers j1 ∈ [0, J1− 1], j2 ∈ [0, J2− 1] and

j3 ∈ [0, J3 − 1] by the relation(33) j = j3 J2 J1 + j2 J1 + j1 + 1 and J = J1 J2 J3.
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δy

δy

δy

the 
ell Kj

Fig. 9. Dis
retization of the model parameter via a 3D gridThe fun
tion µ is 
hosen to be 
onstant outside the regular grid and pie
ewise
onstant on the regular grid with the value µj ∈ R+ on Kj(34) µ(y) = µj if y ∈ Kj and µ(y) = µ0 else.The model parameters µj , 1 ≤ j ≤ J , are 
olle
ted into a ve
tor µ ∈ RJ .The data are obtained thanks to I1 experiments, ea
h 
orresponding to a sour
elo
ated at a point x1
i1

∈ R3, with 0 ≤ i1 ≤ I1 − 1. For every experiment, I2measurements are realized by re
eivers lo
ated at a point x2
i2

∈ R
3, with 0 ≤ i2 ≤

I2 − 1. This gives rise to a set of data 
omposed of I = I1 I2 measurements. Toorganize these data, every re
eiver�sour
e 
ouple is indexed by an integer i ∈ [1, I]given by
i = i1 I1 + i2 + 1.The full wave inverse problem takes the form:Given f ∈ CI , �nd µ ∈ RJ

+ su
h that(35) Fi(µ) = fi for 1 ≤ i ≤ Iwith Fi(µ) = ui1(µ;xi2) where x 7→ ui1(µ,x) is de�ned over all R3 as theoutgoing solution of the dire
t a
ousti
 problem for the ith1 sour
e :(36) △ui1(µ;x) + µ(x) ui1(µ;x) = −δx1

i1with δx1

i1

the Dira
 delta fun
tion lo
ated at the point x1
i1
.Most of the algorithms that have been proposed in the literature are of the Newtontype [9, 1℄. They require the 
omputation of the Born Matrix A ∈ C

I×J whi
h
ontains the partial derivative with respe
t to µj of the nonlinear form Fi.(37) Ai,j =
∂Fi

∂µj

(µ) for 1 ≤ i ≤ I and 1 ≤ j ≤ J.The matrix A 
an be expressed as(38) Ai,j = uj
i1
(x2

i2
)
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t to the fun
tion uj
i1
whi
h is the partial derivative of ui1 with respe
tto µj(39) uj

i1
(µ;x) =

∂ui1

∂µj

(µ;x) = lim
h→0

ui1(µ+ hej ;x)− ui1(µ;x)

h
.Deriving (36) with respe
t to µj , we obtain that the fun
tion uj

i1
is the uniqueoutgoing solution of(40) △uj

i1
(µ;x) + µ(x) uj

i1
(µ;x) = −1Kj

(x)ui1 (µ;x)with the 
hara
teristi
 fun
tion 1Kj
asso
iated to Kj(41) 1Kj

(x) = 1 for x ∈ Kj and 1Kj
(x) = 0 for x /∈ Kj.This Born matrix 
an then be related to the Green fun
tion asso
iated with thea
ousti
 media. This fun
tion, whi
h depends on x ∈ R3 and y ∈ R3, is symmetri


G(µ;x,y) and is de�ned for every y ∈ R3 as G(µ;x,y) = Gµ;y(x) with Gµ;y theoutgoing solution of(42) ∆Gµ;y(x) + µ(x) Gµ;y(x) = −δy(x) on R
3with the Dira
 generalized fun
tion δy at x = y. It follows that the fun
tion ui1 ,whi
h solves (36), is expli
itly given by(43) ui1(µ;x) = G(µ,x,x1

i1
).Its partial derivative uj

i1
, whi
h solves (40) with respe
t to µ is given by therepresentation formula(44) uj

i1
(x) =

∫

R3

G(µ;x,y)1Kj
(x)ui1 (µ;y)dy.Taking into a

ount (43), we obtain(45) uj

i1
(x) =

∫

Kj

G(µ;x,y)G(µ;y,x1
i1
)dy.This leads to the following simple formula for the Born matrix(46) Ai,j = uj

i1
(x2

i2
) =

∫

Kj

G(µ;x2
i2
,y) G(µ;y,x1

11 )dy.For large problems (a large number of sour
es, re
eivers and model parameters),the 
omputation of this matrix 
an be very expensive and 
an be a
hieved onlythanks to high�performan
e 
omputing. However, it 
an be easily evaluated in the
ase of homogeneous media (i.e. µ(y) = µ0)(47) G(µ;x,y) =
eikr

