N
N

N

HAL

open science

Verbal Use Case Specifications for Informal
Requirements Elicitation

Eliezer Kantorowitz

» To cite this version:

Eliezer Kantorowitz. Verbal Use Case Specifications for Informal Requirements Elicitation.

Workshop on Human-Computer Interaction and Visualization (HCIV), Aug 2011, Rostock, Germany.

pp.165-174, 10.1007/978-3-642-54894-9 12 . hal-01414703

HAL Id: hal-01414703
https://hal.science/hal-01414703
Submitted on 12 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-01414703
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Verbal Use Case Specificationsfor Informal
Requirements Elicitation

Eliezer Kantorowitz

Technion- Israel Institute of Technology
Technion City
3200 Haifa, Israel

kantor@cs.technion.ac.il

Abstract. Constructing a software system from poor specifications mayshece
sitate costly repairs. We introduce the notisatisfactory specifications” for
quality specifications that do not require costly repéatisfactory specifi:-
tions may be produced by a Computer Supported Collaborative {E&&W)
team incorporating all the relevant experts and the stakeholders. digisssed
that the CSCW team develops use case specifications, iherpertise is &
pecially useful Specifyingin a natural language understood by all teanmme
bers facilitates needed intensive cooperation between differentmeanbers
Compared to specifications formulated in formal terminolagybal formué-
tions in domain language represent a textual visualization. Translagngs-
bal specifications into formal UML diagrams provides a further graphicat vis
alization. It is suggested that each specification is provided vstparate>e
ample for each kind of the possible situations. sEhexamples may clarify
meaning of poorly formulated specifications, facilitate identifyiaugits in fa-
mal specifications and employed for software debugging

Keywords: Satisfactory specifications, Computer Supported Cooperative
Work, CSCW, UML, Use Case, Software Specificati@aftware Requé-
ments, Requirements elicitation, Human Factors, Verification, nongaimis,
natural languageorrect specifications, verbal specifications, formal spezific
tions, behavioral study

Introduction

A common model of software system development begins with elicitiageth
quirementsof the system, i.e. what the system is requiceble able to do Thereafter
a system that meets the elicited requirements is specified. The specifizfatios
system includegs structure and behavior as well as nonfunctional requirements such
as the maximal permitted system size in bytes (called “foot print”). The specification
process unearths sometimes further requirements. The requirefinéation and

mailto:kantor@cs.technion.ac.il

system specification arthereforeto some extend done simultaneously. The specif
cations are the basis farlater detailed design and construction of the system. If the
requirements elicited in the beginning of the process are faulty, theuwzied sg-
tem will have the corresponding faults. The repair of such a faultynsyiggcally
involves high costs and unfortunate delivery delays. Gettingaheirements right
from the beginning is therefore an important gée a measure for achieving this
goal, we introduce the concept of satisfactory specificat®pacifications are said to
be satisfactory when no major modifications are needed for prodacéygtem that
satisfies the intended users. Getting the specification isgtowever, difficult to
achieve. A study of the faults found in requirements of criticlilveoe systems [1]
found 9.5 errors per each 100 requirementss is a surprising high ratas critical
software is subject to an intensive verification and validation. It seemdaieetbat
we have to work hard to produce satisfactory specifications. We sliacasmber of
known methods for requirement elicitation and specification developmantwi
consider especially useful from a cognitive ergonomically point of vieweldping
satisfactory specifications requires different kinds of expertise as well agekdue
of the needs of the users and customers of the specified systaay therefore be a
good idea to employ a Computer Supported Cooperative Work (CS2Vigam,
including all those who may contribute to the creation, modification or rednafva
requirements (the stakeholders). Such a team may consider the fystethedif-
ferent points of view of the different stakeholdddan Beery[3] suggest including in
the team persons that are not familiar with the problem domain. Suets@npmmay
ask questions that are out of the entrenched train of thoughts ekplerts. In ddi-
tion, the requirements elicited or omitted represent the priorities of the eesigh
the system. Such priorities can be negotiated in a CSCW team which inttedes
relevant stakeholders of the system

