
HAL Id: hal-01414703
https://hal.science/hal-01414703v1

Submitted on 12 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Verbal Use Case Specifications for Informal
Requirements Elicitation

Eliezer Kantorowitz

To cite this version:
Eliezer Kantorowitz. Verbal Use Case Specifications for Informal Requirements Elicitation. 7th
Workshop on Human-Computer Interaction and Visualization (HCIV), Aug 2011, Rostock, Germany.
pp.165-174, �10.1007/978-3-642-54894-9_12�. �hal-01414703�

https://hal.science/hal-01414703v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Verbal Use Case Specifications for Informal
Requirements Elicitation

Eliezer Kantorowitz

Technion – Israel Institute of Technology
Technion City

3200 Haifa, Israel

kantor@cs.technion.ac.il

Abstract. Constructing a software system from poor specifications may neces-
sitate costly repairs. We introduce the notion “satisfactory specifications” for
quality specifications that do not require costly repairs. Satisfactory specifica-
tions may be produced by a Computer Supported Collaborative Work (CSCW)
team incorporating all the relevant experts and the stakeholders. It is suggested
that the CSCW team develops use case specifications, where its expertise is es-
pecially useful. Specifying in a natural language understood by all team mem-
bers facilitates needed intensive cooperation between different team members.
Compared to specifications formulated in formal terminology, verbal formula-
tions in domain language represent a textual visualization. Translating the ver-
bal specifications into formal UML diagrams provides a further graphical visu-
alization. It is suggested that each specification is provided with a separate ex-
ample for each kind of the possible situations. These examples may clarify
meaning of poorly formulated specifications, facilitate identifying faults in for-
mal specifications and employed for software debugging.

Keywords: Satisfactory specifications, Computer Supported Cooperative
Work, CSCW, UML, Use Case, Software Specifications, Software Require-
ments, Requirements elicitation, Human Factors, Verification, non-ambiguous,
natural language, correct specifications, verbal specifications, formal specifica-
tions, behavioral study

Introduction
A common model of software system development begins with eliciting the re-

quirements of the system, i.e. what the system is required to be able to do. Thereafter
a system that meets the elicited requirements is specified. The specification of the
system includes its structure and behavior as well as nonfunctional requirements such
as the maximal permitted system size in bytes (called “foot print”). The specification
process unearths sometimes further requirements. The requirement elicitation and

mailto:kantor@cs.technion.ac.il

system specification are therefore to some extend done simultaneously. The specifi-
cations are the basis for a later detailed design and construction of the system. If the
requirements elicited in the beginning of the process are faulty, the constructed sys-
tem will have the corresponding faults. The repair of such a faulty system typically
involves high costs and unfortunate delivery delays. Getting the requirements right
from the beginning is therefore an important goal. As a measure for achieving this
goal, we introduce the concept of satisfactory specifications. Specifications are said to
be satisfactory when no major modifications are needed for producing a system that
satisfies the intended users. Getting the specification right is, however, difficult to
achieve. A study of the faults found in requirements of critical software systems [1]
found 9.5 errors per each 100 requirements. This is a surprising high rate, as critical
software is subject to an intensive verification and validation. It seems therefore that
we have to work hard to produce satisfactory specifications. We discuss a number of
known methods for requirement elicitation and specification development that we
consider especially useful from a cognitive ergonomically point of view. Developing
satisfactory specifications requires different kinds of expertise as well as knowledge
of the needs of the users and customers of the specified system. It may therefore be a
good idea to employ a Computer Supported Cooperative Work (CSCW) [2] team,
including all those who may contribute to the creation, modification or removal of
requirements (the stakeholders). Such a team may consider the system from the dif-
ferent points of view of the different stakeholders. Dan Beery [3] suggest including in
the team persons that are not familiar with the problem domain. Such a person may
ask questions that are out of the entrenched train of thoughts of the experts. In addi-
tion, the requirements elicited or omitted represent the priorities of the designers of
the system. Such priorities can be negotiated in a CSCW team which includes the
relevant stakeholders of the system.

