
HAL Id: hal-01414600
https://hal.science/hal-01414600v3

Preprint submitted on 8 Jan 2019 (v3), last revised 21 Nov 2022 (v8)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

SPPAS - the automatic annotation and analysis of
speech (version 2.0)

Brigitte Bigi

To cite this version:
Brigitte Bigi. SPPAS - the automatic annotation and analysis of speech (version 2.0). 2019. �hal-
01414600v3�

https://hal.science/hal-01414600v3
https://hal.archives-ouvertes.fr

Copyright © 2011-2019 –Copyright © 2011-2019 – Brigitte Bigi – Laboratoire Parole et Langage – France Brigitte Bigi – Laboratoire Parole et Langage – France

Permission is granted to copy, distribute and/or modify this documentPermission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled "GNUA copy of the license is included in the section entitled "GNU
Free Documentation License".Free Documentation License".

Any and all constructive comments are welcome.Any and all constructive comments are welcome.

SPPASSPPAS
the automatic annotationthe automatic annotation

and analysis of speechand analysis of speech
Version 2.0Version 2.0

Brigitte Bigi
contact@sppas.org

SPPASSPPAS
the automatic annotationthe automatic annotation

and analysis of speechand analysis of speech
Version 2.0Version 2.0

Brigitte Bigi
contact@sppas.org

version 2.0 ii

Contents

1 Introduction 1

1.1 What is SPPAS? . 1

1.1.1 Overview . 1

1.1.2 User engagement . 2

1.1.3 Need help . 2

1.1.4 About the author . 2

1.1.5 Licenses . 3

1.1.6 Supports . 3

1.2 Getting and installing . 4

1.2.1 Websites . 4

1.2.2 External programs . 4

1.2.3 Download and install SPPAS . 5

1.2.4 The package . 5

1.2.5 Update . 6

1.3 Features . 6

1.3.1 How to use SPPAS? . 6

1.3.2 What SPPAS can do? . 7

1.4 Main and important recommendations . 7

1.4.1 About files . 7

1.4.2 About automatic annotations . 9

1.4.3 About linguistic resources . 9

1.5 Interoperability and compatibility: convert files . 9

1.6 About this documentation . 11

iii

Contents

2 User interfaces 13

2.1 The graphical user interface . 13

2.1.1 Launch SPPAS . 13

2.1.2 The tips . 14

2.1.3 The menu . 14

2.1.4 The file explorer . 15

2.1.5 Settings . 18

2.1.6 About . 18

2.1.7 Help . 18

2.1.8 Plugins . 19

2.2 The command-line user interface . 19

2.2.1 Usage . 20

2.2.2 Arguments for input/output . 20

3 Automatic Annotations 23

3.1 Introduction . 23

3.1.1 About this chapter . 23

3.1.2 Annotations methodology . 23

3.1.3 File formats and tier names . 25

3.1.4 Recorded speech . 25

3.1.5 Automatic Annotations with GUI . 25

3.1.6 Automatic Annotations with CLI . 26

3.1.7 The procedure outcome report . 28

3.2 New language support . 32

3.3 Orthographic Transcription . 32

3.4 Search for Inter-Pausal Units (IPUs) . 33

3.4.1 Overview . 33

3.4.2 How does it work . 33

3.4.3 Perform “Search for IPUs” with the GUI . 34

3.4.4 Perform “Search for IPUs” with the CLI . 35

3.5 Fill in Inter-Pausal Units (IPUs) . 36

3.5.1 Overview . 36

3.5.2 How does it work . 37

3.5.3 Perform “Fill in IPUs” with the GUI . 37

3.5.4 Perform “Fill in IPUs” with the CLI . 37

version 2.0 iv

Contents

3.6 Text normalization . 39

3.6.1 Overview . 39

3.6.2 Adapt Text normalization . 39

3.6.3 Support of a new language . 39

3.6.4 Perform Text Normalization with the GUI . 40

3.6.5 Perform Text Normalization with the CLI . 40

3.7 Phonetization . 42

3.7.1 Overview . 42

3.7.2 Adapt Phonetization . 43

3.7.3 Support of a new language . 43

3.7.4 Perform Phonetization with the GUI . 43

3.7.5 Perform Phonetization with the CLI . 44

3.8 Alignment . 46

3.8.1 Overview . 46

3.8.2 Adapt Alignment . 46

3.8.3 Support of a new language . 46

3.8.4 Perform Alignment with the GUI . 47

3.8.5 Perform Alignment with the CLI . 48

3.9 Syllabification . 49

3.9.1 Overview . 49

3.9.2 Adapt Syllabification . 50

3.9.3 Support of a new language . 50

3.9.4 Perform Syllabification with the GUI . 51

3.9.5 Perform Syllabification with the CLI . 51

3.10 TGA - Time Groups Analyzer . 52

3.10.1 Overview . 52

3.10.2 Result of TGA into SPPAS . 53

3.10.3 Perform TAG with the GUI . 54

3.10.4 Perform TGA with the CLI . 54

3.11 Self-Repetitions . 55

3.11.1 Overview . 55

3.11.2 Adapt to a new language . 56

3.11.3 Perform Self-Repetitions with the GUI . 56

3.11.4 Perform SelfRepetitions with the CLI . 56

3.12 Other-Repetitions . 57

version 2.0 v

Contents

3.12.1 Overview . 57

3.12.2 Adapt to a language and support of a new one 57

3.12.3 Perform Other-Repetitions with the CLI . 57

3.13 Momel and INTSINT . 58

3.13.1 Momel (modelling melody) . 58

3.13.2 Encoding of F0 target points using the “INTSINT” system 59

3.13.3 Perform Momel and INTSINT with the GUI . 60

3.13.4 Perform Momel with the CLI . 60

3.13.5 Perform INTSINT with the CLI . 62

4 Resources for Automatic Annotations 65

4.1 Overview . 65

4.2 French . 66

4.2.1 List of phonemes . 66

4.2.2 Pronunciation dictionary . 67

4.2.3 Acoustic Model . 68

4.2.4 Syllabification configuration file . 68

4.3 Italian . 68

4.3.1 List of phonemes . 68

4.3.2 Pronunciation dictionary . 70

4.3.3 Acoustic Model . 70

4.3.4 Syllabification configuration file . 70

4.4 Spanish . 70

4.4.1 List of phonemes . 70

4.4.2 Pronunciation Dictionary . 72

4.4.3 Acoustic Model . 72

4.5 Catalan . 72

4.5.1 List of phonemes . 72

4.5.2 Pronunciation dictionary . 74

4.5.3 Acoustic Model . 74

4.6 English . 75

4.6.1 List of phonemes . 75

4.6.2 Pronunciation dictionary . 77

4.6.3 Acoustic Model . 77

4.7 Polish . 77

version 2.0 vi

Contents

4.7.1 List of phonemes . 77

4.7.2 Pronunciation Dictionary . 79

4.7.3 Acoustic Model . 79

4.8 Portuguese . 80

4.8.1 Pronunciation Dictionary . 81

4.8.2 Acoustic Model . 82

4.9 German . 82

4.9.1 Pronunciation Dictionary . 84

4.10 Mandarin Chinese . 84

4.10.1 List of phonemes . 84

4.10.2 Pronunciation dictionary . 86

4.10.3 Acoustic model . 86

4.11 Southern Min (or Min Nan) . 86

4.11.1 List of phonemes . 86

4.11.2 Pronunciation Dictionary . 88

4.11.3 Acoustic Model . 89

4.12 Cantonese . 89

4.12.1 List of phonemes . 89

4.12.2 Acoustic Model . 90

4.13 Japanese . 91

4.14 Korean . 91

4.14.1 List of phonemes . 91

4.14.2 Pronunciation dictionary . 93

4.14.3 Acoustic Model . 93

4.15 Naija . 93

4.15.1 List of phonemes . 94

4.15.2 Pronunciation Dictionary . 96

4.15.3 Acoustic Model . 96

5 Analyses 97

5.1 Introduction . 97

5.2 DataRoamer . 99

5.3 AudioRoamer . 100

5.3.1 Properties of the audio file . 100

5.3.2 Playing audio files . 101

version 2.0 vii

Contents

5.3.3 Want more? . 102

5.4 IPUscriber . 103

5.5 Visualizer . 105

5.6 DataFilter . 106

5.6.1 Filtering annotations of a tier: SingleFilter . 106

5.6.2 Filtering on time-relations between two tiers . 109

5.7 Statistics . 111

5.7.1 Descriptive statistics . 111

5.7.2 User agreement . 112

6 Scripting with Python and SPPAS 113

6.1 Introduction . 113

6.2 A gentle introduction to programming . 113

6.2.1 Introduction . 114

6.2.2 Variables: Assignment and Typing . 114

6.2.3 Basic Operators . 115

6.2.4 Data types . 115

6.2.5 Conditions . 117

6.2.6 Loops . 118

6.2.7 Dictionaries . 118

6.3 Scripting with Python . 119

6.3.1 Comments and documentation . 119

6.3.2 Getting started with scripting in Python . 119

6.3.3 Blocks . 120

6.3.4 Functions . 121

6.3.5 Reading/Writing files . 123

6.3.6 Python tutorials . 125

6.3.7 Exercises to practice . 125

6.4 anndata, an API to manage annotated data . 125

6.4.1 Overview . 125

6.4.2 Why developing a new API? . 125

6.4.3 The API class diagram . 126

6.5 Creating scripts with anndata . 127

6.5.1 Preparing the data . 127

6.5.2 Read/Write annotated files . 128

version 2.0 viii

Contents

6.5.3 Manipulating a sppasTranscription object . 128
6.5.4 Manipulating a sppasTier object . 129
6.5.5 Manipulating a sppasAnnotation object . 129
6.5.6 Search in annotations: Filters . 130

6.6 More with SPPAS… . 133

7 References 135

7.1 References . 135
7.1.1 How to cite SPPAS? . 135
7.1.2 SPPAS software description . 135
7.1.3 About Text Normalization . 136
7.1.4 About Phonetization . 136
7.1.5 About Forced-Alignment . 136
7.1.6 About Syllabification . 137
7.1.7 About Repetitions . 137
7.1.8 About analyses tools . 137
7.1.9 About the API . 137
7.1.10 Related references . 137

7.2 SPPAS in research projects . 139
7.2.1 MULTIPHONIA . 139
7.2.2 Amennpro . 139
7.2.3 Evalita 2011: Italian phonetization and alignment 140
7.2.4 Cofee: Conversational Feedback . 140
7.2.5 Variamu: Variations in Action: a MUltilingual approach 141

8 SPPAS Release notes 143

8.1 The early versions . 143
8.1.1 Version 1.0 . 143
8.1.2 Version 1.1 . 143
8.1.3 Version 1.2 . 143
8.1.4 Version 1.3 . 143

