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AN EFFICIENT TRUNCATED SVD OF LARGE MATRICES
BASED ON THE LOW-RANK APPROXIMATION FOR INVERSE
GEOPHYSICAL PROBLEMS

S.A. SOLOVYEV AND S. TORDEUX

ABsTRACT. In this paper, we propose a new algorithm to compute
a truncated singular value decomposition (T-SVD) of the Born matrix
based on a low-rank arithmetic. This algorithm is tested in the context
of acoustic media. Theoretical background to the low-rank SVD method
is presented: the Born matrix of an acoustic problem can be approxima-
ted by a low-rank approximation derived thanks to a kernel independent
multipole expansion. The new algorithm to compute T-SVD approxima-
tion consists of four steps, and they are described in detail. The largest
singular values and their left and right singular vectors can be approxima-
ted numerically without performing any operation with the full matrix.
The low-rank approximation is computed due to a dynamic panel strategy
of cross approximation (CA) technique.

At the end of the paper, we present a numerical experiment to illustrate
the efficiency and precision of the algorithm proposed.

Keywords: Born matrix, SVD algorithm, cross approximation (CA),
low-rank approximation, high-performance computing, parallel computa-
tions.

1. INTRODUCTION

Computing the exact SVD or the T-SVD in full-arithmetic is a pretty expensive
task. A standard way to compute the SVD consists of the two steps: first, the
matrix is reduced to a bidiagonal form, then the SVD of the bidiagonal matrix is
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computed. Usually, the first step is done by the Householder reflections and costs
(4/3)n?(3m—mn) arithmetic operations (FLOPS). The second step can be performed
by an iterative refinement algorithm with stoping criteron equal to the machine
precision, it takes about O(n) iterations, each costs O(n) FLOPS [3]. Another
version of the second step is a QR algorithm for the computation of eigenvalues
and takes O(n?) FLOPS [4],[10]. There are various modifications of them, using
a divide-and-conquer method, preconditioned and Jacobi plane rotation methods.
These ones are implemented in LAPACK routines. To compare with own developed
algorithm we use the LAPACK functionality from Intel MKL. However, it is almost
impossible to compute such a decomposition for large-scale problems using a robust
arithmetic.

The objective of this paper is designing an efficient algorithm to compute an
approximation of the T-SVD based on a low-rank arithmetic.

More precisely, in this paper we aim at looking for matrices Uy, = {u1,...ux} €
CI*k Vi = {01,... 9%} € C'** and Dy = diag{d;}¥_, € R*** which approximate
Ui, Vi, Dy, of the T-SVD (28) in the following sense:

I The difference between approximate singular values and exact singular values

is smaller than a small parameter 7,

(1) di—Czi<771, 1<i<k and di<5,kz<i§n

IT The angles between the approximated and exact left and right singular spaces
are smaller than a small parameter 7,

(2) Z(Uk,Uk) <m2 and A(Vk,Vk) < M2
where Z(A, B) = arccos(o) with the smallest singular value o of A*B.

The major application of the algorithm proposed is the geophysical inverse
problem. It consists in determining the physical characteristics of a propagation
medium by interpreting the measured data by receivers for different sources. One
of the main features of this problem is the huge number of receivers, sources and
parameters of the model which is under study. Among all different techniques that
exist, the Full Waveform Inversion (FWI) is one of the most costly. It consists in an
interative Newton-type procedure which requires the computation of the so-called
Born Matrix associated with the fullwave equation.

It is known that because of its poor conditioning this very large scale problem is
difficult to solve: some (combinations) of the sources, receivers or model parameters
are very important to take into account whereas some other (combinations) do
not have so strong impact. The numerical method proposed in this paper needs
computing the Singular Value Decomposition [14, 7] of the Born matrix to reduce
the complexity of this problem by identifying the most important model parameters,
sources and receivers.

This paper will is composed as follows: In Section 2, we briefly recall what
is a low-rank approximation of a matrix and some algorithms to compute these
approximations. Section 3 is the "core"of this paper. We describe an algorithm to
compute a numerical approximation of the Truncated Singular Value decomposition
based on a low-rank arithmetic. In Section 4, some numerical results are presented.
These results illustrate the efficiency and accuracy of the method. There are three
appendices: in Appendix A, we describe in detail the Singular Value Decomposition
and the Truncated Singular Value Decomposition. Appendix B is concerned with a
theoretical result about the Born acoustic matrix. We recall that the Born matrix
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associated with homogeneous acoustic media can be approximated by a low-rank
approximation under suitable assumptions. Finally, Appendix C briefly recalls classi-
cal results about the Chebyshev tensorial interpolation.

