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Abstract—In this paper, we introduce a distributed algorithm

to compute the Čech complex. This algorithm is aimed at solving
coverage problems in self organized wireless networks. Two

applications based on the distributed computation of the Čech
complex are proposed. The first application detects coverage holes
while the later one optimizes coverage of wireless networks.

I. INTRODUCTION

Coverage is a key factor that determines the quality of

service in wireless networks. In recent applications to solve

coverage problems in wireless networks, simplicial complex is

often utilized to represent the network topology. Unlike graph,

which represents only the neighborhood of cells, simplicial

complex presents the relationship of cells with a higher

dimension.

The Čech complex is a simplicial complex that represents

exactly the topology of the network [3]. The Čech complex

is the right tool to describe and optimize the coverage for

wireless networks. However, the computation of the Čech

complex is complicated. The Čech complex represents a

collection of cells by a simplex if they have a non-empty

intersection. In [1], an algorithm to compute the Čech complex

is introduced, but this algorithm is designed to be utilized in

graphics science. Therefore, this algorithm only works with

a collection of same sized cells. Although an algorithm to

compute the Čech complex for a collection of differently sized

cells is proposed in [6], this algorithm is still centralized.

In [7], authors introduce an application based on the Čech

complex to optimize the coverage for wireless networks.

However, as the computation of the Čech complex is still

available in centralized way, this application is also central-

ized. The future wireless networks will be self organized and

therefore require distributed computations. In [2], [4], [10],

some algorithms to detect coverage holes in wireless networks

are developed. Although these algorithms are available in both

centralized and distributed way, they use the Rips complex

instead of the Čech complex to represent the topology of

the network. The Rips complex is an approximation of the

Čech complex. The Rips complex represents a collection of

cells by a simplex if every pair of cells in this collection

are intersected. Therefore, the Rips complex may not capture

exactly the topology of the network. So, some coverage holes

may be undiscovered [9].

In this paper, we introduce the distributed computation of

the Čech complex for a given collection of differently sized

cells. This algorithm is aimed at solving coverage problems

in wireless networks. We also propose two applications that

are based on the distributed computation of the Čech complex.

Given a wireless network, the first application detects coverage

holes while the second one optimizes its coverage. The opti-

mized coverage reduces as much as possible the intersection

among cells. As a result, the waste power due to interference

within intersected regions is avoided efficiently. Both of these

applications are distributed.

This paper is organized as follows. Section II introduces a

short background of simplicial homology and its applications

in wireless networks. Section III describes all details about the

distributed computation of the Čech complex. Section IV pro-

poses a distributed coverage hole detection and a distributed

coverage optimization for wireless networks. The last section

concludes our paper.

II. SIMPLICIAL HOMOLOGY AND APPLICATIONS

In this section, we introduce some notions of simplicial

homology and its applications. For further details about the

simplicial homology, see documents [8] and [5].

Given a set of vertices V , a k-simplex is an unordered

subset {v0, v1, . . . , vk}, where vi ∈ V and vi 6= vj for all

i 6= j. The number k is its dimension. See Figure 1 for some

instances. Any subset of vertices set of a simplex is a face

of this simplex. An oriented simplex is an ordered type of
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Fig. 1: An example of simplices.

simplex. The orientation of a simplex changes if two vertices

of this simplex swap their position. The change of orientation

is represented by a negative sign as:

[v0, v1, . . . , vi, vj , . . . , vk] = −[v0, v1, . . . , vj , vi, . . . , vk]

An abstract simplicial complex is a collection of simplices

such that: every face of a simplex is also in the simplicial

complex.