8.2 The birth of SPPAS . 144
8.2.1 SPPAS 1.4.0 . 144
8.2.2 SPPAS 1.4.1 . 145
8.2.3 SPPAS 1.4.2 . 146
8.2.4 SPPAS 1.4.3 . 146

version 2.0 ix

Contents

8.2.5 SPPAS 1.4.4 . 147

8.2.6 SPPAS 1.4.5 . 147

8.2.7 SPPAS 1.4.6 . 148

8.2.8 SPPAS 1.4.7 . 148

8.2.9 SPPAS 1.4.8 . 149

8.2.10 SPPAS 1.4.9 . 149

8.2.11 SPPAS 1.5.0 . 150

8.2.12 SPPAS 1.5.1 . 150

8.2.13 SPPAS 1.5.2 . 150

8.2.14 SPPAS 1.5.3 . 151

8.2.15 SPPAS 1.5.4 . 151

8.2.16 SPPAS 1.5.5 . 152

8.2.17 SPPAS 1.5.6 . 152

8.2.18 SPPAS 1.5.7 . 152

8.2.19 SPPAS 1.5.8 . 153

8.2.20 SPPAS 1.5.9 . 153

8.2.21 SPPAS 1.6.0 . 154

8.2.22 SPPAS 1.6.1 . 154

8.2.23 SPPAS 1.6.2 . 154

8.2.24 SPPAS 1.6.3 . 155

8.3 The childhood of SPPAS . 155

8.3.1 SPPAS 1.6.4 . 155

8.3.2 SPPAS 1.6.5 . 156

8.3.3 SPPAS 1.6.6 . 156

8.3.4 SPPAS-1.6.7 . 158

8.3.5 SPPAS-1.6.8 . 158

8.4 The development phase . 159

8.4.1 SPPAS-1.6.9 . 159

8.4.2 SPPAS-1.7.0 . 160

8.4.3 SPPAS-1.7.1 . 160

8.4.4 SPPAS-1.7.2 . 161

8.4.5 SPPAS-1.7.3 . 161

8.4.6 SPPAS-1.7.4 . 162

8.4.7 SPPAS-1.7.5 . 162

8.4.8 SPPAS-1.7.6 . 163

version 2.0 x

Contents

8.4.9 SPPAS-1.7.7 . 163

8.4.10 SPPAS-1.7.8 . 164

8.4.11 SPPAS-1.7.9 . 164

8.5 The stabilization phase . 165

8.5.1 SPPAS-1.8.0 . 165

8.5.2 SPPAS-1.8.1 . 165

8.5.3 SPPAS-1.8.2 . 166

8.5.4 SPPAS-1.8.3 . 166

8.5.5 SPPAS 1.8.4 . 166

8.5.6 SPPAS 1.8.5 . 167

8.5.7 SPPAS 1.8.6 . 167

8.5.8 SPPAS 1.9.0 . 167

8.5.9 SPPAS 1.9.1 . 168

8.5.10 SPPAS 1.9.2 . 169

8.5.11 SPPAS 1.9.3 . 169

8.5.12 SPPAS 1.9.4 . 169

8.5.13 SPPAS 1.9.5 . 170

8.5.14 SPPAS 1.9.6 . 170

8.5.15 SPPAS 1.9.7 . 170

8.5.16 SPPAS 1.9.8 . 171

8.5.17 SPPAS 1.9.9 . 172

8.5.18 SPPAS 2.0 . 173

9 Appendix 175

9.1 List of error messages . 175

9.2 GNU Free Documentation License . 177

version 2.0 xi

1

Introduction

1.1 What is SPPAS?

1.1.1 Overview

SPPAS - the automatic annotation and analyses of speech is a scientific computer software package. SPPAS
is daily developed with the aim to provide a robust and reliable software. Available for free, with open source
code, there is simply no other package for linguists to simple use in both the automatic annotations of speech
and the analyses of any kind of annotated data. You can imagine the annotations or analyses you need, SPPAS
does the rest! It doesn’t do? Send your suggestion to the author!

Annotating recordings is very labor-intensive and cost-ineffective since it has to be performed manually by
experienced researchers with many hours of work. As the primary functionality, SPPAS proposes a set of
automatic or semi-automatic annotations of recordings. In the present context, annotations are “defined
as the practice of adding interpretative, linguistic information to an electronic corpus of spoken and/or writ-
ten language data. ‘Annotation’ can also refer to the end-product of this process” (Leech, 1997). SPPAS
automatizes the annotation processes and allows users to save time. In order to be used efficiently, SPPAS
expects a rigorous methodology to collect data and to prepare them.

Linguistics annotation, especially when dealing with multiple domains, makes use of different tools within a
given project. This implies a rigorous annotation framework to ensure compatibilities between annotations
and time-saving. SPPAS annotation files are in a specific XML format with extension xra. Annotations
can be imported from and exported to a variety of other formats including Praat (TextGrid, PitchTier,
IntensityTier), Elan (eaf), Transcriber (trs), Annotation Pro (antx), Phonedit (mrk), Sclite (ctm, stm), HTK
(lab, mlf), subtitles formats (srt, sub), CSV files…

“[…] when multiple annotations are integrated into a single data set, inter-relationships between the annota-
tions can be explored both qualitatively (by using database queries that combine levels) and quantitatively (by
running statistical analyses or machine learning algorithms)” (Chiarcos 2008). As a consequence, the annota-
tions must be time-synchronized: annotations need to be time-aligned in order to be useful for purposes such
as analyses. Some special features are offered in SPPAS for managing annotated files and analyzing data.
Among others, it includes a tool to filter multi-levels annotations (Bigi and Saubesty, 2015). Other included
tools are to estimate descriptive statistics, a version of the Time Group Analyzer (Gibbon 2013), manage
annotated files, manage audio files, etc. These data analysis tools of SPPAS are mainly proposed in the

1

Chapter 1. Introduction

Graphical User Interface. However, advanced users can also access directly the Application Programming
Interface, for example to estimate statistics or to manipulate annotated data.

1.1.2 User engagement

By using SPPAS, you agree to cite a reference in your publications. The full list of references is available
in Chapter 7.

1.1.3 Need help

1. Many problems can be solved by updating the version of SPPAS.

2. When looking for more detail about some subject, one can search this documentation. This documen-
tation is available in-line - see the SPPAS website, it is also included in the package in PDF format.

3. There is a F.A.Q. in the SPPAS web site.

4. There are tutorials in the SPPAS web site.

5. If none of the above helps, you may contact the author by e-mail. It is very important to indicate
clearly:

1. your operating system and its version,
2. the version of SPPAS (supposed to be the last one), and
3. for automatic annotations, send the log file, and a sample of the data on which a problem occurs.

1.1.4 About the author

Since January 2011, Brigitte Bigi is the main author of SPPAS. She has a tenured position of researcher at
the French CNRS - Centre National de la Recherche Scientifique. She’s working since 2009 at Laboratoire
Parole et Langage in Aix-en-Provence, France.
More about the author:

• http://www.lpl-aix.fr/~bigi

• https://orcid.org/0000-0003-1834-6918

Contact the author by e-mail:

• to improve the quality of the linguistic resources,
• to add new linguistic resources,
• to help in development,
• to add new annotations or analysis methods,
• to declare an issue,
• or anything else!

Possible e-mails are:

• contact@sppas.org for general questions of users;
• develop@sppas.org for developer questions or for a bug alert.

version 2.0 2

http://www.cnrs.fr/index.php
http://www.lpl-aix.fr/~bigi
https://orcid.org/0000-0003-1834-6918

Chapter 1. Introduction

Contributors

Here is the list of other contributors in programming:

• April 2012-June 2012: Alexandre Ranson;
• April 2012-July 2012: Cazembé Henry;
• April 2012-June 2013: Bastien Herbaut;
• March 2013-March 2014: Tatsuya Watanabe;
• April 2015-June 2015: Nicolas Chazeau;
• April 2015-June 2015: Jibril Saffi.

1.1.5 Licenses

SPPAS software, except documentation and resources, are distributed under the terms of the GNU GEN-
ERAL PUBLIC LICENSE v3.

Linguistic resources of SPPAS are either distributed:

• under the terms of the “GNU GENERAL PUBLIC LICENSE, v3”, or
• on the terms of the “Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
Public License”.

See the chapter 4 of this documentation for details about individual license of the proposed resources.

To summarize, SPPAS users are:

• free to study the source code and the resources of the software they use,
• free to share the software and resources with other people,
• free to modify the software and resources.

1.1.6 Supports

2011-2012:

Partly supported by ANR OTIM project (Ref. Nr. ANR-08-BLAN-0239), Tools for Multimodal Informa-
tion Processing. Read more at: http://www.lpl-aix.fr/~otim/

2013-2015:

Partly supported by ORTOLANG (Ref. Nr. ANR-11-EQPX-0032) funded by the « Investissements
d’Avenir » French Government program managed by the French National Research Agency (ANR). Read
more at: http://www.ortolang.fr/

version 2.0 3

https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
http://www.lpl-aix.fr/~otim/
http://www.ortolang.fr/

Chapter 1. Introduction

2014-2016:

SPPAS was also partly carried out thanks to the support of the following projects or groups:

• CoFee - Conversational Feedback http://cofee.hypotheses.org
• Variamu - Variations in Action: a MUltilingual approach http://variamu.hypotheses.org
• Team C3i of LPL http://www.lpl-aix.fr/~c3i

• Campus France, Procore PHC.

2017

The introduction of Naija language is supported by the French National Research Agency (ANR) NaijaSyn-
Cor.

1.2 Getting and installing

1.2.1 Websites

The main website of SPPAS is located at the following URL:

http://www.sppas.org

The source code with the most recent stable releases is hosted on github. From this website, anyone can
download the current stable version and the development version:

https://github.com/brigittebigi/sppas

1.2.2 External programs

On the main website, it is possible to find information about the software requirements. In fact, other pro-
grams are required for SPPAS to operate. Of course, they must be installed before using SPPAS, and only
once. This operation takes 5 up to 10 minutes depending on the operating system.

The following software are required:

1. Python 2.7.x
2. wxPython 3.0
3. julius >= 4.1 (and/or HVite 3.4)

It is very important to take care about the versions. With Python 3.4+, SPPAS provides all the features it is
supposed to, except the Graphical User Interface.

An installation guide is available on the website, depending on the operating system: http://www.sppas.
org/installation.html. Please, closely follow the instructions.

Notice that administrator rights are required to perform the installations. In case of difficulty arising from
the installation of such software, you’re invited to consult the web first. It probably will provide the right
solution. If, however, the problems were to persist, contact the author by e-mail.

version 2.0 4

http://cofee.hypotheses.org
http://variamu.hypotheses.org
http://www.lpl-aix.fr/~c3i
http://naijasyncor.huma-num.fr/
http://naijasyncor.huma-num.fr/
http://www.sppas.org
https://github.com/brigittebigi/sppas
http://www.sppas.org/installation.html
http://www.sppas.org/installation.html

Chapter 1. Introduction

Figure 1.1: Operating systems

Figure 1.2: SPPAS Package content

1.2.3 Download and install SPPAS

The main website contains the Download page to download recent versions. There is a unique version of
SPPASwhich does not depend on the operating system. The only obvious difference depending on the system
is how it looks on the computer screen.

SPPAS is ready to run, so it does not need elaborate installation. All you need to do is to copy the SPPAS
package from the website to somewhere on your computer. Choose a location with preferably only US-ASCII
characters in the name of the path.

The package of SPPAS is compressed and zipped, so you will need to decompress and unpack it once you’ve
got it.

1.2.4 The package

Unlikemany other software tool, SPPAS is not distributed as an executable program only. Instead, everything
is done so that users can check / change operation. It is particularly suitable for automatic annotations: it
allows anyone to adapt automatic annotations to its own needs. The package of SPPAS is then a directory
with content as files and folders.

The SPPAS package contains:

version 2.0 5

Chapter 1. Introduction

• the README.txt file, which aims to be read

• the files sppas.bat and sppas.command to execute the Graphical User Interface

• the resources directory contains data that are used by automatic annotations (lexicons, dictionaries,
…)

• the samples directory contains data of various languages; they are distributed to test various features
of SPPAS

• the plugins directory

• the sppas directory contains the program itself

• the documentation directory contains:

– the terms of the licenses
– the printable documentation
– the printable list of features
– the printable version of the main reference published in “the Phonetician” journal
– the orthographic transcription convention
– the folder scripting_solutions is a set of python scripts corresponding to the exercises
proposed in the chapter “Scripting with Python and SPPAS”

1.2.5 Update

SPPAS is constantly being improved and new packages are published frequently (about 10 versions a year).
It is important to update regularly in order to get the latest functions and corrections.
Updating SPPAS is very easy and fast:

1. Download the last updated package from the web site;
2. Unpack the downloaded package.

1.3 Features

1.3.1 How to use SPPAS?

There are three main ways to use SPPAS:

1. The Graphical User Interface (GUI) is as user-friendly as possible:

• double-click on the sppas.bat file, under Windows;
• double-click on the sppas.command file, under MacOS or Linux.

2. The Command-line User Interface (CLI), with a set of programs, each one essentially independent of
the others, that can be run on its own at the level of the shell.

3. Scripting with Python and SPPAS provides the more powerful way.

Features of SPPAS can then be used either with a Command-line User Interface (CLI) or a Graphical User
Interface (GUI). So, there’s no specific difficulty by using this software. Advanced users can also access
directly the Application Programming Interface - API.

version 2.0 6

Chapter 1. Introduction

Figure 1.3: SPPAS Automatic annotations

1.3.2 What SPPAS can do?

Features of SPPAS can be divided into 3 categories:

1. Annotate
2. Analyze
3. Convert

The three next figures list the features of each category and the interface to get access to it.