2. THE LOW RANK APPROXIMATION OF A MATRIX

In what follows, we will make an intensive use of the low-rank approximation.

2.1. Definition of the c-rank of a matrix and low-rank approximation. Let
A € C'*7 be a matrix with I rows and J columns with J < I. The matrix A has
e-rank k if k is the smallest integer such that there exists a matrix A, € C'*7 with
the rank k satisfying

JA— AL
®) ]

When || -|| is the euclidean matrix norm || - ||2, the e-rank of a matrix A is explicitly
given by the number of singular values which are larger than . Moreover, the matrix
Ay, can be deduced from the T-SVD of the matrix A

(4) Ay = Uy Dy, Vi with Uy, € C'*%) Dy € RF*% and V;, € €%,

In reality, the computation of the T-SVD of a large-size matrix is very expensive,
many authors have proposed other algorithms to compute non-optimal (in the
sense of the matrix euclidean norm) low-rank approximation of a matrix A. These
methods consist in looking for a matrix Ax as a product of the two matrices
By, € C'*F and Cy € C’**, which minimize k, satisfying

|A - BrCi |
(5) — =<
1Al
The norm ||Al| is given by the largest singular value of the matrix A and its
computation is pretty expensive. So, we prefer to use ||A] = nax |A; ;| norm.
1S4,

The two common techniques to obtain this factorization are the QR factorization
with pivoting of the matrix and the Cross Approximation (CA) technique which is
similar to the incomplete LU factorization with pivoting. To determine e-rank of
a matrix and obtain low-rank approximation, the rank-revealing QR modification
with pivoting is used (RRQR-piv) [8]. The approximate number of floating-point
operations for real flavors is (2/3)n?(3m — n),m > n. The RRQR-piv algorithm is
slow (however faster than the computation of the T-SVD of a matrix A) algorithm
and is almost optimal in terms of the rank k, whereas the CA algorithm is rapid,
but can give rise to non-optimal k.

Lets us briefly describe the RRQR-piv algorithm and describe in detail various
modifications of the CA approach.

Cross approximation. The cross approximation algorithm [11] takes the follow-
ing form.

e Initialization:
(6) Ry=AcC™, n=0

e While stopping-criteria (R,,) > || A||
Step 1. Choose a pivot (i, jx) in Ry,
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Step 2. Define two vector columns b, ; € C! and ¢, € C/

R,
© ()i = (Radog,  and (eqe)y = onliod.
(Rn)i .
Step 3. Increment n: n = n+1. Define the matrices B,, € C'*™ and C,, € C7*"»
and
(8) Bn = [blaan"' 7bn] and Cn = [01;027"' ;cn]
Step 3. Update
(9) R, = A-B, CF.

As a result, we obtain both matrices By and Cj that are involved in the low-rank
approximation of A.

Like for the incomplete LU factorization algorithm, we have the following options
for this algorithm:

I Total pivoting: The stopping criterion is the following:

(10) stopping-criterion(R,,) = zgn??é](' (Rn)ijl)
At each iteration, the pivot is chosen by maximizing |(R,,); ;| over whole the
matrix

(11) |(Bn)i, g = max [(Rn)i;l

i<I, j<J

IT Dynamic panel strategy: The algorithm is more complex to describe. This
corresponds to a partial pivoting. First, as for the total pivoting we define
ig and jg such that

(12) |(Fn)icyjo| = | mmax [(Fn)is|
We then define a panel Jg C [1,J] of width 2K +1 € [1, J]:
[1,2K +1] if jo < K,
(13) Jo=1¢ lio-Kjo+K] fK<jp<J-K,
[J — 2K, J] if jo > J— K.
As long as a maximum of |R,,| over this panel is larger than e
(14) imax, |(Rn)ij| > e,

the pivot (i4,j«) will be chosen into this panel of columns

(15) |(Bn)i s | = _max, |(Rn)ij
When (14) is not fulfilled anymore, another panel is considered in the same
way until

(16) max |(Rn)i;| <e.

i<I, j<J
IIT Cross pivoting: The pivot is chosen in the following way: Pick by hazard a

non-zero column (R,). ;. of R,, with jo € J. Define the integer i, € I by
looking for a maximum of |R,| in this column