4πr
with k =

√
µ0 and r = |x− y|.Pra
ti
ally, this parti
ular 
hoi
e, 
an be seen as the initial guess for the a
ousti
media under study.Remark: In pra
ti
e, the number of rows of the Born matrix is mu
h largerthan the number of 
olumns, i.e. I >> J .Let us prove that the Born Matrix de�ned in (46) 
an be approximated bya low-rank matrix under suitable assumptions on the lo
ation of re
eivers andsour
es. Most of the arguments that are present in this Se
tion are rather similarto those developed in the multipole theory to solve the dire
t problem [5℄. The



606 S.A. SOLOVYEV AND S. TORDEUXmain ingredient to obtain a low-rank approximation of the Born matrix A is theso�
alled kernel-independent fast multipole method [2℄. This method furnishes atensorial approximation of the Green matrix under the following assumptions, seeFigure 10:i) The sour
es x1
i1
are in
luded in a 3D�dimensional box B1(48) B1 = x1

0 + [−d1, d1]
3with x1

0 ∈ R
3, the 
enter of the box and d1 > 0 the size of the box.ii) The re
eivers x2

i2
are in
luded in a 3D box B2(49) B2 = x2

0 + [−d2, d2]
3with x2

0 ∈ R3 the 
enter of the box and d2 the size of the box.iii) The re�e
tors Kj are in
luded in a 3D box B3(50) B3 = y0 + [−d3, d3]
3with y0 ∈ R3 being its 
enter and d3 � the size of the box.iv) The diameters of these three boxes are smaller or equal to a wavelength(51) d1 < λ, d2 < λ and d3 < λ.v) The distan
e D1 between the boxes B1 and B3 and the distan
e D2 between theboxes B2 and B3 are larger than some wavelengths.(52) D1 >> λ and D2 >> λ.In the box Bℓ, 1 ≤ ℓ ≤ 3, we 
an approximate the fun
tion fℓ : Bℓ −→ C in the

Lo
ation of the re
eivers
B2

d2 < λ

B1

Lo
ation of the sour
es
d1 < λ

B3

Lo
ation of the re�e
tors
d3 < λ

D2 >> λ

D
1 >>

λ

Fig. 10. Assumptions on the sour
es, re
eivers and re�e
torsfollowing way(53) fℓ(x) =

M∑

m=1

fℓ(X
ℓ
m) pℓm(x) + εℓ(x) ∀fℓ ∈ C∞(Bℓ),where for 1 ≤ m ≤ M and ℓ ∈ [1, 3], Xℓ

m ∈ R3 are the interpolation points the
p
ℓ
m : Bℓ −→ R are interpolating fun
tions. The residual εℓM is small when the



AN EFFICIENT TRUNCATED SVD 607interpolating fun
tion is well 
hosen (see Appendix C for a possible 
hoi
e) and theinterpolated fun
tion is regular.In the 
ontext of the Born matrix, these interpolation fun
tions 
an be used tode�ne a tensorial approximation of the Green fun
tion(54) 




Gk(x,y) ≃
M∑

m=1

M∑

n=1

Gk(X
1
m,X3

n)p
1
m(x)p3n(y), x ∈ B1, y ∈ B3,

Gk(x,y) ≃
M∑

m=1

M∑

n=1

Gk(X
2
m,X3

n)p
2
m(x)p3n(y), x ∈ B2, y ∈ B3.This brings about residual in the following approximation of the Born matrix(55) Ai,j ≃