A CSCW team may include software engineers, domain expettntab users
and mangers. Such a team is thus composed of personfeoémtiprofessional ble
grounds and of different human natures. A productive collaboragbnelen such
team members involves both behavioral and social challenges [Bii&$e challegr
eshave been the subject of many studigs There are also difficulties in managing
the large amount of data found in the requirements and specificatioasl dife sys-
tems Validating the many different details of the system specification can be very
important. Consider for example the case of the aircraft that failed to dmdkeding
in Warsaw airport in 1993 [6]. The essence of ¢hese of the accident, where two
human were Kkilled, is that the software for controlling the beglstem was specified
to be activated on landing, i.e. when the weight on each one of tHartdiog gears
exceeded 12 tons. However due to side winds this happened oanenbf the two
gears. The paper [6] did not report whether the specification teandéwchn expér
enced pilot (a domain expert) who may have suggested the incbfdimmside wind
case in the specificationsSuch a possible pilot member of the teslmuld have
carefully read the very large number of the aircraft specificationsderdo detect
this deficiency. The experience of this pilot may have been frareta, when the
human pilot activated the brakes and they worked in any kind of Wnd exper
enced pilot may therefore not have been awdrhe effectoff possible insufficient
weight on one of the two landing gears. And not detected the sidepsoblem of

the requirements. Could this problem have been detected by suisiadization
means as storytelling? Possible not, as our story teller, i.e. the expendotedas
not looking for solutions for the side wind problem. Our pilotyrhave detected the
problem byasking “is it possible that the brakes will not woik?@ o arrive at the side
wind possibility requires out of the box thinking, where the-arpert member of the
team may help. To determine whether the side wind is a real,ttireagxperienced
pilot has to ask an aeronautical engineer to investigate the expected wind$irag la
situations and do the non-trivial computation of their effects on thanigrgkar
weights Such an investigation is time consuming and costly. The manggrnot
welcome these costs and delays. In addition our experienced pilot musttlzamit
her/his air craft expertise is limited. The last problem was address&diitberg’s
egoless programming approach [7], which is widehployed in current day’s coop-
erative efforts, such as CSCW teams. Specifications developments by a €3@W
are, for example, are done in a friendly collegiate wayeam member may thus not
be afraid of admitting lack of some expertise, as the overriding contdre team is
to come close to satisfactory specifications. The egoless honest approacméssklso
ed in learned discussions in the CSCW team when attempting to clarifyldiffiob-
lems, such as the above discussed example of whether the brakimgtale place
in some situations.

Use case specifications.

Applications that are based on a well elaborated mathematical model mayaadvant
geously exploit this model. An example is the successful SQL datalzasegyement
systems, which employ the relational modebday, some forty years after their- i
troduction, the SQL model is widely employed, which is remarkabfasinevolving
software world. In this paper we consider systems where some of the CSQW me
bers may not be familiar with the use of formal methods. In theses dhis paper
suggests that after the validation of the elicited requirements, the CSGW\¢va-
opsa verbal use case specification [8][]] of the system. Such specifications are
widely employed in the industry. We explain why this kind pédfication is esp-
cially useful in striving to satisfactory specificatioms.use case specificationf a
systemis the set of all its use cases.[8lonsider for example a library information
system. The use case specification of this system may be cetnpbsuch use cases
as“Lending a Library Book” (shown in Fig. 1), “Register a Library Book™ and “Reg-
ister a new Lender”. A use case is a specification of the interactions between-an e
ternal actor and the system that are required for accomplishing dizellpaappli@-
tion of the system, e.g'Lending a book”. An actor is eithea humanor different
system. The interactions specified in the use case are implementedviaredhat
may be called the use case software. Consider for example an acaskhéor data
that are stored in a database. The use case software receives this requédst from
actor and conveys it to the underlying system software that manageataask
The use case software gets the requested database data from the gnsystgm
software and conveys it to the actor. The use case specification dagsenify the
underlying system software. The underlying system softwaspésified advaat
geously after the completion of the use case specificagiar that it interfaces to the

already completed use case specifications. The specification of the undsylyiea
software requires only software engineering knowledge and hegfore bepro-
duced bya software engineering team. The insights of domain expert membtrs
CSCW team are, on the other hand, essential for the specification of¢heases.
Consider for example the design of a library information systemexyperienced
librarian @domain expert) can provide needed information on the activities abe pro
lems of a library. This labor division between the CSCW team ditieguse case
specification and the engineering team specifying the underlying systéimare
enables each team to work in an area where it is most useful.