1.4 Main and important recommendations

1.4.1 About files

There is a list of important things to keep in mind while using SPPAS. They are summarized as follows and
detailed in the chapters of this documentation:

1. Speech audio files:

• only wav and au files

version 2.0 7

Chapter 1. Introduction

Figure 1.4: SPPAS Automatic analysis

Figure 1.5: SPPAS Automatic file conversion

version 2.0 8

Chapter 1. Introduction

• only mono (= one channel)
• frame rate is preferably 16000hz
• bit rate is preferably 16 bits
• good recording quality is expected. It is obviously required to never convert from a compressed
file, like mp3 for example.

2. Annotated data files:

• UTF-8 encoding only
• it is recommended to use only US-ASCII characters in file names (including the path)

For audio files, other frame rates and bit rates are accepted: the audio file is converted in 16 bits/16000Hz
in a copy of the file then SPPAS is using the latter.

1.4.2 About automatic annotations

The quality of the results for most of the automatic annotations is highly influenced by the quality of the
data the annotation takes in input. This is a politically correct way to say: Garbage in, garbage out!

Annotations are based on the use of linguistic resources. Resources for several languages are gently shared
and freely available in the package of SPPAS. The quality of the automatic annotations is largely influenced
by the quality of the linguistic resources.

1.4.3 About linguistic resources

Users are of crucial importance for resource development. The users of SPPAS are invited to contribute
to improve them. They can release the improvements to the public, so that the whole community benefits.

1.5 Interoperability and compatibility: convert files

In the scope of the compatibility between SPPAS data and annotated data from other software tools or
programs, SPPAS is able to open/save and convert files.

The conversion of a file to another file is the process of changing the form of the presentation of the data,
and not the data itself. Every time, when data file is to be used, they must be converted to a readable format
for the next application. A data conversion is normally an automated process to some extent. SPPAS provide
the possibility to automatically import and export the work done on some various file formats from a wide
range of other software tools. For the users, the visible change will be only a different file extension but for
software it is the difference between understanding of the contents of the file and the inability to read it.

The conversion of file formats is then a difficult task and it can imply that some data are left. Representing
annotated data in SPPAS is of crucial importance for its automatic annotations, its analysis of annotations and
for the software to be able to automatically annotate and analyze any kind of data files. SPPAS then includes
an original and generic enough annotation representation framework. This framework for annotations is very
rich and contain several information like alternative labels or alternative localizations of annotations, a tier
hierarchy, controlled vocabularies, etc. A native format named XRA was then developed to fit in such data
representation. The physical level of representation of XRA obviously makes use of XML, XML-related
standards and stand-off annotation. Due to an intuitive naming convention, XRA documents are human
readable as far as possible within the limits of XML.

version 2.0 9

Chapter 1. Introduction

Figure 1.6: SPPAS conversion method and formats

SPPAS makes use of its internal data representation to convert files. A conversion then consists of two steps:
First, the incoming file is loaded and mapped to the SPPAS data framework; and second, such data is saved
to the expected format. These two steps are applied whatever the organization structure of annotations in the
original or in the destination file format. This process allows SPPAS to import from and export to a variety of
file formats. This is illustrated by the next Figure which includes the list of file formats and the corresponding
software that are supported. Arrows are representing the following actions:

• import from, represented by a continued line with an arrow from the file format to the SPPAS frame-
work;

• partially import from, represented by a dash line with an arrow from the file format to the SPPAS
framework;

• export to, represented by an arrow from the SPPAS framework to the file format.

To summarize, SPPAS supports the following software with their file extensions:

• Praat: TextGrid, PitchTier, IntensityTier
• Elan: eaf
• Annotation Pro: antx
• Phonedit: mrk
• Sclite: ctm, stm
• HTK: lab, mlf
• Subtitles: srt, sub
• Signaix: hz

version 2.0 10

Chapter 1. Introduction

• Spreadsheets, R,…: csv
• Audacity, notepads: txt

And the followings can be imported:

• ANVIL: anvil
• Transcriber: trs
• Xtrans: tdf

The support of external formats is regularly extended to new formats by the author on-demand from the users
and distributed to the community in the SPPAS regular updates.

1.6 About this documentation

This documentation is governed by GNU Free Documentation License, version 1.3. It will assume that you
are using a relatively recent version of SPPAS. There’s no reason not to download the latest version whenever
released: it’s easy and fast!

Any and all constructive comments are welcome.

version 2.0 11

https://www.gnu.org/licenses/fdl-1.3.en.html

Chapter 1. Introduction

version 2.0 12

2

User interfaces

2.1 The graphical user interface

2.1.1 Launch SPPAS

The program will first check the version of wxpython and eventually ask to update. It will then check if the
julius/hvite program can be accessed.

The main windows will open automatically. It is made of a menu (left), a title (top), the tips (middle), the
list of files (left-middle), and the action buttons (right).

Windows

Once the SPPAS package is opened in the File Explorer, double-click on the sppas.bat file. In recent
versions ofWindows (e.g. 10), the first time you try to run SPPAS you may get a window with title “Windows
protected your PC” and the following message: “Windows SmartScreen prevented an unrecognized app from
starting. Running this app might put your PC at risk. More info”. Click More infomessage and then Run
anyway button. The file will now run SPPAS, and you will now no longer get a Windows protected your
PC prompt when you run this specific file next time. This warning message comes from the fact that SPPAS
is a free software and we did not paid to Microsoft commercial fees which would remove the “Unknown
Publisher” warnings.

MacOS

Once the SPPAS package is opened in the Finder, double-click on the sppas.command file. In recent
versions of MacOs X (e.g. from 10.11 El Capitan), the first time you try to run SPPAS you may get a
message: “sppas.command can’t be opened because it is from an unidentified developer.”. This warning
message comes from the fact that SPPAS is a free software and we did not paid to Apple commercial fees.
The solution is to run SPPAS with a right click (alt-click) on sppas.command file. This time you will get a
message: “sppas.command is from an unidentified developer. Are you sure you want to open it?” Then click
on Open. It will also now work each time you run it.

13

Chapter 2. User interfaces

Figure 2.1: Main Frame of version 1.8.0

Figure 2.2: The tips included in the main frame

Linux

Once the SPPAS package is opened in the Finder/File Explorer, double-click on the sppas.command file.

2.1.2 The tips

The frame includes message tips that are picked up randomly and printed to help users. Click on the button
Next Tip to read another message, or click on the top-left button to close the tips frame. The Settings
allows to show/hide tips at start-up. Anyone can suggest new tips to help other users. They have to be sent
to the author by e-mail so that they will be included in the next version.

2.1.3 The menu

The menu is located at the left-side of the window. At top, a button allows to exit the program, and at bottom
you can declare an issue or contact the author.

version 2.0 14

Chapter 2. User interfaces

Figure 2.3: The Feedback Frame

The Exit button closes all SPPAS frames properly.

To declare an issue, click on the bug button of the menu, then your default web browser will be opened at
the appropriate URL. Take a quick look at the list of already declared issues and if any, click on the green
button “New Issue”.

To contact the author, replace the text “Describe what you did here…” by your own comment, question or
suggestion and choose how to send the e-mail: with your own default mailer, with gmail opened in your web
browser, or by another e-mail client. Then, close the frame by clicking on the “Close” button.

2.1.4 The file explorer

The list contains directories and files the user added. However, only files that SPPAS can deal with, e.g. de-
pending on the file extension, can be appended to the list. Files with an unknown extension are rejected.

Remark: The files are added in the list, but they are not opened.

Select file(s)

To select a single file, all files of a directory or several files:

• a single click on a file name highlights and selects the chosen file. If other files or directories were
previously selected, they are deselected.

• a single click on a directory name highlights the chosen directory and selects all files. If other files or
directories were previously selected, they are deselected.

• to select several files or directories, the ctrl key (Linux/Windows) or CMD key (Apple) must be
pressed while clicking each file or directory.

• to select several files or directories, the shift key can be pressed while clicking two files or directories.

version 2.0 15

Chapter 2. User interfaces

Figure 2.4: File explorer

Figure 2.5: Adding specific files

Add file(s)

A single-click on the Add files button opens a window that allows to select the files to get. By default,
only files with “.wav” extensions are proposed. When audio file(s) is/are selected, all files with the same name
are automatically added into the file explorer.

The wildcard of this window can be changed to some other specific file extensions and then other files can
be selected.

In both cases, only files with an appropriate extension will be added in the file explorer.

Add a directory

A single-click on the Add dir button opens a window that allows to select the directory to get. Each audio
file, and all related files - i.e. with the same name and with an appropriate extension, will be added into the
file explorer.

version 2.0 16

Chapter 2. User interfaces

Figure 2.6: Export: Check the expected format in the list

Remove file(s)

A single-click on the Remove button removes the selected files/directories of the list. Notice that files are
not deleted from the disk.

Delete file(s)

A single-click on the Delete button deletes definitively the selected files/directories of your computer, and
remove them of the list. Notice that there is no way to get them back!

A dialogue window will open, and you have to confirm or cancel the definitive file(s) deletion.

Copy file(s)

A single-click on the Copy button allows to copy the selected file(s), change their name and/or change the
location. It is also possible to change the file format by assigning the appropriate file extension.

Export file(s)

Export annotated files in an other format (csv, txt, …):

After the export, a newwindow opens to report whether the file(s) were exported successfully or not. Actually,
an export fails if: - the given file is not in UTF-8 encoding; - the given file contains several tiers and the output
format supports only one; - the given file contains corrupted annotations.

version 2.0 17

Chapter 2. User interfaces

Figure 2.7: Settings is used to manage user preferences

2.1.5 Settings

To change user preferences, click on the Settings icon, then choose your preferred options in the tabs:

• General: fix background color, font color and font of the GUI, and enable/disable tips at start-up.
• Theme: fix how the icons of the GUI will look like.
• Annotations: fix automatic annotations parameters.

These preferences can be saved in a file to be used each time SPPAS is executed. Finally, to close the settings
window, click on:

• “Cancel” button to ignore changes;
• “Close” to apply changes then close the window.

2.1.6 About

The About action button allows to display the main information about SPPAS: author, license, a link to the
web site, etc.

2.1.7 Help

No longer available. Use this documentation instead.

version 2.0 18

Chapter 2. User interfaces

Figure 2.8: Installing a new Plugin

2.1.8 Plugins

Installing plugins is a very useful solution to extend the features of SPPAS. Several plugins are available for
download in the main site of SPPAS. The plugins of SPPAS are installed in a folder with name “plugins” in
the main directory of SPPAS.

The plugin system of SPPAS was fully changed at version 1.8.2; and plugins were all updated
at version 1.9.0. Old plugins and new ones are not compatibles.

Installing a plugin

To install a plugin, simply follow this workflow:

1. Download the plugin package - e.g. a zip file.
2. Execute SPPAS.
3. Click on the ‘Plugin’ icon then click on the ‘Install’ button of the toolbar.
4. Browse to indicate the plugin package.
5. See the new plugin icon in the plugins list.

Deleting a plugin

To delete a plugin, click on the “Delete” button of the toolbar. Choose the plugin in the given list then click
on the “OK” button. Notice that the plugin is definitively deleted of the disk.

Using a plugin

To execute a plug-in, select file(s) in the File explorer, click on the icon of the plug-in and follow instructions
of the plugged program.

2.2 The command-line user interface

A command-line user interface (CLI) is a means of interacting with a computer program where the user
issues commands to the program in the form of successive lines of text (command lines). Command-line
interfaces provide a more concise and powerful means to control the program than the GUI.

version 2.0 19

Chapter 2. User interfaces

Operating system command line interfaces are called a command-line interpreter, command processor or
shell. It displays a prompt, accept a “command line” typed by the user terminated by the Enter key, then
execute the specified command and provide textual display of results or error messages. When a shell is
active a program is typically invoked by typing its name followed by command-line arguments (if any).
Such programs are located in the bin folder of the sppas directory of the package. All these programs are
written with the programming language Python and are both compatible with version 2.7 and 3.4+. They
do not use a GUI so that installing wxPython is not required. The alignment.py program also requires
Julius or HVite.

