
HAL Id: hal-01414704
https://hal.science/hal-01414704v1

Submitted on 12 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Software Design and New Media Design
Geert De Haan

To cite this version:
Geert De Haan. Software Design and New Media Design. 7th Workshop on Human-Computer In-
teraction and Visualization (HCIV), Aug 2011, Rostock, Germany. pp.175-187, �10.1007/978-3-642-
54894-9_13�. �hal-01414704�

https://hal.science/hal-01414704v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Software Design and New Media Design

Formal and Visual Tools to Design Mobile and Sensory Interfaces
and Interactive Environments

Geert de Haan

Communication, Media and Information Technology

Section Media Technology / Human Centered ICT

Rotterdam University of Applied Sciences

P.O.Box 25035, 3001 HA, Rotterdam

The Netherlands

g.de.haan@hr.nl / geert.de.haan@upcmail.nl

Abstract. This paper discusses ETAG, a formal model for design representa-
tion, and ETAG-based design as a method for user interface design. The paper
starts with an introduction of ETAG as a design representation. This is fol-
lowed by a description of ETAG-based design and using the notation to repre-
sent relevant aspects of the work context. Next, we discuss the differences be-
tween computer software design and media product design, concluding that
media design is a much more flexible, iterative process and prototyping-based
process in which adaptation of the design of mobile applications extends into
the maintenance phase. To cover further developments towards focusing on
user needs and wishes by means of co-design practices, and to cover for ubiq-
uitous computing and interaction with sensors and interactive environments,
we propose to use sensory labs and to create living labs to move the usability
lab into the real world.

Keywords. formal modelling, ETAG, software design, media design, design
tools, design methods

1 Introduction

In this paper we compare a formal design method for user interface design specifica-
tion (ETAG; Extended Task-Action Grammar; [6][15]) with examples of the collec-

tion of tools that are actually taught at a Human-Computer Interaction (HCI) educa-
tional curriculum in Media Technology at the bachelor level. The aim is to investi-
gate the need for formal specification methods for user interface design; in particular
to investigate the usefulness of formal modelling tools for modern cf. mobile and
ubiquitous applications. Formal methods for user interface design, such as ETAG,
were developed in the late eighties when the focus was on structured design methods
and design for usability. Presently, as reflected in the Media Technology curriculum,
the focus in teaching engineers is on designing creative applications of mobile and
ubiquitous technology and services [7].

In this paper, section 2 discusses Extended Task-Action Grammar (ETAG) as an
example of a formal modelling approach to user interface design. As a formal model-
ling tool, ETAG is a fairly advanced and refined method, based on specifying what a
perfectly knowing user would know about a user interface to perform tasks with it.
Section 3 discussed ETAG-based design as a design approach which uses ETAG as
its main vehicle for specifying a user interface. A main element in ETAG-based
design is the formal specification of task- and user interface objects, elements and
commands and command-actions with a fairly restricted application of prototyping
and testing.
In section 4, the paper discusses the general approach to design as taught in a con-
temporary Human-Computer Interaction curriculum. Among the main characteris-
tics of the Media Technology curriculum are the focus on creativity, user-centredness
and the user-experience, and in the application of a loose collection of tools which
each support a particular part of the design process.
Section 5 concludes the paper with a number of conclusions about the applicability of
the two general approaches to user interface design. In this section, we also discuss
some of the latest developments in application development, and in particular the
employment of experimentation facilities such as sensor labs and living labs for con-
cept development, design fine tuning and design evaluation. All of these develop-
ments seem to suggest that instead of relying on specifying beforehand, user inter-
face design moves towards increasingly agile or experimentation-based approaches.

2 Extended Task-Action Grammar

ETAG (Extended Task-Action Grammar; [6][15]) is a formal language to represent
user interfaces in terms of the knowledge that a perfectly knowing user would have
(in a mental model) about performing tasks. To create a psychologically valid de-
scription of user interface for design purposes, ETAG stratifies user interface knowl-
edge into a number of levels using existential logic and written down in a formal
grammar. Sowa's Existential logic [14] is used to anchor user interface knowledge in
general world-knowledge. The formal grammatical notation, adopted from ETAG's
predecessor, Task-Action Grammar (TAG; [12]) ensures that the description is suffi-
ciently precise for design and implementation purposes without sacrificing psycho-

logical validity. User interface representations are stratified into levels to meet the
existence of levels in human knowledge and to reflect the major decisions that occur
during the design process. ETAG representations consist of a canonical basis, a user
virtual machine, a dictionary of basic tasks, and a section with production rules.