Identify the book by bar code reading.

(Elapsed computer processing time should be less than 0)1 sec.
Identify the lender by bar code reading.

(Elapsed computer processing time should be less than 0)1 sec.

Check if the lender is entitled to lend the book -
(Lending permission rules come here.)
(Elapsed computer processing time should be less than 0.1 sec.)
Permit or reject the lending,
EXCEPTION HANDLING (what to do if :)
(The book is not registered in the database)
(The book bar code is corrupted)
(The book is not bar coded
(The lender is not registered)
Etc

REQUIREMENTS IMPLEMENTED BY THIS USE CASE

Fig. 1. Simplified specification of the use cassled “Lending a Library
Book”, where some details are omitted. It includes nonfunctional equir
ments, such afuration of bar code processing < 0.1 8ddandling of &-
ceptional cases and list of the elicited requirements that are implemented by
this use case are also included.

This paper further suggests specifying the use dasa®atural language that isf
miliar to all CSCW team members. This should enable efficient collaboragon b
tween the different CSCW team members, which may be needed in cladiffioglt
situations, such as the side wind example discussed in the previous.s¥etibal

use case specifications are employed in the industry using for exarapiesthe-
tions of[10]. This paper suggests that a use case specification should include all i
formation related to the use case. Having all the information in one placheimy
the CSCW team members in understanding of difficult situations. Ridpith shows

an examp# specification of the use caSkending a Library Book”, where some de-

tails are omittedA use case specifies both the normal and the exceptional cases, e.g.
what to do if the book is not registered in the database of the librarse dase spéc
fication should also specifyonfunctional requirements. As an example, it is required

in Fig. 1, that the duration of the processing of the bar code resltindd be shorter

than 0.1 sec. The purpose of this requirement is to providesteof the system with

the feeling of a fast responding system, i.e. a user experienaespurfhis requa-

ment is a “non-functional” one, because it is not about the functioning or non-
functioning of a bar code reading, but about the duration of tliéngealhe use case
specification should also provide a list the elicited requirements that the udencase
plements 11]. This enables a person that for some reason modifies the code of the use
case software, to check that the modified code still implements the neldicited
requirements.

It is suggested that after a thorough validation of the developed verbalsgse ca
specifications by the CSCW team, these specifications are manually translated to
formal UML specification 12][13][14]. UML was designed to support the software
development process. It provides tools for visualization of the speicifisaand for
some validations. There are UML tools for code generation and for testarase-g
tion [15]. UML tools regarding system dependability are discussed@h [IML
tools for Model Driven Software Engineering are discussed in [THese powerful
tools may be employed throughout the life cycle of the softwarkifore extensions
and modifications

English I'ssues.

In order to simplify the formulations in the following parttbfs paper, we ra-
ploy the term “English” as an abbreviation of “Natural language, for example Eng-
lish”. Summerville [18] lists a number of difficulties in writing natural langgiae-
quirements specifications. One of the problems is‘tNatural language underst&n
ing relies on the specification readers and writers using the same faptbe same
concept.” This problem is avoided by many writers of mathematical proofsytfaie
papers and commercial contracts, who succeed in conveying their nsessaggdear
and correct way. Writers of software requirements specificationstli@ceame h-
guistic problems as the above mentioned writers and may theeefop their met-
ods and be equally successfilVe consider first an exampdé a mathematician wii
ing a proof. Her intended readers are mathematician, who like hdrae#,been
trained during their university studies to employ the by and laigeally accepted
vocabulary of mathematics and the English idioms employed in mativamexpé-
nations Before her paper is published, it is typically reviewed by three methe
cians who check both the correctness of the proof and the clafiggiish explaa-
tions. Their improvement suggestions may then be incorporatee iputhlished e-
vised paper. By employing the by and large globally accepted mathenvaibedii-
lary it is ensured that the author and her readers understand the cam¢kptsame
way.