(17) |(Rn)i, jnl = max [(Rn)i, jal
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Define the integer j,. € J by looking for a maximum of |R,| in this row

(18) [(Bn)i, g, = max|(Rn)i, ;l
jeJ

The stopping criterion is then the following;:
(19) |(Rn)l*7.7*| > €

Remark 1. The search for a mazximum and the update of the matriz R, is the
performance of the bottle-neck of the CA algorithm. The total pivoting strategy is
much slower than the two other strategies because of

e the search for the mazximum is made over the full matriz.
e at each iteration the matrixz should be fully updated

The dynamical panel strategy is more efficient since

e the search for the maximum is made over a small subset of the full matrix.
e only the panel of the matrix needs to be updated at each iteration

Since the panel is formed of a group of columns, it is important to optimize the
access to memory in storing the matrix in the RAM column-by-column. If a matrix
is stored rows-by-rows, the panel should be constructed of a group of rows.

The cross partial pivoting strategy is also very efficient since

e the search for the maximum is made over a cross which is a small subset of
the full matrix.

e the matrix R, does not need not to be updated but only needs to be
evaluated for a small number of indices at each iteration.

3. DESCRIPTION OF THE ALGORITHM
The algorithm can be decomposed into four steps.

The first step consists in decomposing vertically the matrix A into blocks A;,

Fi1G. 1. Decomposition of the matrix A by blocks
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(Figure 1), and in performing a low-rank approximation of each block A; € C™*7
(Figure 2).
A; ~ B; CI' with B; € C™*% and ¢y € C7*k
To compute a low-rank approximation of blocks we have the three options:
i) T-SVD in the full arithmetic;
ii) RRQR-piv algorithm;
iii) Cross Approximation (CA) technique.

Remark 2. The algorithm will only be efficient if the integer k; is less than J. In
practice, this number is small.

Remark 3. The accuracy of the low-rank approzimation of the matrix A is characte-
rized by a small parameter € and by the stopping criterion. For SVD-compression,
QR-piv and CA algorithm, it takes the form

|A; — B;CT |2 < e for T-SVD and RRQR algorithm,

(20)
|A; — BiC¥ |l < & for CA algorithm,
with || - ||2 the euclidean matriz norm and ||Allc = max |A; ;|
i<I,j<J
A; B; cr

:D:i

FiG. 2. Low-rank approximation of A

The result of the first step is depicted in Figure 3. In this picture and in the next
ones, the "plotted"parts of matrices mean dense non-zero blocks. The "white"blocks
mean zero fill-in.

At the second step, we orthogonalize the matrices B and C. More precisely,
we perform a QR decomposition of the matrices B; and C'

Bi = Ei Rl and CT =L éT,
with Ei € Rmixki C € R/xk being orthogonal, R; € R¥:*Fi — the upper Eriangular
and L € RF*¥ — the lower triangular, where k = > k;. The matrices B; and R;
are collected into the orthogonal matrix B and into the upper triangular matrix R,
(see Figure 4). This result in that the Low-rank approximation of A should be
(21) A~B(RL)CT,

with B € R7*k ¢ € R7** and RL € RF** being full.
At the third step, a robust T-SVD with the accuracy ¢ of the product RL is
performed

(22) RL = URLDRLV};LL with ||URLDRLV}§L — RLH < 0.
The result of the third step is presented in Figure 5.

Remark 4. When the matriz RL is much smaller than the initial matriz A (this
is a wide-spread in the practice case), the computation of the T-SVD in the full
arithmetic of the product RL is less expensive than the computation of the T-SVD
of the matriz A.
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B Ct

Ay J — C!

FiG. 4. The result of the second step

At the fourth step, we construct the final matrices by computing the products
U = EURL, V= V;LLC’T and D = Dpy. As a result, the matrices U and V have
orthogonal columns.

Our statement is that the decomposition U D v approximates the exact T-SVD
of A in the sense of (1) and (2).
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B Ugrr DgrL Vi cT

s
fost

Fia. 5. The result of the third step

4. NUMERICAL EXPERIMENTS

The numerical experiments are aimed at demonstrating the performance of our
algorithm in terms of computation time and precision.

We have not developed our own linear algebra library but have used the LAPACK
and BLAS functions of Intel MKL. The performance was measured on Intel Core i7-
3770K CPU 3.5 GHz, (Ivy Bridge). We have avoided the impact of OMP paralleliza-
tion of all MKL functions by switching off threading by setting OMP_NUM _TRE-
ADS=1.