The canonical basis (an ontology) lists the universally known concepts such as ob-
ject, attributes and events which are used to define the specific objects, attributes, etc.
of the user interface in the type specification and the type hierarchy of the user vir-
tual machine.

CONCEPT ::= [OBJECT] | [PLACE] | [EVENT]
[PLACE] ::= [place.IN ([OBJECT])] | [place.ON ([OBJECT])]
[EVENT] ::= [event.KILL-ON ([OBJECT], [PLACE])] |
 [event.MOVE-TO ([OBJECT], [PLACE])]

Fig. 1. A fragment of a canonical basis in ETAG for an application environment in which the
user has to know that there are objects, places and events. The objects may reside on or in

places, and there are events to kill or delete objects on a place and to move objects between
places. This type specification fragment might apply to, for instance, a filing system, a game

or a messaging system.

The user virtual machine (UVM) describes the elements and the workings of the
user interface without referring to a specific implementation. Ideally, a single UVM
could be used for a mobile interface, a pc-like interface, etc. In the type specification
each of the concepts in the type hierarchy is defined, and additional concepts and
attributes are defined to describe how the system works, as experienced by the user.

type [OBJECT > MESSAGE]
 supertype:[TEXT] ;
 themes: [HEADER], [BODY] ;
 relations:[place.ON-POS(1)([MESSAGE])] for [HEADER],
 [place.ON-POS(1)([MESSAGE])] for [BODY],
 [place.POSS-AT([MESSAGE])] for [HEADER], [BODY];
 attributes: <SENDER>, <SEND_DATE>, <STATUS>
END [message]

Fig. 2. A specification of a message type in ETAG which describes a message a text, consist-
ing from one header and one message body. Each message is further characterised by a

sender, a timestamp and a status attribute.

The event specification is the part of the UVM describing the workings of the sys-
tem as it virtually appears to work from the point of view of the users, which may be
different from how it is actually built to work. It describes what the system does
when it processes the tasks that are successfully invoked by the user, using a pseudo

computer program notation which describes the change in the user's task world that
is described in the object specification, such as changing an attribute value or creat-
ing a new object.

type [EVENT > COPY_MESSAGES]
 description: for {[MESSAGE: *x]}
 [event.copy-to ([MESSAGE: *x],
 [place.ON-TAIL ([MESSAGE_FILE: *y]): *p2])] ;
 precondition: [state.IS-AT ([MESSAGE: *x],
 [place.ON-POS.(i) ([MESSAGE_FILE: *z]): *p1])] ;
 comments: "copy messages from file z onto the end of
file y"
END [COPY_MESSAGES]

Fig. 3. A ETAG specification of an event to copy or append messages, if there are any, from
one file to the end of another file.

The dictionary of basic tasks lists the tasks which are available to the user and it

links the workings of the user interface to the command specification of the tasks.

ENTRY 6:
[TASK > COPY_MESSAGES],
[EVENT > COPY_MESSAGES]
[MESSAGE_FILE: *z]
T6 [EVENT > COPY_MESSAGES]
 [OBJECT > MESSAGE: (*x)][OBJECT > MESSAGE_FILE: *y]
comments: "copy messages from the current message file
into another file"

Fig. 4. An ETAG basic task or a user-level task description to copy messages to a file as the
invocation of the copy-messages event along with the messages and the file as arguments.

Finally, the production rules describe, for each basic task, the command procedure
in terms of the command syntax, the way of referring to command elements, the
naming and labelling of command elements, and the physical actions to specify each
element.
The dictionary of basic tasks and the production rules is the part of ETAG which
addresses the differences between interaction styles and devices like windows sys-
tems, multitouch interaction, and interactive voice-response interfaces. To complete
an ETAG specification of a system, the perceptual interface should be specified next.
However, ETAG has never been extended to specify the visual aspects of the user
interface, mainly because it is much easier to do graphical design by means of other
tools such as paper-and-pencil or interactive user interface builders.