Consider now, for example, the writer of the requirements spetiins of ail
brary information systentollowing the mathematician example, the requirement

specification writer will employ the vocabulary of library science in dtirements
that regard library issues and computer science vocabulary in the negpiisethat
regardsdtware issues. Similarly to the mathematical proof case, the requirements
specifications should be thoroughly reviewed for their correctness assvietl their
understandability

The handbook [19] distinguishes between linguistic and softwareesgig an-
biguities in requirements specificatioi@oftware engineering ambiguity is when
some specifications needed for the implementation of the requirememssaing.
An example of such a software engineering ambiguity is fouRéginl in the -
strudion “Identify the book by bar code readin@here exist however four different
possible bar code standards and it is not specified which to ensploly ambiguities
may be normal at an early stage of the specification process,sahenof the desiy
decisions have not yet been made.

As regard the linguistic ambiguities, the manual [19] provides detailed instructions
for producing precise formulation in English and avoiding unirgdreimbiguities,
i.e. ambiguities not intended by the specification writer. The manual providessH
tic equivalents to mathematical formulations. Linguistic formulations maybt@@s
precise as mathematical formulations. This enables employing argumentations i
English in mathematical proofs the following we compare some usability issues of
formal and verbal specificationEhe comparison will be illustrated by an example
specification of a small restaurant (Fig32and 4).

1. The restaurant has two tables named table A and table B.
2. Each table can accommodate up to and including four diners.
Examples:
Two dine on table A. Three dine on table B.
No one dines on table A. No one dines on table B.
Four dine on table A. Four dine on table B.
Clarifying statement:
The restaurant can accommodate up to and incledihgdiners.

Fig. 2. Specification of a small restaurant formulated by the instructiofi9bf

In order to avoid misunderstanding dueptr English formulations [19] suggest
adding clarifying examples and explanations as illustrated in Fig. 2. We suggest an
engineering praxis, where a separate example is provided for ealchflgituation
that may occur. The examples of Fig. 2 representaftusrmal” situation and two
“extremé& situations These examples clarify for the reader the intents of the specif
cation writers in each of the three possible situation kinds. Thesgksamay also
be employed by proof readers and specification validators for clgggliiposes. The
specification of Fig. 2 could have empéadthe domain knowledge, that a table may
be free (no diners), but we preferred to clarify this point by thergeexample.

Fig. 3 illustrates how an example disambiguates an unintended ambighiiti, is
due to a poor formulation of statement 2 of the specification. This satéhihas the
false interpretation marked as II, which was not intended by the specificatten wr

Examples one and three as well as the clarifying statement of Figw3tisat inte-
pretation Il is falseThe unintended ambiguity of statement 2 in Fig. 3 contrasts with
the efficient specification employed in Fig. 2, where the statement marked as 2
intentionally ambiguous. It has 25 different correct interpretatibnse of which are
the three examples. In other words the single statement 2 specifies Piepgits-
tions. This is an example of the possible usefulness of ambiguitiedurallan-

guages.

1. The restaurant has two tables named table A and table B.
2. All the tables can accommodate up to and including four diners.
Examples:
Two dine on table A. Three dine on table B.
No one dines on table A. No one dines on table B.
Four dine on table A. Four dine on table B.
Clarifying statement:
The restaurant can accommodate up to and inclaijhgdiners.

Statement 1 of the specificatieanbe understood in two ways:
I. Each table can accommodate up tinahdling four diners.
Il. The two tables can together accommodate up tmelading four diners.

The clarification examples show that | is the intended specification

Fig. 3. The restaurant of Figure 2 specified with an unintended ambigustyatement 2
The clarifying examples enable a disambiguation. The proof reattés @oorly written
specification may detect the problem and improve formulation.

We shall now employ our restaurant specification for a brief illustratioreadith
ferences between verbal and formal specifications. Fig. 4 is a formé#icgiem of
the same restaurant.

n-number of tables
a— number of diners on table 1
b — number of dinners on table 2
n=2
{fa€Z:a=0"a <4}
{beZ:b=0"b <4}
Examples
a=2 b=3.
a=0, b=0.
a=4 b=4.
Clarifying statement
a+b<8

Fig. 4 Formal specification of the restaurant specified in Fig. 2.