The Born matrix A associated with a 2D elasticity vertically inhomogeneous
(layered) isotropic medium, one source, 1450 receivers and 10 different frequencies,
has been considered. The target domain, containing 120x20 points, is a part of a
huge real model which we would like to image. Details of this model are described
in [13]. The full matrix A has 29,000 lines and 7,200 columns. At the preliminary
step, the matrix A is separated into p = 10 blocks.

4.1. Computational time. In the first test, the accuracy ¢ of the low-rank appro-
ximation is 107 and the threshold & of the cropped exact SVD U Dy Vy* and of
the cropped low-rank SVD U D V' is 10~°. Different options for the first step
are tested: the computational time for the SVD, the QR and the CA compression
methods are computed. These computational times should be compared to 970 s,
i.e. the time of a robust SVD by the gesvd computational optimized routine of Intel
MKTL.

The performance results show the advantage of using partial pivoting in the CA
over the cross pivoting and classical total pivoting. Additionally, the performance
results confirm the high acceleration of the CA approach in comparison with the
SVD and the QR-piv techniques.



600 S.A. SOLOVYEV AND S. TORDEUX

TABLE 1. Comparison of performance algorithms of Low-rank
SVD-based on SVD/QR/CA approaches

Steps, description SVD RRQR CA CA CA
\ Approaches Total Cross Partial
pivot. pivot. pivot.
1-st, Get SVD/QR/CA of all A; 605s  255s 90s 44s 18s
2-nd, Make QR of B and T-QR of C: 18s 20s 19s 20s 25s
3-rd, Perform SVD of RL: 16s 13s 13s 13s 15s
4-th, Gathering U,D,V 7s 6s 6s 6s 6s
Total time 651s  294s 130s 84s 66s

Finally, we point out that the first step of the method proposed is easily paralleli-
zable: since the compression of all blocks can be done by different processors as
opposed to the last three steps.

4.2. Precision. In the second test our attention will be focussed on two different
error indicators. Only the results for the most efficient case (Cross Approximation
with dynamic panel partial pivoting) will be presented.

First, we are interested in the error resulted from approximate singular values.
Denoting by I. the e-rank of the matrix A, the following quantities

oy

max Id: = di] (absolute error)
i<l |dq]

(23) -
max ldi = di] (relative error)
i<l |d

have been plotted with respect to €, the parameter relating to the accuracy of
the Cross Approximation parameter and with respect to ¢, i.e. the final threshold
parameter. The results are reported in Figure 6 for the absolute error and in Figure
7 — for the relative error. It seems that the absolute error does mostly depend on
€. On contrary, the relative error is sufficiently related to the ratio €/J. Second, we
quantify the quality of the approximation of the left singular space. The results for
the right singular values are quite similar and are not presented. We compute the
angle (in degrees) between the subspace generated by the columns of U and the
subspace generated by the columns of Uy

(24) Z(U,U) = arccos(a)@
T

with the smallest singular value o of the matrix U Us.

Numerical measurements (Figure 8) show that the angle a = Z(U,Uy), for
any threshold §, can be decreased via improving the accuracy e of the low-rank
approximation. The numerical results reveal that the error depends mostly on /4§
like the relative error for the singular values (Figure 7).

4.3. Evolution of e-rank. In the last test we investigate the ranks of truncated
matrices. They are presented in Tables 2 and 3 for different low-rank approximations.
The SVD approach is the most optimal in terms of e-rank, whereas the CA technique
is the worst (the rank after the first step in the Tables). For ¢ = 1076 and § = 107,
the final ranks associated with different compressions are slightly different. For
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1077 1076

1078 1077

1077 108
<1076 1070 £
4

107° 10710

107 107

1073 10712

107 107t 10° 100% 1007 100® 107"
€

Fia. 6. The CA partial pivoting: Dependence of the singular value
absolute error on accuracy € and threshold 6.
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F1a. 7. The CA partial pivoting: Dependence of the singular value
relative error.

e =10"2 and 6 = 1075, the final ranks are equal. This will be the case when the
compression ¢ is much smaller than §. The final rank of a low-rank SVD should be
compared to a rank obtained by truncated full arithmetic SVD, i.e. 1984. In the
context of seismic imaging, a small misfit of the rank will not have, in our opinion,
a large impact on the solution of the inverse problem.