A CSCW team may include software engineers, domain experts, potential users
and mangers. Such a team is thus composed of persons of different professional back-
grounds and of different human natures. A productive collaboration between such
team members involves both behavioral and social challenges [4][5]. These challeng-
es have been the subject of many studies [2]. There are also difficulties in managing
the large amount of data found in the requirements and specifications of real life sys-
tems. Validating the many different details of the system specification can be very
important. Consider for example the case of the aircraft that failed to brake on landing
in Warsaw airport in 1993 [6]. The essence of the cause of the accident, where two
human were killed, is that the software for controlling the brake system was specified
to be activated on landing, i.e. when the weight on each one of the two landing gears
exceeded 12 tons. However due to side winds this happened on only one of the two
gears. The paper [6] did not report whether the specification team included an experi-
enced pilot (a domain expert) who may have suggested the inclusion of the side wind
case in the specifications. Such a possible pilot member of the team should have
carefully read the very large number of the aircraft specifications in order to detect
this deficiency. The experience of this pilot may have been from the era, when the
human pilot activated the brakes and they worked in any kind of wind. Our experi-
enced pilot may therefore not have been aware of the effect off possible insufficient
weight on one of the two landing gears. And not detected the side wind problem of

the requirements. Could this problem have been detected by such a visualization
means as storytelling? Possible not, as our story teller, i.e. the experienced pilot, was
not looking for solutions for the side wind problem. Our pilot may have detected the
problem by asking “is it possible that the brakes will not work?” To arrive at the side
wind possibility requires out of the box thinking, where the non-expert member of the
team may help. To determine whether the side wind is a real threat, the experienced
pilot has to ask an aeronautical engineer to investigate the expected winds at landing
situations and do the non-trivial computation of their effects on the landing gear
weights. Such an investigation is time consuming and costly. The manger may not
welcome these costs and delays. In addition our experienced pilot must admit that
her/his air craft expertise is limited. The last problem was addressed in Weinberg’s
egoless programming approach [7], which is widely employed in current day’s coop-
erative efforts, such as CSCW teams. Specifications developments by a CSCW team
are, for example, are done in a friendly collegiate way. A team member may thus not
be afraid of admitting lack of some expertise, as the overriding concern of the team is
to come close to satisfactory specifications. The egoless honest approach is also need-
ed in learned discussions in the CSCW team when attempting to clarify difficult prob-
lems, such as the above discussed example of whether the braking may not take place
in some situations.

Use case specifications.
Applications that are based on a well elaborated mathematical model may advanta-
geously exploit this model. An example is the successful SQL database management
systems, which employ the relational model. Today, some forty years after their in-
troduction, the SQL model is widely employed, which is remarkable in fast evolving
software world. In this paper we consider systems where some of the CSCW mem-
bers may not be familiar with the use of formal methods. In these cases this paper
suggests that after the validation of the elicited requirements, the CSCW team devel-
ops a verbal use case specification [8][9][10] of the system. Such specifications are
widely employed in the industry. We explain why this kind of specification is espe-
cially useful in striving to satisfactory specifications. A use case specification of a
system is the set of all its use cases [8]. Consider for example a library information
system. The use case specification of this system may be composed of such use cases
as “Lending a Library Book” (shown in Fig. 1), “Register a Library Book” and “Reg-
ister a new Lender”. A use case is a specification of the interactions between an ex-
ternal actor and the system that are required for accomplishing one particular applica-
tion of the system, e.g. “Lending a book”. An actor is either a human or different
system. The interactions specified in the use case are implemented by software that
may be called the use case software. Consider for example an actor that asks for data
that are stored in a database. The use case software receives this request from the
actor and conveys it to the underlying system software that manages the database.
The use case software gets the requested database data from the underlying system
software and conveys it to the actor. The use case specification does not specify the
underlying system software. The underlying system software is specified advanta-
geously after the completion of the use case specification, such that it interfaces to the

already completed use case specifications. The specification of the underlying system
software requires only software engineering knowledge and may therefore be pro-
duced by a software engineering team. The insights of domain expert members of the
CSCW team are, on the other hand, essential for the specification of the use cases.
Consider for example the design of a library information system. An experienced
librarian (a domain expert) can provide needed information on the activities and prob-
lems of a library. This labor division between the CSCW team doing the use case
specification and the engineering team specifying the underlying system software
enables each team to work in an area where it is most useful.