3 ETAG-Based User Interface Design

ETAG-based design [6] is originally developed as a design method on the basis of
the ETAG notation to supplement or indeed replace software engineering design
methods with one that is designed as inherently user centred. ETAG-based design is
a user centred design method which guarantees or, at least, stimulates the designer to
consider the user. In ETAG-Based Design user interface design is regarded as the
incremental specification of the mental model of a perfectly knowing user. The de-
sign process is structured into a number of discrete steps, each covering a specific set
of design decisions: task and context analysis, task design or task synthesis, concep-
tual user interface design, and perceptual user interface design, which consists of the
design of the presentation interface and the design of the interaction language be-
tween the user and the system.

In ETAG-Based Design the ETAG notation is used to represent the analysis and
design results. To this purpose, it is necessary that the notation is flexibly adapted to
meet the specific purposes of the design stage. Originally, ETAG was intended only
for user interface specification and not for representing the results of task analysis
and task design. However, by altering the level of abstraction of the specification, the
amount of detail, and the inclusion of special modelling concepts, the ETAG nota-
tion becomes useful for different purposes. For example, in modelling business pro-
cedures during task analysis, the representation is specified at a high level of abstrac-
tion without much detail, and special concepts are used to represent the decomposi-
tion of tasks and procedures and to represent agency and ownership.

ETAG-based design consists of a number of discrete phases, each with its own for-
mal modelling specification to model task analysis results, to specify task design,
concept design and user interface design, and each phase includes a particular
evaluation of the specification. The phases are designed in such a way as to stimulate
design iteration within each phase and to minimize the need for iterate and experi-
ment with design options between different phases; thus enabling an easy-to-manage
design process.

Fig. 5. The structure of ETAG-based design [6].

An advantage of using a single notation throughout design is facilitating the tran-
sitions from one design stage to the next one. Another advantage, at least in princi-
ple, is that it is easier to create tool support. This is particularly relevant for present-
ing ETAG as a formal model in a way which suits the background and the way of
working of other stakeholders. Instead of having to translate between many different
notations, in ETAG-based design, tools only need to deal with a single notation
which allows for easy to automatic translation into visual specifications or program-
ming code. This idea is similar to proposals to use a single e.g. object-oriented or
XML-based representation as the underlying notation for the software engineering of
user interface design specification, as proposed by Foley and Sukaviriya [5].

A final advantage of using a single notation is that designers themselves are not
required to learn and use a variety of different notations. In the approaches of Pa-
ternò [11] and Constantine and Lockwood [4], for example, designers must be able
to deal with a handful of different design representations, in contrast to only one
notation in ETAG-based design.

ETAG was originally proposed as a competence model of the knowledge that us-
ers need to perform their tasks, much like Moran's Command Language Grammar
[9] or Payne and Green's Tag Action Grammar [12] with the special addition of an
ontology so that not only the translation of tasks into actions can be described but

also the objects and attributes and the transitions that take place when tasks are exe-
cuted. In other words, whereas TAG is able to describe what users need to know
about how to delete a file, ETAG is able to describe what a file is and what happens
when it is deleted.

ETAG as a formal notation is considerably harder to create than a non-formal de-
scription but it seemed worthwhile since formalisms may also be used for other pur-
poses than mere design specification, including automatic generation of online help,
generation of user interface programming specifications and code, easy calculation of
usability characteristics like consistency, complexity and learnability, and the afore-
mentioned use of a single notation throughout the whole design process (see: [6]).
Not bad for a notation that is also psychologically valid, even though, at the time, the
question was raised if such advantages could really counter the difficulties associated
with formal representations: this might be the case for large, dependable or safety
critical systems but what about the average windows utility or tablet app?

4 Designing New Media

New Media of digital media refers to all forms of purposive information transfer,
carried out by digital means. Compared to analogue information carriers such as
gramophone records, newspapers and paintings, digital media like web-pages and
digital video, in combination with declining hardware costs and more effective tools,
allow for (almost) effortless copying and editing. As a consequence of such lack of
resistance to change, the design process for media products does not have to meet the
same rigour of the design process for (business) software. Media products allow for a
much more flexible approach to design with room for testing, experimentation, and
fine-tuning of the design target with highly detailed specifications before anything
can be build. In a more general way, a similar transition may be identified with every
new generation of computer hardware, from the mainframe to the mini-computer, to
the personal and game computer, and finally, to the smart phone and ubiquitous
computing because of the technical facilities for a flexible design process in combi-
nation with increasing demand to meet market and user requirements [7].