Let X be a simplicial complex. For each k ≥ 0, we define

a vector space Ck(X) whose basis is a set of oriented k-

simplices of X . If k is bigger than the highest dimension of

X , let Ck(X) = 0. We define the boundary operator to be a

linear map ∂ : Ck → Ck−1 as follows:

∂[v0, v1, . . . , vk] =
k∑

i=0

(−1)i[v0, v1, . . . , vi−1, vi+1, . . . , vk]

This formula suggests that the boundary of a k-simplex is

the collection of its (k−1)-faces, as illustrated in Figure 2. For

example, the boundary of a segment is its two endpoints. A

filled triangle is bounded by its three segments. A tetrahedron

has its boundary comprised of its four faces which are four

triangles.
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Fig. 2: Boundary operator.

The composition of boundary operators gives a chain of

complexes:

· · ·
∂
−→ Ck+1

∂
−→ Ck

∂
−→ Ck−1 · · ·

∂
−→ C1

∂
−→ C0

∂
−→ 0

Consider two subsets of Ck(X): cycle-subset and boundary-

subset, denoted as Zk(X) and Bk(X) respectively. Let ker be

the kernel and im be the image. By definition, we have:

Zk(X) = ker(∂ : Ck → Ck−1)
Bk(X) = im(∂ : Ck+1 → Ck)

Zk(X) includes cycles which are not boundaries while Bk(X)
includes only boundaries. A k-cycle u is said to be homol-

ogous with a k-cycle v if their difference is a k-boundary:

[u] ≡ [v] ⇐⇒ u − v ∈ Bk(X). A simple computation shows

that ∂ ◦ ∂ = 0. This result means that a boundary has no

boundary. Thus, the k-homology of X is the quotient vector

space:

Hk(X) = Zk(X)\Bk(X)

The dimension of Hk(X) is called the k-th Betti number:

βk = dimHk = dimZk − dimBk (1)

This number has an important meaning for coverage prob-

lems. The k-th Betti number counts the number of k-

dimensional holes in a simplicial complex. For example,

β0 counts the connected components while β1 counts the

coverage holes, etc.

Definition 1 (Čech complex): Given (M,d) a metric space,

ω a finite set of points in M and ǫ(ω) a sequence of real

positive numbers, the Čech complex with parameter ǫ(ω) of

ω, denoted Čǫ(ω)(ω) is the abstract simplicial complex whose

k-simplices correspond to non-empty intersection of (k + 1)
balls of radius ǫ(ω) centered at the (k + 1) distinct points of

ω.

If we choose ǫ(ω) to be the cell’s coverage range R, the

Čech complex verifies the exact coverage of the system. In

the Čech complex, each cell is represented by a vertex. A

covered space between cells corresponds to a filled triangle,

tetrahedron, etc. In contrast, a coverage hole between cells

corresponds to an empty (or non-filled) triangle, rectangle, etc.

III. DISTRIBUTED COMPUTATION OF ČECH COMPLEX

A. System model

We consider a wireless network composed of N distinct

cells. We assume that each cell uses isotropic propagation.

The coverage of the i-th cell is modeled as:

ci(vi, ri) = {x ∈ R
2 : ‖x− vi‖ ≤ ri},

where ‖.‖ is the Euclidean distance, the vertex vi represents

the base station location and ri is coverage radius of the i-
th cell. Let U be the collection of cells, then U = {ci, i =
0, 1, . . . , (N − 1)}. The Čech complex of U , Č(U), is defined

as the Čech complex of the wireless network. In the Čech

complex, each vertex, i.e. a 0-simplex, vi corresponds to the i-
th cell ci in the network. An edge, i.e. a 1-simplex, represents

the connection, or the intersection, between two cells. Each

k-simplex, where k ≥ 2, represents the common intersection

of the coverage of together (k + 1) corresponding cells of

this simplex. For example, in the Figure 3, the 2-simplex

[v2, v3, v6] means the overlap of coverage of cell c2, cell c3
and cell c6. There is no coverage hole inside these cells. The

higher dimensional simplex is, the higher overlap times is.

The 3-simplex [v0, v1, v2, v6] means the four corresponding

cells: c0, c1, c2 and c6, together, have a common intersection.