Identify the book by bar code reading.

(Elapsed computer processing time should be less than 0.1 sec.)

Identify the lender by bar code reading.

(Elapsed computer processing time should be less than 0.1 sec.)

Check if the lender is entitled to lend the book –
(Lending permission rules come here.)
(Elapsed computer processing time should be less than 0.1 sec.)

Permit or reject the lending,

EXCEPTION HANDLING (what to do if :)
 (The book is not registered in the database)

 (The book bar code is corrupted)

(The book is not bar coded
(The lender is not registered)
Etc

REQUIREMENTS IMPLEMENTED BY THIS USE CASE

…

Fig. 1. Simplified specification of the use case called “Lending a Library

Book”, where some details are omitted. It includes nonfunctional require-
ments, such as “Duration of bar code processing < 0.1 sec.” Handling of ex-
ceptional cases and list of the elicited requirements that are implemented by
this use case are also included.

This paper further suggests specifying the use cases in a natural language that is fa-
miliar to all CSCW team members. This should enable efficient collaboration be-
tween the different CSCW team members, which may be needed in clarifying difficult
situations, such as the side wind example discussed in the previous section. Verbal
use case specifications are employed in the industry using for example the instruc-
tions of [10]. This paper suggests that a use case specification should include all in-
formation related to the use case. Having all the information in one place may help
the CSCW team members in understanding of difficult situations. Fig 1, which shows

an example specification of the use case “Lending a Library Book”, where some de-
tails are omitted. A use case specifies both the normal and the exceptional cases, e.g.
what to do if the book is not registered in the database of the library. A use case speci-
fication should also specify non-functional requirements. As an example, it is required
in Fig. 1, that the duration of the processing of the bar code reading should be shorter
than 0.1 sec. The purpose of this requirement is to provide the user of the system with
the feeling of a fast responding system, i.e. a user experience purpose. This require-
ment is a “non-functional” one, because it is not about the functioning or non-
functioning of a bar code reading, but about the duration of the reading. The use case
specification should also provide a list the elicited requirements that the use case im-
plements [11]. This enables a person that for some reason modifies the code of the use
case software, to check that the modified code still implements the relevant elicited
requirements.

It is suggested that after a thorough validation of the developed verbal use case

specifications by the CSCW team, these specifications are manually translated to a
formal UML specification [12][13][14]. UML was designed to support the software
development process. It provides tools for visualization of the specifications and for
some validations. There are UML tools for code generation and for test case genera-
tion [15]. UML tools regarding system dependability are discussed in [16]. UML
tools for Model Driven Software Engineering are discussed in [17]. These powerful
tools may be employed throughout the life cycle of the software for future extensions
and modifications.

English Issues.
 In order to simplify the formulations in the following part of this paper, we em-

ploy the term “English” as an abbreviation of “Natural language, for example Eng-
lish”. Summerville [18] lists a number of difficulties in writing natural language re-
quirements specifications. One of the problems is that “Natural language understand-
ing relies on the specification readers and writers using the same words for the same
concept.” This problem is avoided by many writers of mathematical proofs, scientific
papers and commercial contracts, who succeed in conveying their messages in a clear
and correct way. Writers of software requirements specifications face the same lin-
guistic problems as the above mentioned writers and may therefore adopt their meth-
ods and be equally successful. We consider first an example of a mathematician writ-
ing a proof. Her intended readers are mathematician, who like herself, have been
trained during their university studies to employ the by and large globally accepted
vocabulary of mathematics and the English idioms employed in mathematical expla-
nations. Before her paper is published, it is typically reviewed by three mathemati-
cians who check both the correctness of the proof and the clarity of English explana-
tions. Their improvement suggestions may then be incorporated in the published re-
vised paper. By employing the by and large globally accepted mathematical vocabu-
lary it is ensured that the author and her readers understand the concepts in the same
way.