Matthew Johnson is a 53 year old college educated male, married for over
20 years with Mary, his childhood girlfriend. They has 2 kids, Bill and Eve-
lyn, ages 15 and 17. Matthew and Mary each have a drivers license but, as
highly principled members of the green party, they don't own a car. Mat-
thew rides the metro almost daily one the same journey between home in
Leyden, where they live in an monumental house at the canal and work at
the city council of Delft. He uses his commuting time to read a newspaper
and if wifi is available to check for high-priority email.

Fig. 6. A example description of a persona, a typical and fictive user to represent an impor-
tant class of user or customers for designers to empathise with.

In comparison to the design of software systems for business processes or pay roll-
ing, the design process of new media products like interactive websites and mobile
apps is lightweight, where flexibility with respect to adapting to changes in the mar-
ket or the customers' wishes is a key requirement to the design and the design proc-
ess. Consequently, particularly in the media area, agile design methods like Scrum
[13] and Extreme Programming [2] should, at least theoretically, be most useful. In
order to find out how our educational curriculum should best be adapted to the needs
and wished of the companies who employ our alumni, we did a small preliminary
study into design methods utilised by these companies. We asked our Media Tech-
nology students who served as their interns to name the types of product that these
companies created and the main design methods used. The results indicate that vir-
tually all of these companies either utilise scrum or comparable methods, or that they
are in the process of moving from waterfall-like methods to agile design.

You don't need a key for the building that you might want to enter: You
could use a virtual key to open the door. This virtual key exists in your mo-
bile app. You open the app, click on the door that you want to open. Of
course, first the administrator will have to provide you with the proper
rights. When you have the proper access rights, the door will open; other-
wise it remains closed.

The system is intended to make building-access self-sufficient without a
need for a doorkeeper or a reception desk. Furthermore, the administrator
always knows who is inside the building.

Fig. 7. A design concept. This design concept exemplifies using an RFID/NFC wireless iden-
tification card as a key to a door-lock.

Because of the flexibility requirements and the lower repair costs in designing
media products, the design process of media products is not only lightweight but also
tends to consist of a variety of tools to suit the job without much reliance on a par-
ticular design notation. The following list contains about all user interface design
representations employed in a modern Media Technology curriculum:

1 personas and mood boards
2 a design concept and view (generally, in text)
3 task lists, task descriptions and task analysis models
4 usage scenarios and storyboards
5 use cases, activity diagrams, entity relationship diagrams
6 interface sketches or paper prototypes, wireframes and screen designs
7 prototypes, demonstrators and the actual working system

Several of these design representations are exemplified in figures 6 to 12, some in
abbreviated form, taken from the Media Technology curriculum, in particular from
student work and some from research.

Name Login as a Student
Summary the student logs in on the network
Actors Student
Assumptions Actor is not yet logged in
Description Actor enters username and password in the entry-fields and

hits "enter" or clicks the button "login"
Exceptions Wrong username or password
Result Actor is logged in

Fig. 8. A description of a user task as a use case, a user task description from the point of
view of the computer system interacting with the outside world.

The design process of media products is based on prototypes, from low-fidelity

prototypes including paper prototypes, mock-ups and sketches to increasingly higher
fidelity prototypes including clickable prototypes and the design product itself. Sec-
ondly, the media design process is a features-driven process, where each design cycle
or Scrum sprint focuses on the next most important features to implement. Finally,
the media design process is an incremental design process with iteration both during
the design process as such, as well as iteration after the design process as such, since
maintenance is regarded as including further adaptation to evolving user wishes and
tastes.

Ms. Brown is a vital 72 year old. Two years ago she was diagnosed with
type II diabetes for which a diet and medication were prescribed.
On three consecutive days, Ms. Brown's blood glucose level has been
slightly higher than normal and today it is rather high. A little alarmed, Ms.
Brown presses the help-button on the diabetes assistant and a friendly voice
assures her that there is nothing to worry about.
The assistant suggests her to redo the measurement using the little finger of
her other hand. Ms. Brown now learns that her blood glucose level is only
slightly higher than normal and her assistant asks her to take her pills,
including an extra TZD "you know, the big blue one" just to be on the safe
side.