In contrast, a chain of 1-simplices indicates a coverage hole

inside corresponding cells of the chain. For example, the chain

[v3, v4] + [v4, v5] + [v5, v6] + [v6, v3] shows a coverage hole

inside four cells c3, c4, c5 and c6. To analyze the network

topology, we use characteristics of the homology of the Čech

complex.
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Fig. 3: Cells and their Čech representation.

As the definition of the Čech complex, each k-simplex

represents the common intersection of together its (k + 1)
corresponding cells. We denote Sk the collection of all k-

simplices of the complex. Each vertex, that is a 0-simplex,



corresponds to a cell of the network. The collection of 0-

simplices, S0, is then obviously the list of corresponding

vertices of cells.

S0 = {vi | i = 0, 1, . . . , (N − 1)}.

Each 1-simplex is an edge that connects two overlapping cells.

In other words, it is a pair of two neighbor cells. If two vertices

belong to the vertices set of a k-simplex, where k ≥ 2, then

they form a 1-simplex. So, they are neighbors. Therefore, each

cell needs to detect all its neighbors before computing all its

simplices.

B. Neighbors detection

We assume that each cell ci can communicate with other

cells over radio within a distance di = 2ri. We assume that

there are enough frequency slots for cells to communicate

over radio without collision. Every cell is also connected by a

backhaul network. At the initial state, each cell broadcasts

a ping message with its position and its radius over radio

channel. If a cell receives a ping message, it verifies if

the cell that sent this ping message is a neighbor. If they

are neighbors, then the cell that received the ping message

sends a relationship confirmation together with its position

and its radius to the cell that sent the ping message by

using the backhaul network. After receiving the confirmation,

the cell that sent the ping message adds the cell that sent

the confirmation into its collection of neighbors. We assume

that all the cells can reply the confirmation within a period

tack. After this period tack, every cell detects its collection of

neighbors. We denote the collection of neighbors of the cell

ci as Ni.

C. Distributed simplices computation

When the collection of neighbors is available, each cell

computes its simplices by verifying the intersection among

it and its neighbors. For the details about the intersection

verification, see [6]. As each pair of neighbors forms a 1-

simplex, the collection of 1-simplices of each cell is easily

found. To find all k-simplices, where k ≥ 2, each cell verifies

if a group of it and its k neighbors has common intersection. If

these cells have common intersection, then this group forms a

k-simplex. However, neighborhood is a two-way relationship.

Therefore, the verification of intersection could be duplicated

by different cells that are neighbors. To avoid the redundant

duplication, each cell verifies the intersection by following a

right hand rule. This rule is that each cell verifies only with

neighbors that are on its right hand side. If there is a neighbor

which has the same horizontal coordinate, it verifies only this

neighbor if it has higher vertical coordinate. If a simplex is

found by a cell, this cell transmits this simplex to every cell

that belongs to this simplex. As a result, every cell detects

all its simplices. For example, in Figure 3, the cell c2 verifies

the intersection with only the cell c3 and c6. It detects the

simplex [v2, v3, v6]. It receives its other simplices from the

neighbor c0 and c1. The Algorithm 1 reports the distributed

computation of Čech complex for each cell. We denote the cell

that is computing the simplices as ci. The highest dimension

of simplices that are considered is dimmax. The output of this

algorithm, the collection of simplices of the cell ci is denoted

as Či.

Algorithm 1 Distributed computation of Čech complex

Require: ci the cell that is computing;

Ensure: Či the collection of simplices of the cell ci;
broadcast {ping, vi, ri} over radio;

S0 = vi;
while count time < tack do

if {ping, vj , rj} is received from cj then

if d(vi, vj) < ri + rj then

add vj to Ni;

if xi < xj then

add vj to S0;

add [vi, vj ] to S1;

end if

if xi == xj and yi < yj then

add vj to S0;

add [vi, vj ] to S1;

end if

end if

end if

end while

for k = 2 to dimmax do

for l = 2 to Ck
|S0|

do

ŝ = l-th combination of k vertices in S0;

ŝ = ŝ ∪ {vi};