We suggest employing examples and clarifying statements even in theimpie
specification of Fig. 4, as they may facilitate fast and correct understanixen-
ples and clarifying texts may be very useful in complicated specifications, tiigere
specification writer may err. Examples may also have an explanatory faluhe
reader. It is noted that writing and reading of long logical expressidiasral spe
fications are error prone processes][Zhis indicates that the deciphering of neth
matical expressions involves a non-negligible cognitive effort. Itasetbre re-
ommended to employ only short expressions when possiblathefuproblem is that
understanding a formal specification involves cognitively both a dedighéhe
mathematical expression and formulatingnitthe terminology of the domain. This
contrasts with a verbal specification which readily expresses in thintdogy of the
domain. Whether the possible differences in the cognitive effortviestdn manip-
lating formal and verbal specifications influence significantly the effigiefcthe
system specification process is difficult to tell without elaborate experimental
comparison. The training and experience of the specifications dewelopest be
considered. Furthermore, formal specifications may in some casesdraagously
manipulated mathematically by computer programs.

Discussion and Future Research

This paper introduces the Satisfactory Specifications concept, which is dafined
specifications that without major modifications enables production of a sybsm
satisfies the intended users. The goal is thus to produce a qualityicgpiecifsuch
that costly repairs of the system and unfortunate delays are avéide8CW team
having the relevant experts and stakeholders has the insights neegedducing
satisfactory specifications. However, even for a CSCW team, achievisfpsttdry
system specifications is a difficult task, especially when the system inahades
components that have not yet been tried, e.g. using a computer instehdroén for
controlling the brakes of a landing air-craft. Analyzing such an umknsituation
may require an intensive cooperative analysysteam members having different
training and expertise. These members must understand and aghree specifia-
tions that they develop. Therefore, if some of the members involvibe idiscussion
are not familiar with formal specifications, the use of verbal specificationsseebe
the right thing. Alternatively the team members familiar with formal magthorite
the formal specifications and translate them into English for the memvberare not
familiar with formal specifications. This involves the risk that thediaions do not
convey some details correctlx. possible future behavioral study may compare these
two specifications development processes. The paper suggests transliditgd
verbal specifications into standardized formal UML diagrams, which visudize t
design and enables using UML tools, e.g. for validation and code genei&tisn
approach exploits the advantage of both verbal and formal specifications.

In the discussion on whether to employ formal or verbal specificatiomyalue of
the expressiveness of English is in our opinion not given sufficieightv Providing
this kind of expressiveness to an English like formal languagg23Pmay therefore
be difficult. The problems of possible unintended ambiguities in Engleshbe mit
gated by using English correctly and by employing clarifying exesngnd explaa-

tions [19]. This paper suggests employing a separate example fokirdabf the
possible situations, e.g. a use case for solving a real quadratic equagidmvea
separateexample for no roots, one root and two roots. The examples prbfad a
specification may therefore also be employed for debugging the softilzese »-
amples are also useful illustrations for persons wishing to undertargbecifia-
tion.

REFERENCES

1. Ambrosio, A.M., Madeira, H., Silva\., Véras, P.C. , Vieira,M., Villani, E.: Errors on
Space Software Requirements: A Field Study and Application Scen@dftware Ret
ability Engineering (ISSRE), 2010 IEEE 21st International $gipn onSpace
Software Requirements Engineering

2. Grudin, J., Poltrock, S.: (2012) CSCW - Computer Supported Coopek4ftrk. In: Se-
gaard, Mads and Dam, Rikke Friis (eds.). "Encyclopedia of Human-Computer lotetacti
Aarhus, Denmark: The Interaction-Design.org Foundation.