2.2.1 Usage

It is usual for a program to be able to display a brief summary of its parameters. Each program included in
SPPAS provides its usage by using the option --help, as for example:

prompt> python .\sppas\bin\trsconvert.py --help

usage: trsconvert.py [files] [options]

... a program to export annotated files.

optional arguments:

-h, --help show this help message and exit

--quiet Disable the verbosity

--debug Highest level of verbosity

Files:

-i file Input annotated file name.

-o file Output annotated file name.

Options:

-n value Number of a tier (use as many -n options as wanted). Positive

or negative value: 1=first tier, -1=last tier.

-t tiername Name of a tier (use as many -t options as wanted).

This program is part of SPPAS version 2.0. Copyright (C) 2011-2019 Brigitte

Bigi. Contact the author at: contact@sppas.org

2.2.2 Arguments for input/output

In most of the programs, there is an option ‘-i’ for the input file. There’s no specific constraint on this file
name. For example, the following program will execute the Momel automatic annotation:

python .\sppas\bin\momel.py -i .\samples\samples-eng\ENG_M15_ENG_T02.PitchTier

With this option ‘-i’, a name of an output file can be given with the option ‘-o’; if not, the main part of the
result is printed on the standard output.
In several programs, an option ‘-I’ can also be available to execute the program, and several files can be
processed with this option. Moreover, there is some flexibility in file names with this option. SPPAS will
search for the appropriate file from the given file name. For example, the next commands will proccess the
same:

version 2.0 20

Chapter 2. User interfaces

python .\sppas\bin\intsint.py -I .\samples\samples-eng\ENG_M15_ENG_T02.wav

python .\sppas\bin\intsint.py -I .\samples\samples-eng\ENG_M15_ENG_T02.PitchTier

python .\sppas\bin\intsint.py -I .\samples\samples-eng\ENG_M15_ENG_T02-momel.xra

With the option ‘-I’, the name of the output file is fixed and can’t be changed. For example, the previous
example will create a file with name .\samples\samples-eng\ENG_M15_ENG_T02-intsint.xra.
An option ‘-e’ allows to choose the extension of the file, .xra is the default one.

The options to manage input/output files can be summarized as follow:

Files (manual mode):

-i file An input file.

-o file Output file name (optionnal).

Files (auto mode):

-I file Input file (append).

-e .ext Output file extension. One of: .xra .TextGrid .eaf

.csv .mrk .txt .stm .ctm .lab .mlf .sub .srt .antx

.arff .xrff

version 2.0 21

Chapter 2. User interfaces

version 2.0 22

3

Automatic Annotations

3.1 Introduction

3.1.1 About this chapter

This chapter is not a description on how each automatic annotation is implemented and how it’s working:
references are available for that in chapter 7.
Instead, this chapter describes how each automatic annotation can be used in SPPAS, i.e. what is the goal of
the annotation, what are the requirements, what kind of resources are used, what is the expected result and
how to perform it within SPPAS.
Each automatic annotation process is illustrated as a workflow schema, where:

• blue boxes represent the name of the automatic annotation;
• red boxes represent tiers, with their name in white;
• green boxes indicate the resource;
• yellow boxes indicate the annotated file either given as input or produced as result.

3.1.2 Annotations methodology

The kind of process to implement in the perspective of obtaining rich and broad-coverage multimodal/multi-
levels annotations of a corpus is illustrated in next Figure. It describes each step of the annotation workflow.
This Figure must be read from top to bottom and from left to right, starting by the recordings and ending to
the analysis of annotated files. Yellow boxes represent manual annotations, blue boxes represent automatic
ones.
After the recording, the first annotation to perform is IPUs segmentation. Indeed, at a first stage, the audio
signal must be automatically segmented into Inter-Pausal Units (IPUs) which are blocks of speech bounded
by silent pauses of more than X ms, and time-aligned on the speech signal. An orthographic transcription
has to be performed manually inside the IPUs. Then text normalization automatic annotation will nor-
malize the orthographic transcription. The phonetization process will convert the normalized text in a set of
pronunciations using X-SAMPA standard. Alignment will perform segmentation at phonemes and tokens
levels, etc.

23

Chapter 3. Automatic Annotations

Figure 3.1: Annotation methodology

version 2.0 24

Chapter 3. Automatic Annotations

At the end of each automatic annotation process, SPPAS produces a Procedure Outcome Report that contains
important information about the annotations. This window opens in the scope to be read by users (!) and
can be saved with the annotated corpus. It mentions all parameters and eventually warnings and errors that
occurred during the annotation process.

Among others, SPPAS is able to produce automatically annotations from a recorded speech sound and its
orthographic transcription. Let us first introduce what is required in terms of files, and what is the exactly
meaning of “recorded speech” and “orthographic transcription”.

3.1.3 File formats and tier names

When using the Graphical User Interface, the file format for input and output can be fixed in the Settings and
is applied to all annotations. However, while using the GUI to annotate, the file names of each annotation is
already fixed and can’t be changed.

When using the Command-Line interface, or when using scripts, each annotation can be configured indepen-
dently (both file format and file names).

In all cases, the name of the tiers are fixed and can’t be changed!

3.1.4 Recorded speech

Only wav and au audio file formats are supported by SPPAS.

Only mono audio files are supported by SPPAS.

SPPAS verifies if the audio file is 16 bits sample rate and 16000 Hz frame rate. Otherwise it automatically
create a copy of the audio file converted to this configuration. For very long files, this process may take time.
So, the following 2 options are possible:

1. be patient;
2. prepare by your own the required wav/mono/16000Hz/16bits files to be used in SPPAS.

Secondly, a relatively good recording quality is expected. Providing a guideline or recommendation for that
is impossible, because it depends on many factors. For example, “IPU segmentation” requires a better quality
compared to what is expected by “Alignment”, and for that latter, it depends on the language. The quality of
the result of automatic annotations highly depends on the quality of the audio file. SPPAS simply performs
automatic annotations: It does not make sense to hope for miracles but you can expect good enough results
that will allow you to save your precious time! And it begins by taking care of the recordings…

3.1.5 Automatic Annotations with GUI

To perform automatic annotations with SPPAS Graphical User Interface, select first the list of audio files
and/or a directory, then click on the “Annotate” button.

1. Enable each annotation to perform by clicking on the button in red. It will be turned green.

2. Select options and configure each annotation by clicking on the “Configure…” link text in blue.

version 2.0 25

Chapter 3. Automatic Annotations

Figure 3.2: Example of expected recorded speech

3. Select the language for all annotations in one; or for each annotation independently by clicking on the
“chains” button first then selecting each language.

4. Click on the Perform annotations button, and wait. Be patient! Particularly for Text Normalization or
Phonetization: loading resources (lexicons or dictionaries) can be very long. Sometimes, the progress
bar does not really show the progress… it depends on the operating system and the power of the
computer. So, just wait!

5. It is important to read the Procedure Outcome report to check that everything happened normally
during the automatic annotations.

3.1.6 Automatic Annotations with CLI

To perform automatic annotations with SPPAS Command-line User Interface, there is a main program
annotation.py. Each annotation has also its own program with more options than the previous one.
This main program performs automatic annotations on a given file or on all files of a directory. It strictly
corresponds to the button Perform annotations of the GUI. All annotations are pre-configured: no spe-
cific option can be specified. The options of annotations are fixed files with extension .ini in sppas/etc
folder.

usage: annotation.py -w file|folder [options]

optional arguments:

-h, --help show this help message and exit

-w file|folder Input wav file name, or folder

version 2.0 26

Chapter 3. Automatic Annotations

Figure 3.3: The annotate panel

version 2.0 27

Chapter 3. Automatic Annotations

Figure 3.4: CLI: annotation.py output example

-l lang Input language, using iso639-3 code

-e extension Output extension. One of: xra, textgrid, eaf, csv, ...

--momel Activate Momel and INTSINT

--ipu Activate IPUs Segmentation

--tok Activate Text Normalization

--phon Activate Phonetization

--align Activate Alignment

--syll Activate Syllabification

--rep Activate Repetitions

--all Activate ALL automatic annotations

--merge Create a merged TextGrid file, if more than two automatic

annotations (this is the default).

--nomerge Do not create a merged TextGrid file.

Examples of use:

./sppas/bin/annotation.py -w ./samples/samples-eng

-l eng

--ipu --tok --phon --align

A progress bar is displayed for each annotation. At the end of the process, a message indicates the name
of the procedure outcome report file, which is ./samples/samples-eng.log in our example. This file
can be opened with any text editor (as Notepad++, vim, TextEdit, …).

3.1.7 The procedure outcome report

It is very important to read conscientiously this report: it mentions exactly what happened during the au-
tomatic annotation process. This text can be saved: it is recommended to be kept it with the related data
because it contains information that are interesting to know for anyone using the annotations.

version 2.0 28

Chapter 3. Automatic Annotations

The text first indicates the version of SPPAS that was used. This information is very important. Annotations
in SPPAS and their related resources are regularly improved and then, the result of the automatic process can
change from one version to the other one.
Example:

SPPAS version 1.9.0

Copyright (C) 2011-2017 Brigitte Bigi

Site web: http://www.sppas.org/

Contact: Brigitte Bigi(brigite.bigi@gmail.com)

Secondly, the text mentions information related to the given input:

1. the selected language of each annotation, only if the annotation is language-dependent). For some
language-dependent annotations, SPPAS can still perform the annotation even if the resources for a
given language are not available: in that case, select “und”, which is the iso639-3 code for “undeter-
mined”.

2. the list of files to be annotated.
3. the list of annotations and if each annotation was activated or disabled. In that case, activated means

that the checkbox of the AAPwas checked by the user and that the resources are available for the given
language. On the contrary, disabled means that either the checkbox of the AAP was not checked or
the required resources are not available.

4. the file format of the resulting files.

Example:

Date: 2017-07-05 12:15:40.637000

Langages selectionnés:

- Momel:

- INTSINT:

- IPUs Segmentation:

- Text Normalization: eng

- Phonetization: eng

- Alignment: eng

- Syllabification: und

- Self-repetitions: eng

--

Fichiers sélectionnés:

- oriana1.wav

--

Annotations sélectionnées:

- Momel: désactivé

- INTSINT: désactivé

- IPUs Segmentation: sélectionné

- Text Normalization: sélectionné

- Phonetization: sélectionné

- Alignment: sélectionné

- Syllabification: désactivé

- Self-repetitions: désactivé

--

Extension de fichiers: .xra

version 2.0 29

Chapter 3. Automatic Annotations

Thirdly, each automatic annotation is described in details, for each annotated file. At a first stage, the list of
options and their value is summarized. Example:

... Text Normalization du fichier oriana1.wav

... ... Options:

... - faked: True

... - std: False

... - custom: False

Then, a diagnosis of the given file is printed. This latter can be: 1. “Valid”: the file is relevant 2. “Admit”:
the file is not as expected but SPPAS will convert it in a copy and work on it. 3. “Invalid”: SPPAS can’t work
with that file. The annotation of this file is disabled. In case 2 and 3, a message indicates the origin of the
problem.
Example of “Valid” diagnosis:

... ... Diagnostic:

... - oriana1.xra: Valide.

Example of “Admit” diagnosis:

... ... Diagnostic:

... - M_3.wav: Admis. La taux d’échantillonage d’un fichier audio est

de préférence 16000 Hz. Ce fichier est échantilloné à 44100 Hz, SPPAS créera une

copie et travaillera sur celle-ci.

... - M_3-phon.xra: Valide.

... - M_3-token.xra: Valide.

Then, if any, the annotation procedure prints message. Four levels of information must draw your attention:

1. “[OK]” means that everything happened normally. The annotation was performed successfully.
2. “[IGNORE]” means that SPPAS ignored the file and didn’t do anything.
3. “[WARNING]” means that something happened abnormally, but SPPAS found a solution, and the

annotation was still performed successfully.
4. “[ERROR]” means that something happened abnormally and SPPAS failed to found a solution. The

annotation was either not performed, or performed with a bad result.

Example of “Warning” message:

... ... Export AP_track_0711.TextGrid

... ... into AP_track_0711.xra

... ... [IGNORE] because a previous segmentation is existing.