ĉ = corresponding cells of ŝ;

if intersection of all cells in ĉ is not empty then

add ŝ to Sk;

end if

end for

end for

Či = {S0,S1, . . . ,Sk};

send Či to every corresponding cell of vertices in S0;

ni = |Ni|;
while ni > 0 do

if Čj is received from cj in Ni/S0 then

Či = Či ∪ Čj ;

ni = ni − 1;

end if

end while

return Či;

The global Čech complex that represents the topology of the

whole network is sometimes needed. There should be a master

cell that controls the topology of the network. This global

Čech complex can be easily built by integrating the simplices

computed from every cell. Each cell sends its computed

simplices that contain only the vertices satisfied the right hand

rule. One more time, this rule is useful, it avoids sending the

duplicated simplices.



IV. APPLICATIONS

A. Coverage hole detection

Coverage hole detection is one fundamental application

in solving coverage problem. We introduce a distributed al-

gorithm to detect all the edges that are on the cover (the

boundary) of coverage holes. We assume that each cell has

computed its simplices as in the Algorithm 1. If an edge (a

1-simplex) is not a cover edge of a coverage hole, then it

musts connect with at least two neighbors that are on two

different sides of this edge by filled triangles (a 2-simplex).

Otherwise, the edge is a cover edge of a coverage hole. So,

each cell cooperates with its neighbors to find all its cover

edges. If a pair of neighbors can not find at least two cells

that are their common neighbors and are on different sides of

the edge formed by this pair, then the edge formed by this

pair is a cover edge.

Algorithm 2 Distributed coverage hole detection

Require: ci(vi, ri) the cell that is on a cover edge;

Ensure: boundary cycle that contains vi;
mi = |S1,i|;
ni = |S2,i|;
E = ∅;

for p = 1 to mi do

s1 = p-th 1-simplex in S1,i;

V = ∅;

for do

s2 = q-th 2-simplex in S2,i;

v = s2/s1;

add v to V;

end for

if there is no pair of vertices that are on different sides

of s1 then

add s1/vi to E;

end if

end for

h = {boundary detection, vi};

send h to every corresponding cell of vertices in E;

while count time < t0 do

if a boundary detection message h∗ received then

if vi is in h∗ then

l = vertices list in h;

remove vertices in l that are above vi;
add l to the boundary cycle list L;

else

add vi to the end of h∗;

end if

end if

end while

return L;

The cells that are on cover edge can cooperate to find the

cycle that is boundary of a coverage hole. If a cell ci is on a

cover edge, it sends a boundary detection message {boundary

detection, vi} to the other cell of this cover edge. If a cell, a

receiver, received a boundary detection message from a sender,

and it does not correspond to any vertex in the message, it

adds its vertex to the end of this message, then it forwards

the message to its neighbors that are on cover edges and are

not the sender. If this receiver detects that its vertex is on

the list of vertices in the message, then it remove all vertices

that are above its vertex in the list. It announces the remained

vertices as a boundary cycle that covers a coverage hole. We

assume that all the message are sent and received in a period

t0. After this period, each cell detects all its boundary cycles.

The Algorithm 2 describes the details of the coverage hole

detection.

B. Coverage optimization

Consider a wireless network, we maximize its coverage and

minimize its total transmission power at the same time. Firstly,

we ensure a maximal coverage for the network. Each cell

is turned on and is set to work with the highest transmis-

sion power. At this initial state, the network has the largest

coverage. However, many cells are hardly overlapped. The

overlap region between cells causes the waste of transmission

power due to interference. We can optimize the transmission

power by minimizing the overlap region. However, the global

coverage of the network should be conserved. In other words,

the two Betti numbers β0 and β1 of the Čech complex of the

network should be unmodified. The optimization problem can

be written as:

min
r

N−1∑

i=0

rγi

s.t. β0 = β∗
0

β1 = β∗
1

r = (r0, r1, . . . , rN−1),

(2)

where β∗
0 and β∗

1 are the Betti numbers of the Čech complex

of the network at the initial state where every cell is working

with the maximal transmission power.