Fig. 9. An example user scenario presenting how a user may interact with a webpage or an
application to analyse, explain or specify the design product.

Fig. 10. A paper prototype or a user interface sketch (left) to present test-users or other de-
signers what a design will look like. On the right a clickable prototype to present the interac-

tion design or user-system dialogue of a smartphone application.

Media products tend to allow for much flexibility because of the distinction be-
tween the 'front-end', the website or user interface of the system and the 'back-end',
the database(s) and the Content Management Systems (CMS) which act as the user
interface of the application programmer.
The strict separation of the user interface and the data processing part of the applica-
tion allows for easy adaptation of the front-end whilst keeping the backend stable.
While a website is up and running, it is possible to present different groups of users
with a different front-end, depending for example, on the basis of the local webserver
they use. Next, data collected online about user preferences, conversion rate or sales
figures may be used to choose the most successful front-end design. Naturally, such a
process of online optimization is not restricted to a single usability evaluation trial
but may take the form of a continuous process of adapting the looks and behaviour of
a website or mobile app to the behaviour of its users.

Broos et al. [3] noted that a particular user interface characteristic, such as consis-
tency, is seen as a positive characteristic of user interfaces according to HCI theory
but that in designing mobile applications other requirements may become much
more important. For instance, in designing a mobile social app for the skating com-
munity (board skaters, inline skaters and bmx bicyclists) it is natural to make a dis-
tinction between the tasks that users execute while they are actually mobile (hence:
actively skating) and those tasks executed when the user is able to pick a steady seat
to interact with the application. In the former (mobile) case, interaction should be
above all automatic and minimal, utilizing sensor information like GPS location
recognition instead of the demanding the user to indicate his or her choices on a
keyboard or touch screen [3].

Fig. 11. A wireframe of a web page presenting the layout of a set of standard web-pages with-
out displaying the actual content.

Comparable circumstances evolve in ubiquitous computing and interactive envi-
ronments, and in intelligent and adaptive interfaces. According to Neerincx et al.
[10] task performance should be supported by agents to the extent that human opera-
tors have sufficient cognitive capacity to focus on the task at hand; in emergency
situations like in marine combat situations, agents should take over all but the most
essential tasks in order to optimize total task output.

Fig. 12. A demonstrator (or the actual design) as a design prototype which demonstrates ac-
tual usage of a product by behaving (almost) as if it is the finished product.

5 Comparing Design Approaches

When comparing the two design approaches listed, one heavyweight and resting on a
design notation as the core of the design process, and one lightweight and utilizing
whatever tools seem most appropriate to the design cycle at hand, it will be clear that
the media design approach is much more flexible and less regulated and thereby
better able to rapidly service any changes in customer wishes and needs, exactly as
Schwaber and Beedle [13] tried to address with Scrum.

In designing web applications the media design approach works fine. However,
with the ongoing transition towards mobile computing, sentient interfaces and ubiq-
uitous computing, it is our opinion that the iterative features-driven design process
has to be further adapted to the new design ecology.
First, increasing focus on user requirements and wishes has increased the employ-
ment of co-design and co-creation practices. As a consequence, large parts of appli-
cation design still take place behind the software engineer's work station and perhaps
in the usability lab but increasingly often design 'happens' within the actual context
of use.
Secondly, computer applications increasingly make use of sensors in the computer
device, in the environment or in both. Consider, for instance, using a GPS service or
an application which employs the user's movement patterns, or the simple idea to
shut down your phone by putting it on its belly. Of course, the experience that the
research field has gathered about such interactive environments is rather limited and,
as such, it underlines the need to integrate design with investigating usage and us-
ability aspects in the real world. This provides another argument to remove the dis-
tance between the design and the application contexts.

On the basis of the utility of complex formal tools like ETAG in our work on me-
dia design, we do not opt for the introduction of new and complex tools to visualise
or automate aspects of our design activities; rather, we opt to move design more into
the direction of the actual context of use and away from the workstation [8]. Design
is about products that enable people to act and interact in the real world, and our
design specifications, models and software are just there to make designing such
products possible but they are not the essence of what design is all about. To 'situate'
design in the context of us, we propose two developments to support this transition.