Example of “Warning” message:

... [WARNING] chort- est absent du dictionnaire et a été phonétisé

automatiquement S-o-R-t

At the end of the report, the “Result statistics” section mentions the number of files that was annotated for
each step, or -1 if the annotation was disabled.

version 2.0 30

Chapter 3. Automatic Annotations

Figure 3.5: Procedure outcome report

version 2.0 31

Chapter 3. Automatic Annotations

3.2 New language support

Some of the annotations are requiring linguistic resources in order to work efficiently on a given language:
text normalization requires a lexicon, phonetization requires a pronunciation dictionary, etc. Each section of
this chapter which is describing an annotation is also including the way to create the related resource. The
next chapter contains details about the existing resources - list of phonemes, authors, licenses, etc.
While starting SPPAS, the Graphical User Interface dynamically creates the list of available languages of
each annotation by exploring the related folder. This means that:

• appended resources are automatically taken into account (ie. there’s no need to modify the program
itself);

• SPPAS needs to be re-started if new resources are appended while it was already being running.

3.3 Orthographic Transcription

An orthographic transcription is often the minimum requirement for a speech corpus so it is at the top of
the annotation procedure, and it is the entry point for most of the automatic annotations. Transcription
conventions are then designed to provide rules for writing speech corpora. These conventions establish which
are the phenomena to transcribe and also how to mention them in the orthography.
In speech, many phonetic variations occur. Some of these phonologically known variants are predictable and
can be included in the pronunciation dictionary but many others are still unpredictable like invented words,
regional words or words borrowed from another language. These specifics have a direct consequence on the
automatic phonetization procedure (Bigi 2012). As a consequence, from the beginning of its development it
was considered to be essential for SPPAS to deal with an Enriched Orthographic Transcription.
The transcription convention is summarized below. Notice that all the symbols must be surrounded by whites-
pace. The file TOE-SPPAS.pdf available in the documentation folder gives details of the convention,
including examples of what is recommended.
Convention overview:

• truncated words, noted as a ‘-’ at the end of the token string (an ex- example);
• noises, noted by a ’*’ (not available for some languages);
• laughter, noted by a ‘@’ (not available for some languages);
• short pauses, noted by a ‘+’;
• elisions, mentioned in parenthesis;
• specific pronunciations, noted with brackets [example,eczap];
• comments are preferably noted inside braces {this is a comment!};
• comments can be noted inside brackets without using comma [this and this];
• liaisons, noted between ‘=’ (this =n= example);
• morphological variants with <ice scream,I scream>,
• proper name annotation, like $ John S. Doe $.

SPPAS also allows to include in the transcription the regular punctuations, and numbers (not available for
some languages). Numbers will be automatically converted to their written form during Text Normalization
process.
From this Enriched Orthographic construction, several derived transcriptions can be generated automatically,
including the followings:

version 2.0 32

Chapter 3. Automatic Annotations

1. the standard transcription is the list of orthographic tokens
2. a specific transcription from which the phonetic tokens are obtained to be used by the grapheme-

phoneme converter that is named faked transcription.

As for example with the transcribed sentence: This [is,iz] + hum…an enrich(ed) transcription {loud} number
1!. The derived transcriptions are:

• standard: this is + hum an enriched transcription number one
• faked: this iz + hum an enrich transcription number one

The convention then allows to include a large scale of phenomena, for which most of them are optional. As
a minimum, the orthographic transcription must include:

• filled pauses;
• short pauses;
• repeats;
• noises and laugh items (not available for: English, Japanese and Cantonese).

Finally, it has to be noticed that this convention is not software-dependent. The orthographic transcription
can be performed with IPUscriber tool of SPPAS, Praat, Annotation Pro, Audacity, …

3.4 Search for Inter-Pausal Units (IPUs)

3.4.1 Overview

The Search for IPUs is a semi-automatic annotation process. It performs a silence detection from a recorded
file. This segmentation provides an annotated file with one tier named “IPUs”. The silence intervals are
labelled with the “#” symbol, and IPUs intervals are labelled with “ipu_” followed by the IPU number. This
annotation is semi-automatic: it should be verified manually. Notice that the better recording quality, thus
the better IPUs segmentation.

3.4.2 How does it work

The following parameters must be properly fixed:

• Minimum volume value (in seconds): If this value is set to zero, the minimum volume is automatically
adjusted for each sound file. Try with it first, then if the automatic value is not correct, set it manually.
The Procedure Outcome Report indicates the value the system choose. The AudioRoamer component
can also be of great help: it indicates min, max and mean volume values of the sound.

• Minimum silence duration (in seconds): By default, this is fixed to 0.2 sec. This duration mostly
depends on the language. It is commonly fixed to at least 0.2 sec for French and at least 0.25 seconds
for English language.

• Minimum speech duration (in seconds): By default, this value is fixed to 0.3 sec. A relevant value
depends on the speech style: for isolated sentences, probably 0.5 sec should be better, but it should be
about 0.1 sec for spontaneous speech.

version 2.0 33

Chapter 3. Automatic Annotations

Figure 3.6: Example of result

Figure 3.7: Orthographic transcription based on IPUs

• IPUs boundary shift (in seconds) for start or end: a duration which is systematically added to IPUs
boundaries, to enlarge the IPUs interval, and as a consequence, the neighboring silences are reduced.

The procedure outcome report indicates the values (volume, minimum durations) that were used by the
system for each sound file.

3.4.3 Perform “Search for IPUs” with the GUI

Click on the “Search IPUs” activation button and on the “Configure…” blue text to fix options.

In case the option values were not relevant enough, it is possible to delete the newly created file, to change
such values and to re-annotate.

Notice that the speech segments can be transcribed using the “IPUScriber” analysis tool.

version 2.0 34

Chapter 3. Automatic Annotations

3.4.4 Perform “Search for IPUs” with the CLI

searchipus.py is the program to perform this semi-automatic annotation, i.e. silence/IPUs segmentation,
either on a single file (-i and optionnally -o) or on a set of files (by using -I and optionnally -e).

Usage

searchipus.py [files] [options]

Search for IPUs: Search for Inter-Pausal Units in an audio file.

optional arguments:

-h, --help show this help message and exit

--quiet Disable the verbosity

--log file File name for a Procedure Outcome Report (default: None)

Files (manual mode):

-i file Input wav file name.

-o file Annotated file with silences/units segmentation

(default: None)

Files (auto mode):

-I file Input wav file name (append).

-e .ext Output file extension. One of: .xra .TextGrid .eaf

.csv .mrk .txt .stm .ctm .lab .mlf .sub .srt .antx

.arff .xrff

Options:

--win_length WIN_LENGTH

Window size to estimate rms (in seconds) (default:

0.020)

--threshold THRESHOLD

Threshold of the volume value (rms) for the detection

of silences, 0=automatic (default: 0)

--min_ipu MIN_IPU Minimum duration of an IPU (in seconds) (default:

0.300)

--min_sil MIN_SIL Minimum duration of a silence (in seconds) (default:

0.200)

--shift_start SHIFT_START

Systematically move at left the boundary of the

beginning of an IPU (in seconds) (default: 0.01)

--shift_end SHIFT_END

Systematically move at right the boundary of the end

of an IPU (in seconds) (default: 0.02)

This program is part of SPPAS version 2.0. Copyright (C) 2011-2019 Brigitte

Bigi. Contact the author at: contact@sppas.org

Examples of use

A single input file and output on stdout:

python .\sppas\bin\searchipus.py -i .\samples\samples-eng\oriana1.wav

version 2.0 35

Chapter 3. Automatic Annotations

2018-12-19 10:49:32,782 [INFO] Logging set up level=15

2018-12-19 10:49:32,790 [INFO] ... Information:

2018-12-19 10:49:32,792 [INFO] Number of IPUs found: 3

2018-12-19 10:49:32,792 [INFO] Threshold volume value: 0

2018-12-19 10:49:32,792 [INFO] Threshold silence duration: 0.200

2018-12-19 10:49:32,792 [INFO] Threshold speech duration: 0.300

0.000000 1.675000 #

1.675000 4.580000 ipu_1

4.580000 6.390000 #

6.390000 9.880000 ipu_2

9.880000 11.430000 #

11.430000 14.740000 ipu_3

14.740000 17.792000 #

Idem without logs:

python .\sppas\bin\searchipus.py -i .\samples\samples-eng\oriana1.wav --quiet

0.000000 1.675000 #

1.675000 4.580000 ipu_1

4.580000 6.390000 #

6.390000 9.880000 ipu_2

9.880000 11.430000 #

11.430000 14.740000 ipu_3

14.740000 17.792000 #

Several input files, output in Praat-TextGrid file format:

python .\sppas\bin\searchipus.py -I .\samples\samples-eng\oriana1.wav \

-I .\samples\samples-eng\oriana3.wave -e .TextGrid

2018-12-19 10:48:16,520 [INFO] Logging set up level=15

2018-12-19 10:48:16,522 [INFO] File oriana1.wav: Valid.

2018-12-19 10:48:16,532 [INFO] ... Information:

2018-12-19 10:48:16,532 [INFO] Number of IPUs found: 3

2018-12-19 10:48:16,532 [INFO] Threshold volume value: 0

2018-12-19 10:48:16,532 [INFO] Threshold silence duration: 0.200

2018-12-19 10:48:16,533 [INFO] Threshold speech duration: 0.300

2018-12-19 10:48:16,538 [INFO] ... E:\bigi\Projets\sppas\samples\samples-eng\oriana1.TextGrid

2018-12-19 10:48:16,538 [INFO] File oriana3.wave: Invalid.

2018-12-19 10:48:16,539 [ERROR] An audio file with only one channel is expected. Got 2 channels.

2018-12-19 10:48:16,540 [INFO] ... No file was created.

3.5 Fill in Inter-Pausal Units (IPUs)

3.5.1 Overview

This automatic annotation consists in aligning macro-units of a document with the corresponding sound.
IPUs are blocks of speech bounded by silent pauses of more than X ms. This annotation searches for a
silences/IPUs segmentation of a recorded file (see previous section) and fill in the IPUs with the transcription
given in a txt file.

version 2.0 36

Chapter 3. Automatic Annotations

Figure 3.8: Fill in IPUs

3.5.2 How does it work

SPPAS identifies silent pauses in the signal and attempts to align them with the units proposed in the tran-
scription file, under the assumption that each such unit is separated by a silent pause. It is based on the
search of silences described in the previous section, but in this case, the number of units to find is known.
The system adjusts automatically the volume threshold and the minimum durations of silences/IPUs to get
the right number of units. The content of the units has no regard, because SPPAS does not interpret them:
it can be the orthographic transcription, a translation, numbers, … This algorithm is language-independent:
it can work on any language.

In the transcription file, silent pauses must be indicated using both solutions, which can be combined:

• with the symbol ‘#’;
• with newlines.

A recorded speech file must strictly correspond to a txt file of the transcription. The annotation provides
an annotated file with one tier named “Transcription”. The silence intervals are labelled with the “#” symbol,
as IPUs are labelled with “ipu_” followed by the IPU number then the corresponding transcription.

The same parameters than those indicated in the previous section must be fixed.

Remark: This annotation was tested on read speech no longer than a few sentences (about 1
minute speech) and on recordings of very good quality.

3.5.3 Perform “Fill in IPUs” with the GUI

Click on the “Fill in IPUs” activation button and on the “Configure…” blue text to fix options.

3.5.4 Perform “Fill in IPUs” with the CLI

fillipus.py is the program to perform this IPUs segmentation, i.e. silence/ipus segmentation, either on
a single file (-i and optionnally -o) or on a set of files (by using -I and optionnally -e).

version 2.0 37

Chapter 3. Automatic Annotations

Usage

fillipus.py [files] [options]

Fill in IPUs: Search for Inter-Pausal Units and fill in with a transcription.

Requires an audio file and a .txt file with the transcription.

optional arguments:

-h, --help show this help message and exit

--quiet Disable the verbosity

--log file File name for a Procedure Outcome Report (default: None)

Files (manual mode):

-i file Input wav file name.

-t file Input transcription file name.

-o file Annotated file with filled IPUs

Files (auto mode):

-I file Input wav file name (append).