In this section, we introduce a distributed algorithm to

optimize the coverage as well as to save energy for the

network. This algorithm is applied for each cell in the network.

We assume that all the fenced cells and boundary cells are

already known. Only the cells that are not fenced or boundary

cells can try to reduce the coverage radius.

At the first step, each cell needs to search for its neighbors

as well as its simplices by following the Algorithm 1. Once the

neighbors set is established, each cell now starts its reduction

process. On each cell, there is a timer which counts down to

zero. The timer is set to a uniform random value from 1 to

tmax, where tmax is the maximal value of the timer. When the

timer of a cell is expired, this cell tries to do a reduction. If

two cells that are neighbors try to reduce their radius at the

same time, the coverage hole may not be detected due to the

outdated information about the radius of each other. Therefore,

before trying to reduce the radius, each cell sends a “pause”

message to its neighbors. Then, the cell reduces its coverage

radius and verifies the coverage. The radius reduction of one



cell only makes topology change in the local region that is

comprised of this cell and its neighbors. If there is a new

coverage hole, it must be inside this local region. This means

that if there is no new coverage hole after the radius reduction,

the Betti numbers β0 and β1 of the Čech complex of this local

region are unchanged. The verification of the network coverage

can be reduced to the coverage verification in only this local

region as in the Algorithm 3.

Algorithm 3 Quick coverage verification after a radius reduc-

tion of one cell

Require:

c∗ the cell that changed its radius;

N = neighbors collection of the cell c∗;

Č
∗ = the Čech complex of {c∗} ∪ N

before the radius reduction;

Ensure: true if and only if there is no new coverage hole.

compute Betti numbers β∗
0 and β∗

1 of Č∗;

Č = the Čech complex of {c∗} ∪ N after the radius

reduction;

compute Betti numbers β0 and β1 of Č;

if β0 = β∗
0 and β1 = β∗

1 then

verification = true;

else

verification = false;

end if

return verification;

If no hole appears, the cell confirms the reduction and sends

the new value of coverage radius to its neighbors. It also sends

the “continue” message to its neighbors to tell them that they

can continue. If a cell received a “pause” message, it pauses

its process and waits until the message “continue” is received.

Then, it continues its process normally. There is a special case

where two neighbor cells whose timers expire at the same time

send the “pause” message to each other simultaneously. One

of these two cells receives a “pause” from another before it

sends “continue” message to other cells. This cell cancels the

current reduction step and sets a new value for its timer and

waits to retry.

If a cell tries to reduce its coverage radius and makes a

coverage hole, it reverses its coverage radius to the previous

value and stops the reduction process. This cell is set to

irreducible.

The distributed energy saving algorithm applied for each

cell is described in the Algorithm 4.

V. CONCLUSION

This paper introduces the distributed computation of the

Čech complex aimed for wireless networks. Two distributed

applications that are based on this computation of the Čech

complex are also proposed. The first application detects the

coverage hole and the second one optimizes the coverage for

the network.

Algorithm 4 Distributed downhill energy saving algorithm for

each cell

Require: c a cell in the network;

Ensure: the optimal radius for c;
transmit the position and the coverage radius of c to other

cells;

collect the information about the position and coverage of

other cells;

while (1) do

set timer = uniform(0, tmax);
wait until timer expires;

Nc = the collection of neighbors of c;
if a “pause” received then

wait until “continue” received;

end if

rold = rc;

rc = rc −∆rc;

if rc < rc,min then

rc = 0;

verify the coverage;

if no coverage hole appears then

send “continue” to neighbors in Nc;

transmit the “turning off” to other cells;

break;

else

rc = rold;

send “continue” to neighbors in Nc;

end if

else

verify the coverage;

if no coverage hole appears then

send rc to neighbors in Nc;

send “continue” to neighbors in Nc;

else

rc = rold;

send “continue” to neighbors in Nc;

break;

end if

end if

end while

return;
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