First, we have recently introduced a sensor lab as a middle-ground between the
usability lab and the real world. The sensor lab provides all the facilities for the first
crude design iterations, including a range of pre-installed networked sensors and
interactive display screens, observation cameras and microphones. In this manner we
are able to experiment with and investigate the use of sensors in an environment
which also provides usability lab facilities. Next to the ‘sensorlab’, we introduced a
‘fablab’ to extend the design facilities towards interactive objects in general rather
then smart phones and other pre-designed interactive objects, and a ‘citylab’ was set
up as a place to collect and utilise all kinds of data from the public environment;
open data. All these lab facilities enable designers to experiment and do 'rapid proto-

typing' in each design stage, be it conceptualising, functional design, interaction
design or tangible design.
Secondly, we investigate the use of self-configuring sensor networks like Almende's
'sense-os' [1]. Networks like these make it possible to hook up one’s mobile phone to
a network and to collect on-line sensor and usage data from the phone or other net-
worked sensor devices thus enabling a so-called living lab which acts as a usability
lab within the everyday real world environment. Actually, self-configurating net-
works is just another example of the transition to move our design tools to a next
higher level of abstraction: what began with programming by wire and evolved
alongside assembly languages and user interface toolkits will certainly move towards
self-configuring sensor systems, data resources and user adaptation in the internet of
things.

References

1. Almende (2011). Observation Systems. Available at: http://www.sense-os.nl/.
2. Beck, K. (1999). Extreme Programming Explained: Embrace Change. Addison-

Wesley.
3. Broos, M., van Gammeren, P., van Steenoven, T. en de Haan, G. (2011). Creat-

ing a context-aware mobile application to enlarge social cohesion: skating to-
gether. Accepted for ECCE 2011 - Designing Collaborative Activities, Aug. 24 -
26, 2011; Rostock, Germany.

4. Constantine, L. L., & Lockwood, L. A. D. (1999). Software for use: A practical
guide to the models and methods of usage-centered design. New York: ACM
Press.

5. Foley, J.D. and Sukaviriya, P. (1994). History, Results, and Bibliography of the
User Inter-face Design Environment (UIDE), an Early Model-based System for
User Interface Design and Implementation. In: Paternó, F. (ed.) Interactive Sys-
tems: Design, Specification, and Verification '94, pp. 3-13. Springer Verlag,
1995.

6. de Haan, G. (1996). ETAG-based Design: User Interface Design as Mental Model
Specification. In: Palanque, P. and Benyon, D. (eds.) Critical Issues in User Inter-
face Systems Engineering. Springer Verlag, London, 81-92.

7. de Haan, G. (2011). DevThis: HCI Education beyond Usability Evaluation In:
Lenior, D., Sturm, J. & Mulder, I. (eds.) Proceedings Chi Sparks, 23 june 2011,
Arnhem, the Netherlands.

8. de Haan, G., Choenni, S., Mulder, I., Kalidien, S., & van Waart, P. (2011).
Bringing the Research Lab into Everyday Life: Exploiting Sensitive Environ-
ments to Acquire Data for Social Research. In: S.N. Hesse-Biber (ed.) The Hand-
book of Emergent Technologies in Social Research (Chapter 23). New York: Ox-
ford University Press, pp. 522-541.

9. Moran, T.P. (1981). The Command Language Grammar: a representation for the
user-interface of interactive systems. Int. Journal of Man-Machine Studies 15(1),
3-50.

10. Neerincx, MA, Lindenberg J, Grootjen M. 2005. Accessibility on the Job: Cog-
nitive Capacity Driven Personalization. Proceedings of HCI International 2005.
Las Vegas, USA, July 22–27, 2005.

11. Paternò, F., (1999) Model-Based Design and Evaluation of Interactive Applica-
tion. Springer Verlag, Berlin. Heidelberg.

12. Payne, S.J. and Green, T.R.G. (1986). Task-Action Grammars: a model of the
mental representation of task languages. Human-Computer Interaction 2(2), 93-
133.

13. Schwaber, K., and Beedle, M. (2002). Agile Software Development with Scrum.
Prentice Hall.

14. Sowa, J.F. (1984). Conceptual Structures: information processing in mind and
machine. Addison-Wesley.

15. Tauber, M.J. (1990). ETAG: Extended Task Action Grammar: a language for the
description of the user's task language. Proceedings Interact' 90, pp. 163-168.
North-Holland.

.