-e .ext Output file extension. One of: .xra .TextGrid .eaf .csv

.mrk .txt .stm .ctm .lab .mlf .sub .srt .antx .arff .xrff

Options:

--min_ipu MIN_IPU Initial minimum duration of an IPU (in seconds) (default:

0.300)

--min_sil MIN_SIL Initial minimum duration of a silence (in seconds)

(default: 0.200)

This program is part of SPPAS version 2.0. Copyright (C) 2011-2019 Brigitte

Bigi. Contact the author at: contact@sppas.org

Examples of use

A single input file with an input in manual mode:

python .\sppas\bin\fillipus.py -i .\samples\samples-eng\oriana1.wav -t .\samples\samples-eng\oriana1.txt

2018-12-19 11:03:15,614 [INFO] Logging set up level=15

2018-12-19 11:03:15,628 [INFO] ... Information:

2018-12-19 11:03:15,628 [INFO] Threshold volume value: 122

2018-12-19 11:03:15,630 [INFO] Threshold silence duration: 0.200

2018-12-19 11:03:15,630 [INFO] Threshold speech duration: 0.300

0.000000 1.675000 #

1.675000 4.570000 the flight was 12 hours long and we really got bored

4.570000 6.390000 #

6.390000 9.870000 they only played two movies + which we had both already seen

9.870000 11.430000 #

11.430000 14.730000 I never get to sleep on the airplane because it’s so uncomfortable

14.730000 17.792000 #

A single input file in automatic mode:

python .\sppas\bin\fillipus.py -I .\samples\samples-eng\oriana1

version 2.0 38

Chapter 3. Automatic Annotations

python .\sppas\bin\fillipus.py -I .\samples\samples-eng\oriana1.wav

python .\sppas\bin\fillipus.py -I .\samples\samples-eng\oriana1.txt

3.6 Text normalization

3.6.1 Overview

In principle, any system that deals with unrestricted text need the text to be normalized. Texts contain a
variety of “non-standard” token types such as digit sequences, words, acronyms and letter sequences in all
capitals, mixed case words, abbreviations, roman numerals, URL’s and e-mail addresses… Normalizing or
rewriting such texts using ordinary words is then an important issue. The main steps of the text normalization
implemented in SPPAS (Bigi 2011) are:

• Replace symbols by their written form, thanks to a “replacement” dictionary, located into the folder
“repl” in the “resources” directory.

• Word segmentation based on the content of a lexicon.
• Convert numbers to their written form.
• Remove punctuation.
• Lower the text.

3.6.2 Adapt Text normalization

Word segmentation of SPPAS is mainly based on the use of a lexicon. If a segmentation is not as expected,
it is up to the user to modify the lexicon: Lexicons of all supported languages are all located in the folder
“vocab” of the “resources” directory. They are in the form of “one word at a line” with UTF-8 encoding and
“LF” for newline.

3.6.3 Support of a new language

Adding a new language in Text Normalization consists in the following steps:

1. Create a lexicon. Fix properly its encoding (utf-8), its newlines (LF), and fix the name and extension
of the file as follow:

• language name with iso639-3 standard
• extension “.vocab”

2. Put this lexicon in the resources/vocab folder
3. Create a replacement dictionary for that language (take a look on the ones of the other language!)
4. Optionally, the language can be added into the num2letter.py program

That’s it for most of the languages! If the language requires more steps, simply write to the author to collab-
orate, find some funding, etc. like it was already done for Cantonese (Bigi & Fung 2015) for example.

version 2.0 39

https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Newline

Chapter 3. Automatic Annotations

Figure 3.9: Text normalization workflow

3.6.4 Perform Text Normalization with the GUI

The SPPAS Text normalization system takes as input a file (or a list of files) for which the name strictly
match the name of the audio file except the extension. For example, if a file with name “oriana1.wav” is
given, SPPAS will search for a file with name “oriana1.xra” at a first stage if “.xra” is set as the default
extension, then it will search for other supported extensions until a file is found.
This file must include a tier with an orthographic transcription. At a first stage, SPPAS tries to find a tier with
transcription as name. If such a tier does not exist, the first tier that is matching one of the following
strings is used (case-insensitive search):

1. trans
2. trs
3. ipu
4. ortho
5. toe

Text normalization produces a file with “-token” appended to its name, i.e. “oriana1-token.xra” for the
previous example. By default, this file is including only one tier with the resulting normalization and with
name “Tokens”. To get other versions of the normalized transcription, click on the “Configure” text then
check the expected tiers.
Read the “Introduction” of this chapter for a better understanding of the difference between “standard” and
“faked” results.
To perform the text normalization process, click on the Text Normalization activation button, select the
language and click on the “Configure…” blue text to fix options.

3.6.5 Perform Text Normalization with the CLI

normalize.py is the program to perform Text Normalization, i.e. the text normalization of a given file or
a raw text.

Usage

normalize.py [files] [options]

version 2.0 40

Chapter 3. Automatic Annotations

Text Normalization: Text normalization segments the orthographic transcription

into tokens and remove punctuation, convert numbers, etc. Requires an

orthographic transcription into IPUs.

optional arguments:

-h, --help show this help message and exit

--quiet Disable the verbosity

--log file File name for a Procedure Outcome Report (default: None)

Files (manual mode):

-i file Input transcription file name.

-o file Annotated file with normalized tokens.

Files (auto mode):

-I file Input transcription file name (append).

-l lang Language code (iso8859-3). One of: cat cmn deu eng fra hun

ita jpn kor nan pcm pol por spa vie yue yue_chars.

-e .ext Output file extension. One of: .xra .TextGrid .eaf .csv

.mrk .txt .stm .ctm .lab .mlf .sub .srt .antx .arff .xrff

Resources:

-r vocab Vocabulary file name

Options:

--faked FAKED Create a tier with the faked tokens (required for

phonetization) (default: True)

--std STD Create a tier with the standard tokens (useful if EOT)

(default: False)

--custom CUSTOM Create a customized tier (default: False)

This program is part of SPPAS version 2.0. Copyright (C) 2011-2019 Brigitte

Bigi. Contact the author at: contact@sppas.org

Examples of use

A single input file with a raw transcription input in manual mode:

python .\sppas\bin\normalize.py -r .\resources\vocab\eng.vocab -i .\samples\samples-eng\oriana1.txt

2018-12-19 11:48:34,151 [INFO] Logging set up level=15

2018-12-19 11:48:34,473 [INFO] Intervalle numéro 1.

2018-12-19 11:48:34,477 [INFO] Intervalle numéro 2.

2018-12-19 11:48:34,480 [INFO] Intervalle numéro 3.

Tokens

1, the flight was twelve hours long and we really got bored

2, they only played two movies + which we had both already seen

3, i never get to sleep on the airplane because it’s so uncomfortable

A single input file with a transcription time-aligned into the IPUS, in manual mode and no logs:

python .\sppas\bin\normalize.py -r .\resources\vocab\eng.vocab

-i .\samples\samples-eng\oriana1.xra --quiet

version 2.0 41

Chapter 3. Automatic Annotations

Tokens

0.000000, 1.675000 #

1.675000, 4.570000 the flight was twelve hours long and we really got bored

4.570000, 6.390000 #

6.390000, 9.870000 they only played two movies + which we had both already seen

9.870000, 11.430000 #

11.430000, 14.730000 i never get to sleep on the airplane because it’s so uncomfortable

14.730000, 17.792000 #

The same file in automatic mode can be annotated with one of the following commands:

python .\sppas\bin\normalize.py -I .\samples\samples-eng\oriana1.xra -l eng

python .\sppas\bin\normalize.py -I .\samples\samples-eng\oriana1.txt -l eng

python .\sppas\bin\normalize.py -I .\samples\samples-eng\oriana1.wav -l eng

python .\sppas\bin\normalize.py -I .\samples\samples-eng\oriana1 -l eng

This program can also normalize data from the standard input. Example of use, using stdin/stdout under
Windows:

Write-Output ”The flight was 12 HOURS {toto} long.” |

python .\sppas\bin\normalize.py -r .\resources\vocab\eng.vocab --quiet

the

flight

was

twelve

hours

long

In that case, the comment mentioned with the braces is removed and the number is converted to its written
form. The character ”_” is used for compound words (it replaces the whitespace).

3.7 Phonetization

3.7.1 Overview

Phonetization, also called grapheme-phoneme conversion, is the process of representing sounds with phonetic
signs. However, converting from written text into actual sounds, for any language, cause several problems
that have their origins in the relative lack of correspondence between the spelling of the lexical items and
their sound contents. As a consequence, SPPAS implements a dictionary based-solution which consists in
storing a maximum of phonological knowledge in a lexicon. This approach is then language-independent.
SPPAS phonetization process is the equivalent of a sequence of dictionary look-ups.

Most of the other systems assume that all words of the speech transcription arementioned in the pronunciation
dictionary. On the contrary, SPPAS includes a language-independent algorithm which is able to phonetize
unknown words of any language as long as a (minimum) dictionary is available (Bigi 2013). The Procedure
Outcome Report reports on such cases with a WARNING message.

version 2.0 42

Chapter 3. Automatic Annotations

3.7.2 Adapt Phonetization

Since Phonetization is only based on the use of a pronunciation dictionary, the quality of the result only
depends on this resource. If a pronunciation is not as expected, it is up to the user to change it in the
dictionary: Dictionaries are located in the folder “dict” of the “resources” directory. They are all with UTF-8
encoding and “LF” for newline. The format of the dictionaries is HTK-like. As example, below is a piece of
the eng.dict file:

THE [THE] D @

THE(2) [THE] D V

THE(3) [THE] D i:

THEA [THEA] T i: @

THEALL [THEALL] T i: l

THEANO [THEANO] T i: n @U

THEATER [THEATER] T i: @ 4 3:r

THEATER’S [THEATER’S] T i: @ 4 3:r z

The first column indicates the word, followed by the variant number (except for the first one). The second
column indicates the word between brackets. The last columns are the succession of phones, separated by a
whitespace. SPPAS is relatively compliant with the format and accept empty brackets or missing brackets.

The phoneset of the languages are mainly based on X-SAMPA international standard. See the chapter “Re-
sources” of this documentation to know the list of accepted phones for a given language. This list can’t
be extended nor modified by users. However, new phones can be added: Send an e-mail to the author to
collaborate in that way.

Actually, some words can correspond to several entries in the dictionary with various pronunciations. These
pronunciation variants are stored in the phonetization result. By convention, whitespace separate words,
minus characters separate phones and pipe character separate phonetic variants of a word. For example, the
transcription utterance:

• Transcription: The flight was 12 hours long.

• Text Normalization: the flight was twelve hours long

• Phonetization: D-@|D-V|D-i: f-l-aI-t w-A-z|w-V-z|w-@-z|w-O:-z t-w-E-l-v

aU-3:r-z|aU-r-z l-O:-N

3.7.3 Support of a new language

The support of a new language in Phonetization only consists in: 1. creating the pronunciation dictionary.
The following constraints on the file must be respected: - its format (HTK-like), - its encoding (UTF-8), - its
newlines (LF), - its phone set (X-SAMPA), - its file name (iso639-3 of the language and “.dict” extension).
2. adding the dictionary in the “dict” folder of the “resources” directory.

3.7.4 Perform Phonetization with the GUI

The Phonetization process takes as input a file that strictly match the audio file name except for the extension
and that “-token” is appended. For example, if the audio file name is “oriana1.wav”, the expected input
file name is “oriana1-token.xra” if .xra is the default extension for annotations. This file must include a
normalized orthographic transcription. The name of such tier must contains one of the following strings:

version 2.0 43

https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Newline
https://en.wikipedia.org/wiki/X-SAMPA

Chapter 3. Automatic Annotations

Figure 3.10: Phonetization workflow

1. “tok”
2. “trans”

The first tier that matches one of these requirements is used (this match is case-insensitive).

Phonetization produces a file with “-phon” appended to its name, i.e. “oriana1-phon.xra” for the previous
example. This file contains only one tier with the resulting phonetization and with name “Phones”.

To perform the annotation, click on the Phonetization activation button, select the language and click on the
“Configure…” blue text to fix options.

3.7.5 Perform Phonetization with the CLI

phonetize.py is the program to perform Phonetization on a given file, i.e. the grapheme-conversion of a
file or a raw text.

Usage

phonetize.py [files] [options]

Phonetization: Grapheme to phoneme conversion represents sounds with phonetic

signs. Requires a Text Normalization.

optional arguments:

-h, --help show this help message and exit

--quiet Disable the verbosity

--log file File name for a Procedure Outcome Report (default: None)

Files (manual mode):

-i file Input tokenization file name.