M∑

m1=1

M∑

m2=1

M∑

n1=1

M∑

n2=1

Gk(X
1
m1

,Yn1
)Gk(X

2
m2

,Yn2
)

p
1
m1

(x1
i1
)p2m2

(xi2 )

∫

Kj

p
3
n1
(y)p3n2

(y)dy.Rearranging the latter, we dedu
e that the Born matrix A takes the form(56) A = A1 A2 A3,with A1 ∈ CI×M2 , A2 ∈ CM2×M2 and A3 ∈ CM2×J(57) 



A1
i,m = p

1
m1

(x1
i1
)p2m2

(xi2 )

A2
m,n = Gk(X

1
m1

,Yn1
)Gk(X

2
m2

,Yn2
)

A3
n,j =

∫

Kj

p
3
n1
(y)p3n2

(y)dywhere the integers m, n ∈ [1,M2] and i ∈ [1, I] are related to the integers m1, m2,
n1, n2, i1 and i2 by the relations(58) m = (m1 −1 ) M + m2, n = (n1 −1 ) M + n2 and i = i1 I1 + i2 +1Equation (56) reveals that the Born matrix A 
an be approximated by a low-rankapproximation when M2 is mu
h smaller than I and J . This is the 
ase, when thenumber of re
eivers, sour
es and re�e
tors is very large.We have proved that the Born matrix asso
iated with a homogeneous a
ousti
medium admits a low-rank approximation under very restri
tive assumptions onthe lo
ation of the re
eivers, sour
es and re�e
tors. These results that use similararguments to the fast multipole method 
an be extended. When these assumptionsare not ful�lled, a low-rank approximation 
an also be obtained. It relies on elabo-rated arguments of the Fast Multipole Method. This will not be presented here dueto its 
omplexity.For elasti
 media, it is also possible to show that the Born matrix asso
iatedwith a homogeneous media admits a low-rank approximation. The reader 
an referto [2℄ for the fast multipole method for elasti
 media.



608 S.A. SOLOVYEV AND S. TORDEUXAppendix C. The tensorial Chebyshev interpolationWe would like to brie�y re
all 
lassi
al results about the Chebyshev tensorialinterpolation of a fun
tion f in the box(59) B = x0 + [−d, d]3.We denote by CP the Chebyshev polynomial of degree P > 0 whi
h is given by theformula(60) CP (Z) = cos(P arccos (Z)), Z ∈ [−1, 1].For 1 ≤ p ≤ P , its zeros are denoted by ZP
p = cos

[
(p − 1

2 )
π
P

]. To the zeros ZP
p ,that all belong to [−1, 1], we asso
iate the Lagrangian interpolation polynomial(61) IPp (z) =

P∏

k=1
k 6=p

z − ZP
k

ZP
p − ZP

k

for p ∈ [1, P ] and z ∈ [−1, 1].On the interval [−1, 1], any fun
tion u 
an be approximated by the formula(62) u(z) =
P∑

p=1

u(ZP
p ) IPp (z) + εP (z).These interpolation polynomials are optimal in the sense that they minimize the

L∞�norm error(63) ‖εP ‖L∞([−1,1]) =
( 2

π
log(P + 1) + 1

)(π/2)P
P !

‖u(P )‖L∞([−1,1]).Thanks to this family of unidemensional interpolation fun
tions, we de�ne thetensorial interpolation fun
tions pm : B −→ C on the box B(64) pm(x0 + z d) = IPp1
(z1) I

P
p2
(z2) I

P
p3
(z3) with z = (z1, z2, z3) ∈ [−1, 1]3.and the interpolation points Xm ∈ B(65) Xm = x0 + d (ZP
p1
, ZP

p2
, ZP

p3
)where we have denoted by m ∈ [1,M ], with M = P 3, the integer de�ned by(66) m = p3P

2 + p2P + p1 with p1, p2 and p3 ∈ [1, P ]It follows that a fun
tion f : B −→ C 
an be approximated in the following way(67) f(x) ≃
M∑

m=1

pm(x) f(Xm)Referen
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