5. CONCLUSION

We have presented an algorithm to compute the truncated SVD of the Born
matrix. This method is based on a low-rank arithmetic and the CA technique.
To perform the low-rank approximation, we have proposed a dynamic panel CA
algorithm. This approach is similar to the panel local pivoting LU decomposition
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1079
1078
1077
«©10°°
107°
10
1073

&€
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Fia. 8. The CA partial pivoting: Dependence of the angle between
subspaces spanned on singular vectors of the cropped exact SVD
and Low-rank SVD.

TABLE 2. The rank of matrices at intermediate steps, ¢ = 6 = 1076

Matrix rank SVD RRQR CA CA CA
\ Approaches Total Cross Partial
pivot. pivot. pivot.
After the 1-st step 2366 2424 2444 2454 2795
After the 2-nd step 2041 2041 2022 1961 2013
After the 3-th step 1963 1963 1953 1936 1950

TABLE 3. The rank of matrices at intermediate steps, € = 1077,

§ =106
Matrix rank SVD RRQR CA CA CA
\ Approaches Total Cross Partial
pivot. pivot. pivot.
After the 1-st step 2963 3030 3052 3052 3565
After the 2-nd step 2619 2619 2586 2541 2581
After the 3-th step 1964 1964 1964 1964 1964

technique [12]. The algorithm proposed is an alternative to a very popular and
efficient randomized SVD approach proposed by Rokhlin [6]. The main advantages
are: (i) the e-rank of a matrix has not to be known in advance, (ii) the computation
of a reduced matrix is less expensive (this has been confirmed by preliminary
numerical tests which are not included in this paper).

For a representative configuration we have compared the results generated by the

proposed truncated SVD algorithm to the results obtained by an exact SVD. We
have observed that the method is accurate and the acceleration of the computation
has increased by the factor 10 on one-thread systems. The algorithm has a good
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opportunity for parallelization both on shared memory systems (using OMP paralle-
lization) and on distributed ones (MPI parallelization).

APPENDIX A. THE SINGULAR VALUE DECOMPOSITION AND THE TRUNCATED
SINGULAR VALUE DECOMPOSITION
The SVD of a matrix A € CI*7 with J < I is a factorization of the form
(25) A=UDV™,

where the matrices U and V' contain the left and right singular vectors u; and v;;
the matrix D is diagonal and contains the singular values d;

U={uy, - ,us} €eC>*  withU*U =1 € C’*/
(26) V={v, - ,v;} € C™* with V*V =T € C/*/
D = diag{d;}{_, e R]*’.

The singular values d; are all positive and ordered

(27) dy>dy>--->d;>0.

The T-SVD of the matrix A is obtained from the SVD by removing the singular
values dy41,dgt2, ... which are lower than a small parameter §

(28) Ay = U DLV,

Uk:{u1,~~~ ,uk}E(CIXk with U;Uk:IE(Cka
(29) Vi = {v1,--+,vp} € CT*F with ViVie=1¢ Chxk
Dy, = diag{d;}}_, € CF**.

The matrix Ay is an approximation of the matrix A in the following sense

(30) |A—Agll2 <6
with the Euclidean matrix norm || - ||2 :
Ax
() 4l = sup L2XI2
x20 ||%]l2

APPENDIX B. SOME THEORETICAL RESULTS INVOLVING THE ACOUSTIC BORN
MATRIX

Let us show on a simple example that the Born matrix of an acoustic problem
can be approximated by a low-rank approximation derived thanks to a kernel
independent multipole expansion.

The model parameters. The considered propagation domain consists of unbo-
unded three-dimensional (3D) acoustic media governed by the Helmholtz equation
with varying physical characteristics p(y) (the square of the wave-number).

The model is parametrized on a regular grid with the spatial step J, € R4
composed of J cells K; C R? (Figure 9),

(32) Kj = [j10y, (j1 +1)8,] x [j26y, (J2 + 1)dy] X [j3dy, (j3 + 1)dy]

with the integer j € [1, J] related to the integers j; € [0, J; — 1], j2 € [0, J2 — 1] and
js € [0, J3 — 1] by the relation

(33) j=gshdi + 21 +j1 +1 and J=J J2Js.
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the cell K

\

6, 1L T

—
59

F1c. 9. Discretization of the model parameter via a 3D grid

The function p is chosen to be constant outside the regular grid and piecewise
constant on the regular grid with the value p; € Ry on K

(34) uly) =p; ify € K and  p(y) = po else.
The model parameters p;, 1 < j < J, are collected into a vector p € R7.