-o file Annotated file with phonetization.

Files (auto mode):

-I file Input transcription file name (append).

-l lang Language code (iso8859-3). One of: cat cmn deu eng fra

ita jpn kor nan pcm pol por spa yue yue_chars.

-e .ext Output file extension. One of: .xra .TextGrid .eaf

.csv .mrk .txt .stm .ctm .lab .mlf .sub .srt .antx

.arff .xrff

version 2.0 44

Chapter 3. Automatic Annotations

Resources:

-r dict Pronunciation dictionary (HTK-ASCII format).

-m map_file Pronunciation mapping table. It is used to generate

new pronunciations by mapping phonemes of the

dictionary.

Options:

--unk UNK Try to phonetize unknown words (default: True)

--usestdtokens USESTDTOKENS

Phonetize from standard spelling (default: False)

This program is part of SPPAS version 2.0. Copyright (C) 2011-2019 Brigitte

Bigi. Contact the author at: contact@sppas.org

Examples of use

A single input file with a normalized text in manual mode:

python .\sppas\bin\phonetize.py -r .\resources\dict\eng.dict

-i .\samples\samples-eng\oriana1-token.xra --quiet

Phones

0.000000, 1.675000, sil

1.675000, 4.570000, {D-@|D-i:|D-V} f-l-aI-t {w-@-z|w-V-z|w-O:-z|w-A-z} t-w-E-l-v

{aU-3:r-z|aU-r\-z} l-O:-N {{-n-d|@-n-d} w-i: {r\-I-l-i:|r\-i:-l-i:} g-A-t b-O:-r\-d

4.570000, 6.390000, sil

6.390000, 9.870000, D-eI @U-n-l-i: p-l-eI-d t-u m-u-v-i:-z sil {h-w-I-tS|w-I-tS}

w-i: h-{-d b-@U-T {O:-l-r\-E-4-i:|O:-r\-E-4-i:} s-i:-n

9.870000, 11.430000, sil

11.430000, 14.730000, aI n-E-v-3:r {g-I-t|g-E-t} {t-@|t-i|t-u} s-l-i:-p

{O:-n|A-n} {D-@|D-i:|D-V} E-r\-p-l-eI-n {b-i-k-O:-z|b-i-k-V-z} {i-t-s|I-t-s}

s-@U @-n-k-V-m-f-3:r-4-@-b-@-l

14.730000, 17.792000, sil

The same file in automatic mode can be annotated with one of the following commands:

python .\sppas\bin\phonetize.py -l eng -I .\samples\samples-eng\oriana1-token.xra

python .\sppas\bin\phonetize.py -l eng -I .\samples\samples-eng\oriana1.xra

python .\sppas\bin\phonetize.py -l eng -I .\samples\samples-eng\oriana1.txt

python .\sppas\bin\phonetize.py -l eng -I .\samples\samples-eng\oriana1.wav

python .\sppas\bin\phonetize.py -l eng -I .\samples\samples-eng\oriana1

This program can also phonetize data from the standard input. Example of use, using stdin/stdout under
Windows:

Write-Output ”The flight was 12 HOURS {toto} long.” |

python .\sppas\bin\normalize.py -r .\resources\vocab\eng.vocab --quiet |

python .\sppas\bin\phonetize.py -r .\resources\dict\eng.dict --quiet

D-@|D-V|D-i:

f-l-aI-t

version 2.0 45

Chapter 3. Automatic Annotations

Figure 3.11: SPPAS alignment output example

w-A-z|w-V-z|w-@-z|w-O:-z

t-w-E-l-v

aU-3:r-z|aU-r\-z

l-O:-N

3.8 Alignment

3.8.1 Overview

Alignment, also called phonetic segmentation, is the process of aligning speech with its corresponding tran-
scription at the phone level. The alignment problem consists in a time-matching between a given speech unit
along with a phonetic representation of the unit.
SPPAS Alignment does not perform the segmentation itself. It is a wrapper either for the Julius
Speech Recognition Engine (SRE) or the HVite command of HTK-Toolkit. In addition, SPPAS can
perform a “basic” alignment, assigning the same duration to each sound.
Speech Alignment requires an Acoustic Model in order to align speech. An acoustic model is a file that
contains statistical representations of each of the distinct sounds of one language. Each sound is represented
by one of these statistical representations. The quality of the alignment result only depends on both this
resource and on the aligner. From our past experiences, we got better results with Julius. See the chapter 4
“Resources for Automatic Annotations” to get the list of sounds of each language.
Notice that SPPAS allows to time-align automatically laugh, noises, or filled pauses (depending on the lan-
guage): No other system is able to achieves this task!

3.8.2 Adapt Alignment

The better Acoustic Model, the better alignment results. Any user can append or replace the acoustic models
included in the “models” folder of the “resources” directory. Be aware that SPPAS only supports HTK-ASCII
acoustic models, trained from 16 bits, 16000 Hz wave files.
The existing models can be improved if they are re-trained with more data. To get a better alignment result,
any new data is then welcome: send an e-mail to the author to share your recordings and transcripts.

3.8.3 Support of a new language

The support of a new language in Alignment only consists in adding a new acoustic model of the appropriate
format, in the appropriate directory, with the appropriate phone set.

version 2.0 46

Chapter 3. Automatic Annotations

Figure 3.12: Alignment workflow

The articulatory representations of phonemes are so similar across languages that phonemes can be considered
as units which are independent from the underlying language (Schultz et al. 2001). In SPPAS package, 9
acoustic models of the same type - i.e. same HMMs definition and acoustic parameters, are already available
so that the phoneme prototypes can be extracted and reused to create an initial model for a new language.

Any new model can also be trained by the author, as soon as enough data is available. It is difficult to estimate
exactly the amount of data a given language requires. That is said, we can approximate the minimum as
follow:

• 3 minutes altogether of various speakers, manually time-aligned at the phoneme level.
• 10minutes altogether of various speakers, time-aligned at the ipus level with the enriched orthographic
transcription.

• more data is good data.

3.8.4 Perform Alignment with the GUI

The Alignment process takes as input one or two files that strictly match the audio file name except for the
extension and that “-phon” is appended for the first one and “-token” for the optional second one. For example,
if the audio file name is “oriana1.wav”, the expected input file name is “oriana1-phon.xra” with phonetization
and optionally “oriana1-token.xra” with text normalization, if .xra is the default extension for annotations.

The speech segmentation process provides one file with name “-palign” appended to its name, i.e. “oriana1-
palign.xra” for the previous example. This file includes one or two tiers:

• “PhonAlign” is the segmentation at the phone level;
• “TokensAlign” is the segmentation at the word level (if a file with tokenization was found).

The following options are available to configure Alignment:

• choose the speech segmentation system. It can be either: julius, hvite or basic
• perform basic alignment if the aligner failed, instead such intervals are empty.
• remove working directory will keep only alignment result: it will remove working files. Working
directory includes one wav file per unit and a set of text files per unit.

• create the Activity tier will append another tier with activities as intervals, i.e. speech, silences, laughter,
noises…

version 2.0 47

Chapter 3. Automatic Annotations

• create the PhnTokAlign will append anoter tier with intervals of the phonetization of each word.

To perform the annotation, click on the Alignment activation button, select the language and click on the
“Configure…” blue text to fix options.

3.8.5 Perform Alignment with the CLI

alignment.py is the program to perform automatic speech segmentation of a given phonetized file.

Usage

alignment.py [files] [options]

Alignment: Time-alignment of speech audio with its corresponding transcription

at the phone and token levels. Requires a Phonetization.

optional arguments:

-h, --help show this help message and exit

--quiet Disable the verbosity

--log file File name for a Procedure Outcome Report (default: None)

Files (manual mode):

-i file Input wav file name.

-p file Input file name with the phonetization.

-t file Input file name with the tokenization.

-o file Output file name with estimated alignments.

Files (auto mode):

-I file Input transcription file name (append).

-l lang Language code (iso8859-3). One of: cat cmn deu eng

eng-cd fra ita jpn kor nan pcm pol por spa yue.

-e .ext Output file extension. One of: .xra .TextGrid .eaf

.csv .mrk .txt .stm .ctm .lab .mlf .sub .srt .antx

.arff .xrff

Resources:

-r model Directory of the acoustic model of the language of the

text

-R model Directory of the acoustic model of the mother language

of the speaker (under development)

Options:

--aligner ALIGNER Speech automatic aligner system (julius, hvite,

basic): (default: julius)

--basic BASIC Perform basic alignment if the aligner fails (default:

False)

--clean CLEAN Remove working directory (default: True)

--activity ACTIVITY Create the Activity tier (default: True)

--activityduration ACTIVITYDURATION

Create the ActivityDuration tier (default: False)

This program is part of SPPAS version 2.0. Copyright (C) 2011-2019 Brigitte

Bigi. Contact the author at: contact@sppas.org

version 2.0 48

Chapter 3. Automatic Annotations

Figure 3.13: Syllabification example

Example of use

python .\sppas\bin\alignment.py -I .\samples\samples-eng\oriana1.wav -l eng

2018-12-19 18:33:38,842 [INFO] Logging set up level=15

2018-12-19 18:33:38,844 [INFO] Options

2018-12-19 18:33:38,844 [INFO] ... activityduration: False

2018-12-19 18:33:38,845 [INFO] ... activity: True

2018-12-19 18:33:38,845 [INFO] ... aligner: julius

2018-12-19 18:33:38,845 [INFO] ... clean: True

2018-12-19 18:33:38,845 [INFO] ... basic: False

2018-12-19 18:33:38,845 [INFO] File oriana1.wav: Valid.

2018-12-19 18:33:38,845 [INFO] File oriana1-phon.xra: Valid.

2018-12-19 18:33:38,846 [INFO] File oriana1-token.xra: Valid.

2018-12-19 18:33:38,846 [WARNING] A file with name E:\bigi\Projets\sppas\samples\samples-eng\oriana1-palign.xra is already existing. It will be overridden.

2018-12-19 18:33:38,855 [INFO] ... Découpage en intervalles.

2018-12-19 18:33:38,901 [INFO] ... Intervalle numéro 1.

2018-12-19 18:33:38,904 [INFO] ... Intervalle numéro 2.

2018-12-19 18:33:38,908 [INFO] ... Intervalle numéro 3.

2018-12-19 18:33:38,913 [INFO] ... Intervalle numéro 4.

2018-12-19 18:33:38,917 [INFO] ... Intervalle numéro 5.

2018-12-19 18:33:38,921 [INFO] ... Intervalle numéro 6.

2018-12-19 18:33:38,926 [INFO] ... Intervalle numéro 7.

2018-12-19 18:33:38,928 [INFO] ... Fusion des alignements des intervalles.

2018-12-19 18:33:38,969 [INFO] ... Création de la tier des activités.

2018-12-19 18:33:38,993 [INFO] ... E:\bigi\Projets\sppas\samples\samples-eng\oriana1-palign.xra

3.9 Syllabification

3.9.1 Overview

The syllabification of phonemes is performed with a rule-based system from time-aligned phonemes. This
phoneme-to-syllable segmentation system is based on 2 main principles:

• a syllable contains a vowel, and only one;
• a pause is a syllable boundary.

These two principles focus the problem of the task of finding a syllabic boundary between two vowels.
Phonemes were grouped into classes and rules are established to deal with these classes.

For each language, the automatic syllabification requires a configuration file to fix phonemes, classes and
rules.

version 2.0 49

Chapter 3. Automatic Annotations

3.9.2 Adapt Syllabification

Any user can change the set of rules by editing and modifying the configuration file of a given language. Such
files are located in the folder “syll” of the “resources” directory. Files are all with UTF-8 encoding and “LF”
for newline.
At first, the list of phonemes and the class symbol associated with each of the phonemes are described as, for
example:

• PHONCLASS e V

• PHONCLASS p P

Each association phoneme/class definition is made of 3 columns: the first one is the key-word PHONCLASS,
the second is the phoneme symbol (like defined in the tier with the phonemes, commonly X-SAMPA), the last
column is the class symbol. The constraints on this definition are that a class-symbol is only one upper-case
character, and that the character X if forbidden, and the characters V and W are reserved for vowels.
The second part of the configuration file contains the rules. The first column is a keyword, the second one
describes the classes between two vowels and the third column is the boundary location. The first column
can be:

• GENRULE

• EXCRULE

• OTHRULE.