Consider now, for example, the writer of the requirements specifications of a li-
brary information system. Following the mathematician example, the requirement

specification writer will employ the vocabulary of library science in the requirements
that regard library issues and computer science vocabulary in the requirements that
regard software issues. Similarly to the mathematical proof case, the requirements
specifications should be thoroughly reviewed for their correctness as well as for their
understandability.

The handbook [19] distinguishes between linguistic and software engineering am-

biguities in requirements specifications. Software engineering ambiguity is when
some specifications needed for the implementation of the requirements are missing.
An example of such a software engineering ambiguity is found in Fig. 1 in the in-
struction “Identify the book by bar code reading”. There exist however four different
possible bar code standards and it is not specified which to employ. Such ambiguities
may be normal at an early stage of the specification process, when some of the design
decisions have not yet been made.

As regard the linguistic ambiguities, the manual [19] provides detailed instructions

for producing precise formulation in English and avoiding unintended ambiguities,
i.e. ambiguities not intended by the specification writer. The manual provides linguis-
tic equivalents to mathematical formulations. Linguistic formulations may thus be as
precise as mathematical formulations. This enables employing argumentations in
English in mathematical proofs. In the following we compare some usability issues of
formal and verbal specifications. The comparison will be illustrated by an example
specification of a small restaurant (Fig.2, 3 and 4).

1. The restaurant has two tables named table A and table B.
2. Each table can accommodate up to and including four diners.
Examples:

Two dine on table A. Three dine on table B.
No one dines on table A. No one dines on table B.
Four dine on table A. Four dine on table B.

Clarifying statement:
 The restaurant can accommodate up to and including eight diners.

Fig. 2. Specification of a small restaurant formulated by the instructions of [19]

In order to avoid misunderstanding due to poor English formulations [19] suggest
adding clarifying examples and explanations as illustrated in Fig. 2. We suggest an
engineering praxis, where a separate example is provided for each kind of situation
that may occur. The examples of Fig. 2 represent thus a “normal” situation and two
“extreme” situations. These examples clarify for the reader the intents of the specifi-
cation writers in each of the three possible situation kinds. These examples may also
be employed by proof readers and specification validators for checking purposes. The
specification of Fig. 2 could have employed the domain knowledge, that a table may
be free (no diners), but we preferred to clarify this point by the second example.

Fig. 3 illustrates how an example disambiguates an unintended ambiguity, which is
due to a poor formulation of statement 2 of the specification. This statement 2 has the
false interpretation marked as II, which was not intended by the specification writer.

Examples one and three as well as the clarifying statement of Fig. 3 show that inter-
pretation II is false. The unintended ambiguity of statement 2 in Fig. 3 contrasts with
the efficient specification employed in Fig. 2, where the statement marked as 2 is
intentionally ambiguous. It has 25 different correct interpretations, three of which are
the three examples. In other words the single statement 2 specifies 25 possible situa-
tions. This is an example of the possible usefulness of ambiguities in natural lan-
guages.

1. The restaurant has two tables named table A and table B.
2. All the tables can accommodate up to and including four diners.
Examples:

Two dine on table A. Three dine on table B.
No one dines on table A. No one dines on table B.
Four dine on table A. Four dine on table B.

Clarifying statement:
 The restaurant can accommodate up to and including eight diners.

Statement 1 of the specification can be understood in two ways:

 I. Each table can accommodate up to and including four diners.
 II. The two tables can together accommodate up to and including four diners.

The clarification examples show that I is the intended specification

Fig. 3. The restaurant of Figure 2 specified with an unintended ambiguity in statement 2.
The clarifying examples enable a disambiguation. The proof reader of this poorly written
specification may detect the problem and improve formulation.

We shall now employ our restaurant specification for a brief illustration of the dif-

ferences between verbal and formal specifications. Fig. 4 is a formal specification of
the same restaurant.

n –number of tables
a – number of diners on table 1
b – number of dinners on table 2
n=2

Examples
a = 2, b = 3.
a = 0, b = 0.
a = 4, b = 4.

Clarifying statement
a + b ≤ 8

Fig. 4 Formal specification of the restaurant specified in Fig. 2 .