The data are obtained thanks to I; experiments, each corresponding to a source
located at a point x} € R*, with 0 < 4; < I; — 1. For every experiment, I
measurements are realized by receivers located at a point x?z € R3, with 0 < iy <
I, — 1. This gives rise to a set of data composed of I = I; I measurements. To
organize these data, every receiver—source couple is indexed by an integer i € [1, ]

given by
=111 + ia +1.
The full wave inverse problem takes the form:
Given f € C/, find u € R{ such that
(35) Fi(p) = fi for1<i<I

with Fj(p@) = ui, (1;%;,) where x — u;, (1, %) is defined over all R? as the
outgoing solution of the direct acoustic problem for the it" source :

(36) Duiy (%) + () wiy (15%) = =0kt

with 6, L the Dirac delta function located at the point x .

Most of the algorlthms that have been proposed in the literature are of the Newton
type [9, 1]. They require the computation of the Born Matrix A € C!*7 which
contains the partial derivative with respect to u; of the nonlinear form Fj.

OF;
Aij =
(37) 5] auj

(u) forl<i<Tand1<j<.J

The matrix A can be expressed as

(38) Ai,j = Uu;
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with respect to the function ugl which is the partial derivative of u;, with respect

to 1
; Ou; . wgy (e hej;x) — ug, (%)
‘? M = “ M = 1 “ 1 k2 ?
(39) uy (%) o (p;x) Lim 5 )

Deriving (36) with respect to j;, we obtain that the function u] is the unique

outgoing solution of

(40) Aul (%) + p(x) ul (%) = =1k, (%), (1 %)
with the characteristic function 1 K, associated to Kj
(41) 1g,(x) = 1forz € K; and 1k, (x) = 0 for z ¢ K.

This Born matrix can then be related to the Green function associated with the
acoustic media. This function, which depends on x € R? and y € R3, is symmetric
G(p;x,y) and is defined for every y € R® as G(u;x,y) = Gpu.y(x) with G,y the
outgoing solution of

(42) AGpiy(x) + p(x) Guy(x) = —dy(x) onR®

with the Dirac generalized function d, at x = y. It follows that the function w;,,
which solves (36), is explicitly given by

(43) Uiy (/J';X) = G(vialel)'

Its partial derivative ui which solves (40) with respect to p is given by the

representation formula
(44) W) = [ Gy (o (i),

Taking into account (43), we obtain

1?

(45) uf, (x) = /K G x,y)G(my, x;, )dy.

i
This leads to the following simple formula for the Born matrix
(46) Ay = ul,(x}) = /K G(mixi,.y) Gy, x1,)dy.

For large problems (a large number of sources, receivers and model parameters),
the computation of this matrix can be very expensive and can be achieved only
thanks to high—performance computing. However, it can be easily evaluated in the
case of homogeneous media (i.e. u(y) = o)

eikr
(47) G(u;x,y) = = with k = /po and r = |x — y]|.

Practically, this particular choice, can be seen as the initial guess for the acoustic
media under study.

Remark: In practice, the number of rows of the Born matrix is much larger
than the number of columns, i.e. I >> J.

Let us prove that the Born Matrix defined in (46) can be approximated by
a low-rank matrix under suitable assumptions on the location of receivers and
sources. Most of the arguments that are present in this Section are rather similar
to those developed in the multipole theory to solve the direct problem [5]. The
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main ingredient to obtain a low-rank approximation of the Born matrix A is the
so—called kernel-independent fast multipole method [2]. This method furnishes a
tensorial approximation of the Green matrix under the following assumptions, see
Figure 10:

1
i1

(48) By = xp + [~di,di]?

with x{ € R?, the center of the box and d; > 0 the size of the box.
ii) The receivers x?, are included in a 3D box B

(49) By = x3 + [—dy, do)?

with x3 € R? the center of the box and ds the size of the box.
iii) The reflectors K; are included in a 3D box B3

(50) B3 = yo + [—ds,ds]®

with yo € R? being its center and ds — the size of the box.
iv) The diameters of these three boxes are smaller or equal to a wavelength

(51) di < )\, do <A and ds < \.

v) The distance D; between the boxes B and Bs and the distance D between the
boxes B and Bs are larger than some wavelengths.