3. Berry, D. M:: The importance of ignorance in requirements engineering: An earliér sigh
ing and a revisitation. Journal of Systems and Software 60(:B5 §3002)

4. Grudin J.: Why CSCW applications fail: problems in the desigheamluation of organ
zational interfacesCSCW '88 Proceedings of the 1988 ACM conference on Computer-
supported cooperative work

5. Schmidt, K., Bannon, L= Taking, CSCW seriously - Computer Supported Cooperative
Work (CSCW), Springer 1992

6. Hawkins R.D., Habli, I., Kelly, T.P. The Principles of Software Safety Assura8dst h-
ternational System Safety Conference 2013

7. Weinberg, G.M.: The Psychology of Computer Programming, Dorseté{b@i71

8. Jacobson, I., Christenson, M. P., Jonsson, P. G.: Overgaard Obietted Software i
gineering: A Use Case Driven Approach Addison-Wesley, 1992

9. Cockburn, A.: (2008-1-9). "Why | still use use cases". alistair.aarkbs.

10. Cockburn, A.: Writing Effective Use Caseésddison-Wesley, 2001

11. Winkler, S., Pilgrim, J.: A survey of traceability in requirements ezging and model-
driven developmentjournal Software and Systems Modeling (SoSyM), Volume 9 Issue 4
September 2010

12. Object Management GroupCatalog of OMG Modeling and Metadata Specifications
http://www.omg.org/technology/documents/modeling_spec_catalog.htm

13. Rumbaugh, J., Jacobson, Booch, G.: Unified software development process, tha-co
plete guide to the unified process from the original designers. Addissiey 1999

14. Lange, C.F.J., Chaudron, M.R.YMuskens, J.: In practice: UML software architecture
and design description. Software, IEEE (Volume:23, Issue: 2

15. Abdurazik, A., Offutt, J.: Using UML collaboration diagrams for statiecking and test
generation. Lecture Notes in Computer Science Volume 1939, 203833395

16. Bernardi, S., Merseguer, J., Petriu, D.C.: Dependability modelidgaalysis of software
systems specified with UML. ACM Computing Surveys, Volume 45, Issue lerNoer
2012

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5629483
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5629483
http://www.informatik.uni-trier.de/~ley/db/journals/jss/jss60.html#Berry02
http://dl.acm.org/citation.cfm?id=62273
http://dl.acm.org/citation.cfm?id=62273
http://dl.acm.org/author_page.cfm?id=81100186376&coll=DL&dl=ACM&trk=0&cfid=357076368&cftoken=12987338
http://www.omg.org/technology/documents/modeling_spec_catalog.htm
http://www.citeulike.org/group/8357/author/Rumbaugh:J
http://www.citeulike.org/group/8357/author/Jacobson:I
http://www.citeulike.org/group/8357/author/Booch:G
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lange,%20C.F.J..QT.&searchWithin=p_Author_Ids:37279806500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chaudron,%20M.R.V..QT.&searchWithin=p_Author_Ids:37267018100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Muskens,%20J..QT.&searchWithin=p_Author_Ids:37267020100&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=52
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=33727
http://scholar.google.dk/citations?user=fAeRp3kAAAAJ&hl=en&oi=sra
http://link.springer.com/bookseries/558

17.
18.
19.

20.

21.

22.

23.

Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineeringractice
Synthesis Lectures on Software Engineergptember 2012.

Sommerville, I.: Software Engineering (9th Edition), Addison-Weg@&1,0

Berry, D., M., Kamsties, E., Krieger, M.M.: From Contract Drafting toftviare
Specification: Linguistic Sources of Ambiguity - A Handbook. 2003, available:
https://cs.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf

Reisner, P., Boyce, RE,, Chamberlin, D., D.: Human factors evaluation of two data base
query languages: square and segdEIPS '75 Proceedings of the May 19-22, 197

Arora, C, Sabetzadeh, M Briand, L, Zimmer, F, Gnaga, R.: Automatic Checking of
Conformance to Requirement Boilerplates via Text Chunking: An Industrial Casg Stud
ESEM'13, 2013

Umber, A., Bajwa, |.S.: Minimizing ambiguity in natural languagevsaife requirements
specification, Sixth International Conference on Digital Information n&¢gment
(ICDIM), 2011

Osborne, M., MacNish, C.K.: Processing natural language softwareeregut specifia-
tions, Requirements Engineering, 1996., Proceedings of the Skttendhtional Confe
ence on

http://www.morganclaypool.com/toc/swe/1/1
https://cs.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Osborne,%20M..QT.&searchWithin=p_Author_Ids:37377994500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.MacNish,%20C.K..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3526
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3526