We suggest employing examples and clarifying statements even in the very simple
specification of Fig. 4, as they may facilitate fast and correct understanding. Exam-
ples and clarifying texts may be very useful in complicated specifications, where the
specification writer may err. Examples may also have an explanatory value for the
reader. It is noted that writing and reading of long logical expressions in formal speci-
fications are error prone processes [20]. This indicates that the deciphering of mathe-
matical expressions involves a non-negligible cognitive effort. It is therefore rec-
ommended to employ only short expressions when possible. A further problem is that
understanding a formal specification involves cognitively both a deciphering the
mathematical expression and formulating it in the terminology of the domain. This
contrasts with a verbal specification which readily expresses in the terminology of the
domain. Whether the possible differences in the cognitive effort involved in manipu-
lating formal and verbal specifications influence significantly the efficiency of the
system specification process is difficult to tell without an elaborate experimental
comparison. The training and experience of the specifications developers must be
considered. Furthermore, formal specifications may in some cases be advantageously
manipulated mathematically by computer programs.

Discussion and Future Research
This paper introduces the Satisfactory Specifications concept, which is defined as

specifications that without major modifications enables production of a system that
satisfies the intended users. The goal is thus to produce a quality specification such
that costly repairs of the system and unfortunate delays are avoided. A CSCW team
having the relevant experts and stakeholders has the insights needed for producing
satisfactory specifications. However, even for a CSCW team, achieving satisfactory
system specifications is a difficult task, especially when the system includes novel
components that have not yet been tried, e.g. using a computer instead of a human for
controlling the brakes of a landing air-craft. Analyzing such an unknown situation
may require an intensive cooperative analysis by team members having different
training and expertise. These members must understand and agree on the specifica-
tions that they develop. Therefore, if some of the members involved in the discussion
are not familiar with formal specifications, the use of verbal specification seems to be
the right thing. Alternatively the team members familiar with formal methods write
the formal specifications and translate them into English for the members who are not
familiar with formal specifications. This involves the risk that the translations do not
convey some details correctly. A possible future behavioral study may compare these
two specifications development processes. The paper suggests translating validated
verbal specifications into standardized formal UML diagrams, which visualize the
design and enables using UML tools, e.g. for validation and code generation. This
approach exploits the advantage of both verbal and formal specifications.

In the discussion on whether to employ formal or verbal specifications, the value of
the expressiveness of English is in our opinion not given sufficient weight. Providing
this kind of expressiveness to an English like formal language [22] [23] may therefore
be difficult. The problems of possible unintended ambiguities in English may be miti-
gated by using English correctly and by employing clarifying examples and explana-

tions [19]. This paper suggests employing a separate example for each kind of the
possible situations, e.g. a use case for solving a real quadratic equation may have a
separate example for no roots, one root and two roots. The examples provided for a
specification may therefore also be employed for debugging the software. These ex-
amples are also useful illustrations for persons wishing to understand the specifica-
tion.

REFERENCES

1. Ambrosio, A.M., Madeira, H., Silva, N., ras, P.C. , Vieira, M., Villani, E.: Errors on
Space Software Requirements: A Field Study and Application Scenarios, Software Reli-
ability Engineering (ISSRE), 2010 IEEE 21st International Symposium on Space
Software Requirements Engineering

2. Grudin, J., Poltrock, S.: (2012) CSCW - Computer Supported Cooperative Work. In: Soe-
gaard, Mads and Dam, Rikke Friis (eds.). "Encyclopedia of Human-Computer Interaction".
Aarhus, Denmark: The Interaction-Design.org Foundation.