(52) Dy > A and Dy > A

In the box By, 1 < £ < 3, we can approximate the function f, : By — C in the

i) The sources x; are included in a 3D-dimensional box B,

Location of the sources

B [
— .
dy < A O, Location of the reflectors
N

. . =
Location of the receivers

Bs
‘_%ﬁ

By ds < A\

-

do < A\

Fia. 10. Assumptions on the sources, receivers and reflectors

following way
M
(53) fex) = D fuX) ph(x) + eilx)  Vfe € CF(By),
m=1

where for 1 < m < M and ¢ € [1,3], X!, € R? are the interpolation points the
p’, : Bo — R are interpolating functions. The residual 5?\4 is small when the
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interpolating function is well chosen (see Appendix C for a possible choice) and the
interpolated function is regular.

In the context of the Born matrix, these interpolation functions can be used to
define a tensorial approximation of the Green function

M M
Grlxy) = Y Y Gu(X}, X3)p,(x)pi(y), x € Bi,y € Bs,

(54) m]\?l n;[l
Gk(xay) = Z Z Gk(X?naXi)p%z(X)pi(y)7 X € B27 ye B3'

m=1n=1

This brings about residual in the following approximation of the Born matrix

M M M M
(55) Aij ~ > > >N Gr(X,, Ya,)Ge(X2,,, Y0,)

P, (%4)P2,, (Xi,) / o (y)ps, (y)dy.

J

Rearranging the latter, we deduce that the Born matrix A takes the form
(56) A = A' A% A3

with Al € CI¥M? A2 ¢ CM*xM? ynd A3 € CM*xJ

Azl,m = p71n1 (lel )pilz (Xi2)
Agn,n = Gy (X'}nl ) Ynl )Gk (XZ@Q ) Ynz)

(57)
Ay, = / VPiI(Y)Piz(Y)dY

J

where the integers m, n € [1, M?] and i € [1, I] are related to the integers m;, ma,
ni, ng, 11 and io by the relations

B8) m=(m1 —1)M+me, n=(mn1 —-1)M+ny and i = i31+1i2+1

Equation (56) reveals that the Born matrix A can be approximated by a low-rank
approximation when M? is much smaller than I and J. This is the case, when the
number of receivers, sources and reflectors is very large.

We have proved that the Born matrix associated with a homogeneous acoustic
medium admits a low-rank approximation under very restrictive assumptions on
the location of the receivers, sources and reflectors. These results that use similar
arguments to the fast multipole method can be extended. When these assumptions
are not fulfilled, a low-rank approximation can also be obtained. It relies on elabo-
rated arguments of the Fast Multipole Method. This will not be presented here due
to its complexity.

For elastic media, it is also possible to show that the Born matrix associated
with a homogeneous media admits a low-rank approximation. The reader can refer
to [2] for the fast multipole method for elastic media.
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APPENDIX C. THE TENSORIAL CHEBYSHEV INTERPOLATION

We would like to briefly recall classical results about the Chebyshev tensorial
interpolation of a function f in the box

(59) B = xo+[—d,d.

We denote by Cp the Chebyshev polynomial of degree P > 0 which is given by the
formula

(60) Cp(Z) = cos(Parccos (Z)), Z e[-1,1].

For 1 < p < P, its zeros are denoted by ZF = cos[(p — $)%]. To the zeros Z7,
that all belong to [—1, 1], we associate the Lagrangian interpolation polynomial

P
z—ZFP
61) 17z = ][ ﬁ for p € [1,P] and z € [-1,1].
p
k=1
k#p

On the interval [—1, 1], any function u can be approximated by the formula

P
(62) u(z) = > u(Z)) IF(2) + ep(2).
p=1
These interpolation polynomials are optimal in the sense that they minimize the
L°°—norm error

2 (r/2)"
(63) leplloe(—1,1)) = (; log(P +1) + 1) THU(P)HLOCQAJ])-

Thanks to this family of unidemensional interpolation functions, we define the
tensorial interpolation functions p,, : B — C on the box B

(64) pm(xo +2zd) = Ifl (21) IIZ (22) Izi (z3) with z = (21, 22, 23) € [-1, 1]3.
and the interpolation points X,, € B

(65) Xm = x0+d(Z),,2),2])
where we have denoted by m € [1, M], with M = P3, the integer defined by
(66) m = psP? + po P + p1 with py,ps and p3 € [1, P]
It follows that a function f: B — C can be approximated in the following way
M

(67) F) = Y p(x) f(Xm)

m=1
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