3. Berry, D. M.: The importance of ignorance in requirements engineering: An earlier sight-
ing and a revisitation. Journal of Systems and Software 60(1): 83-85 (2002)

4. Grudin J.: Why CSCW applications fail: problems in the design and evaluation of organi-
zational interfaces, CSCW '88 Proceedings of the 1988 ACM conference on Computer-
supported cooperative work

5. Schmidt, K., Bannon, L.: Taking, CSCW seriously - Computer Supported Cooperative
Work (CSCW), Springer 1992

6. Hawkins, R.D., Habli, I., Kelly, T.P. The Principles of Software Safety Assurance, 31st In-
ternational System Safety Conference 2013

7. Weinberg, G.M.: The Psychology of Computer Programming, Dorset House 1971
8. Jacobson, I., Christenson, M. P., Jonsson, P. G.: Overgaard Object-Oriented Software En-

gineering: A Use Case Driven Approach Addison-Wesley, 1992
9. Cockburn, A.: (2008-1-9). "Why I still use use cases". alistair.cockburn.us.

10. Cockburn, A.: Writing Effective Use Cases, Addison-Wesley, 2001
11. Winkler, S., Pilgrim, J.: A survey of traceability in requirements engineering and model-

driven development, Journal Software and Systems Modeling (SoSyM), Volume 9 Issue 4,
September 2010

12. Object Management Group: Catalog of OMG Modeling and Metadata Specifications.
http://www.omg.org/technology/documents/modeling_spec_catalog.htm

13. Rumbaugh, J., Jacobson, I., Booch, G.: Unified software development process, the com-
plete guide to the unified process from the original designers. Addison Wesley 1999

14. Lange, C.F.J., Chaudron, M.R.V. , Muskens, J.: In practice: UML software architecture
and design description. Software, IEEE (Volume:23 , Issue: 2

15. Abdurazik, A., Offutt, J.: Using UML collaboration diagrams for static checking and test
generation. Lecture Notes in Computer Science Volume 1939, 2000, pp 383-395

16. Bernardi, S., Merseguer, J., Petriu, D.C.: Dependability modeling and analysis of software
systems specified with UML. ACM Computing Surveys, Volume 45, Issue 1, November
2012

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5629483
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5629483
http://www.informatik.uni-trier.de/~ley/db/journals/jss/jss60.html#Berry02
http://dl.acm.org/citation.cfm?id=62273
http://dl.acm.org/citation.cfm?id=62273
http://dl.acm.org/author_page.cfm?id=81100186376&coll=DL&dl=ACM&trk=0&cfid=357076368&cftoken=12987338
http://www.omg.org/technology/documents/modeling_spec_catalog.htm
http://www.citeulike.org/group/8357/author/Rumbaugh:J
http://www.citeulike.org/group/8357/author/Jacobson:I
http://www.citeulike.org/group/8357/author/Booch:G
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lange,%20C.F.J..QT.&searchWithin=p_Author_Ids:37279806500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chaudron,%20M.R.V..QT.&searchWithin=p_Author_Ids:37267018100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Muskens,%20J..QT.&searchWithin=p_Author_Ids:37267020100&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=52
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=33727
http://scholar.google.dk/citations?user=fAeRp3kAAAAJ&hl=en&oi=sra
http://link.springer.com/bookseries/558

17. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice.
Synthesis Lectures on Software Engineering, September 2012.

18. Sommerville, I.: Software Engineering (9th Edition), Addison-Wesley 2010
19. Berry, D., M., Kamsties, E., Krieger, M.M.: From Contract Drafting to Software

Specification: Linguistic Sources of Ambiguity - A Handbook. 2003, available:
https://cs.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf

20. Reisner, P., Boyce, R.., F., Chamberlin, D., D.: Human factors evaluation of two data base
query languages: square and sequel, AFIPS '75 Proceedings of the May 19-22, 197

21. Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F., Gnaga, R.: Automatic Checking of
Conformance to Requirement Boilerplates via Text Chunking: An Industrial Case Study.
ESEM'13, 2013

22. Umber, A., Bajwa, I.S.: Minimizing ambiguity in natural language software requirements
specification, Sixth International Conference on Digital Information Management
(ICDIM), 2011

23. Osborne, M., MacNish, C.K.: Processing natural language software requirement specifica-
tions, Requirements Engineering, 1996., Proceedings of the Second International Confer-
ence on

http://www.morganclaypool.com/toc/swe/1/1
https://cs.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Osborne,%20M..QT.&searchWithin=p_Author_Ids:37377994500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.MacNish,%20C.K..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3526
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=3526