In the third column, a “0” means the boundary is just after the first vowel, “1” means the boundary is one
phoneme after the first vowel, etc. Here are some examples of the file for French language:

• GENRULE VXV 0

• GENRULE VXXV 1

• EXCRULE VFLV 0

• EXCRULE VOLGV 0

Finally, to adapt the rules to specific situations that the rules failed to model, we introduced some phoneme
sequences and the boundary definition. Specific rules contain only phonemes or the symbol “ANY” which
means any phoneme. It consists of 7 columns: the first one is the key-word OTHRULE, the 5 following
columns are a phoneme sequence where the boundary should be applied to the third one by the rules, the last
column is the shift to apply to this boundary. In the following example:
OTHRULE ANY ANY p s k -2

More information are available in (Bigi et al. 2010).

3.9.3 Support of a new language

The support of a new language in this automatic syllabification only consists in adding a configuration file
(see previous section). Fix properly the encoding (utf-8) and newlines (LF) of this file; then fix the name and
extension of the file as follow:

• “syllConfig-” followed by language name with iso639-3 standard,
• with extension “.txt”.

version 2.0 50

https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Newline
https://en.wikipedia.org/wiki/Newline

Chapter 3. Automatic Annotations

Figure 3.14: Syllabification workflow

3.9.4 Perform Syllabification with the GUI

The Syllabification process takes as input a file that strictly match the audio file name except for the extension
and that “-palign” is appended. For example, if the audio file name is “oriana1.wav”, the expected input
file name is “oriana1-palign.xra” if .xra is the default extension for annotations. This file must include time-
aligned phonemes in a tier with name “PhonAlign”.
The annotation provides an annotated file with “-salign” appended to its name, i.e. “oriana1-salign.xra” for
the previous example. This file is including 2 tiers: SyllAlign, SyllClassAlign.
To perform the annotation, click on the Syllabification activation button, select the language and click on the
“Configure…” blue text to fix options.

3.9.5 Perform Syllabification with the CLI

syllabify.py is the program to perform automatic syllabification of a given file with time-aligned phones.

Usage

syllabify.py [files] [options]

Syllabification: Syllabification is based on a set of rules to convert

phonemes into classes and to group them. Requires time-aligned phones.

optional arguments:

-h, --help show this help message and exit

--quiet Disable the verbosity

--log file File name for a Procedure Outcome Report (default: None)

Files (manual mode):

-i file Input time-aligned phonemes file name.

-o file Output file name with syllables.

Files (auto mode):

-I file Input transcription file name (append).

-l lang Language code (iso8859-3). One of: fra ita pol.

-e .ext Output file extension. One of: .xra .TextGrid .eaf

.csv .mrk .txt .stm .ctm .lab .mlf .sub .srt .antx

version 2.0 51

Chapter 3. Automatic Annotations

.arff .xrff

Resources:

-r rules Configuration file with syllabification rules

Options:

--usesphons USESPHONS

Syllabify inside the IPU intervals (default: True)

--usesintervals USESINTERVALS

Syllabify inside an interval tier (default: False)

--tiername TIERNAME Tier name for such interval tier: (default:

TokensAlign)

--createclasses CREATECLASSES

Create a tier with syllable classes (default: True)

This program is part of SPPAS version 2.0. Copyright (C) 2011-2019 Brigitte

Bigi. Contact the author at: contact@sppas.org

Examples of use

python .\sppas\bin\syllabify.py -i .\samples\samples-fra\F_F_B003-P8-palign.xra

-r .\resources\syll\syllConfig-fra.txt --quiet

SyllAlign

2.497101 2.717101 j-E-R

2.717101 2.997101 s-w-A/-R

...

19.412000 19.692000 P-L-V-P

19.692000 20.010000 P-V-L-P

All the following commands will produce the same result:

python .\sppas\bin\syllabify.py -I .\samples\samples-fra\F_F_B003-P8-palign.xra -l fra

python .\sppas\bin\syllabify.py -I .\samples\samples-fra\F_F_B003-P8.TextGrid -l fra

python .\sppas\bin\syllabify.py -I .\samples\samples-fra\F_F_B003-P8.wav -l fra

python .\sppas\bin\syllabify.py -I .\samples\samples-fra\F_F_B003-P8 -l fra

3.10 TGA - Time Groups Analyzer

3.10.1 Overview

TGA is originally available at http://wwwhomes.uni-bielefeld.de/gibbon/TGA/. It’s a tool de-
veloped by Dafydd Gibbon, emeritus professor of English and General Linguistics at Bielefeld University.

Dafydd Gibbon (2013). TGA: a web tool for Time Group Analysis, Tools ans Resources for
the Analysis of Speech Prosody, Aix-en-Provence, France, pp. 66-69.

version 2.0 52

http://wwwhomes.uni-bielefeld.de/gibbon/TGA/

Chapter 3. Automatic Annotations

The original TGA is an online batch processing tool which provides a parametrised mapping from time-
stamps in speech annotation files in various formats to a detailed analysis report with statistics and visualisa-
tions. TGA software calculates, inter alia, mean, median, rPVI, nPVI, slope and intercept functions within
inter-pausal groups, provides visualizations of timing patterns, as well as correlations between these, and
parses inter-pausal groups into hierarchies based on duration relations. Linear regression is selected mainly
for the slope function, as a first approximation to examining acceleration and deceleration over large data
sets.

The TGA online tool was designed to support phoneticians in basic statistical analysis of annotated speech
data. In practice, the tool provides not only rapid analyses but also the ability to handle larger data sets than
can be handled manually.

In addition to the original one, a second version of TGA was implemented in the AnnotationPro software:

Katarzyna Klessa, Dafydd Gibbon (2014). Annotation Pro + TGA: automation of speech
timing analysis, 9th International conference on Language Resources and Evaluation (LREC),
Reykjavik (Iceland). pp. 1499-1505, ISBN: 978-2-9517408-8-4.

The integrated Annotation Pro + TGA tool incorporates some TGA features and is intended to support the
development of more robust and versatile timing models for a greater variety of data. The integration of
TGA statistical and visualisation functions into Annotation Pro+TGA results in a powerful computational
enhancement of the
existing AnnotationPro phonetic workbench, for supporting experimental analysis and modeling of speech
timing.

So, what’s the novelty into the third version implemented into SPPAS…

First of all, it has to be noticed that TGA is only partly implemented into SPPAS. The statistics analyses tool
of SPPAS allows to estimates TGA within the SPPAS framework; and it results in the following advantages:

• it can read either TextGrid, csv, Elan, or any other file format supported by SPPAS,

• it can save TGA results in any of the annotation file supported by SPPAS,

• it estimates the two versions of the linear regression estimators: the original one and the one imple-
mented into AnnotationPro:

1. in the original TGA, the x-axis is based on positions of syllables,
2. in the AnnotationPro+TGA, the x-axis is based on time-stamps.

3.10.2 Result of TGA into SPPAS

The annotation provides an annotated file with “-tga” appended to its name, i.e. “oriana1-tga.xra” for the
example. This file is including 10 tiers:

1. TGA-TimeGroups: intervals with the time groups
2. TGA-TimeSegments: same intervals, indicate the syllables separated by whitespace
3. TGA-Occurrences: same intervals, indicate the number of syllables
4. TGA-Total: same intervals, indicate interval duration
5. TGA-Mean: same intervals, indicate mean duration of syllables
6. TGA-Median: same intervals, indicate median duration of syllables

version 2.0 53

Chapter 3. Automatic Annotations

7. TGA-Stdev: same intervals, indicate stdev of duration of syllables
8. TGA-nPVI: same intervals, indicate nPVI of syllables
9. TGA-Intercept: same intervals, indicate the intercept
10. TGA-Slope: same intervals, indicate the slope

Both tiers 9 and 10 can be estimated in 2 ways (so 2 more tiers can be generated).

3.10.3 Perform TAG with the GUI

The TGA process takes as input a file that strictly match the audio file name except for the extension and
that “-salign” is appended. For example, if the audio file name is “oriana1.wav”, the expected input file name
is “oriana1-salign.xra” if .xra is the default extension for annotations. This file must include time-aligned
syllables in a tier with name “SyllAlign”.
To perform the annotation, click on the TGA activation button and click on the “Configure…” blue text to
fix options.

3.10.4 Perform TGA with the CLI

tga.py is the program to perform TGA of a given file with time-aligned syllables.

Usage

tga.py [files] [options]

TimeGroupAnalysis: Proposed by D. Gibbon, Time Group Analyzer calculates mean,

median, nPVI, slope and intercept functions within inter-pausal groups.

Requires time aligned syllables.

optional arguments:

-h, --help show this help message and exit

--quiet Disable the verbosity

--log file File name for a Procedure Outcome Report (default: None)

Files (manual mode):

-i file An input time-aligned syllables file.

-o file Output file name with TGA.

Files (auto mode):

-I file Input time-aligned syllables file (append).

-e .ext Output file extension. One of: .xra .TextGrid .eaf

.csv .mrk .txt .stm .ctm .lab .mlf .sub .srt .antx

.arff .xrff

Options:

--original ORIGINAL Use the original estimation of intercept and slope

(default: False)

--annotationpro ANNOTATIONPRO

Use the estimation of intercept and slope proposed in

AnnotationPro (default: True)

--tg_prefix_label TG_PREFIX_LABEL

Prefix of each time group label: (default: tg_)

version 2.0 54

Chapter 3. Automatic Annotations

--with_radius WITH_RADIUS

Duration estimation: Use 0 to estimate syllable

durations with midpoint values, use -1 for Radius-, or

1 for Radius+. (default: 0)

This program is part of SPPAS version 2.0. Copyright (C) 2011-2019 Brigitte

Bigi. Contact the author at: contact@sppas.org

Example of use

python .\sppas\bin\tga.py -i .\samples\samples-fra\F_F_B003-P8-syll.xra

2018-12-20 08:35:21,219 [INFO] Logging set up level=15

TGA-TimeGroups

2.497101 5.683888 tg_1

5.743603 8.460596 tg_2

9.145000 11.948531 tg_3

12.494000 13.704000 tg_4

13.784000 15.036000 tg_5

16.602000 20.010000 tg_6

TGA-TimeSegments

...

13.784000 15.036000 -0.03063

16.602000 20.010000 0.00468

Other commands:

python .\sppas\bin\tga.py -I .\samples\samples-fra\F_F_B003-P8-syll.xra

python .\sppas\bin\tga.py -I .\samples\samples-fra\F_F_B003-P8.TextGrid

python .\sppas\bin\tga.py -I .\samples\samples-fra\F_F_B003-P8.wav

3.11 Self-Repetitions

3.11.1 Overview

This automatic detection focus on word self-repetitions which can be exact repetitions (named strict echos)
or repetitions with variations (named non-strict echos). The system is based only on lexical criteria. The
algorithm is focusing on the detection of the source.

This system can use a list of stop-words of a given language. This is a list of very frequent words like
adjectives, pronouns, etc. Obviously, the result of the automatic detection is significantly better if such list
of stop-words is available.

Optionnaly, SPPAS can add new stop-words in the list: they are deduced from the given data. These new
entries in the stop-list are then different for each file (Bigi et al. 2014).

The annotation provides one annotated file with 2 to 4 tiers:

1. TokenStrain: if a replacement file was available, it’s the entry used by the system

version 2.0 55

Chapter 3. Automatic Annotations

2. StopWord: if a stop-list was used, it indicates if the token is a stop-word (True or False)
3. SR-Sources: tags of the annotations are prefixed by “S” followed an index
4. SR-Repetitions: tags of the annotations are prefixed by “R” followed an index

3.11.2 Adapt to a new language

The list of stop-words of a given language must be located in the “vocab” folder of the “resources” directory
with “.stp” extension. This file is with UTF-8 encoding and “LF” for newline.

3.11.3 Perform Self-Repetitions with the GUI

The automatic annotation takes as input a file with (at least) one tier containing the time-aligned tokens of
the main speaker, and another file/tier for other-repetitions. The annotation provides one annotated file with
2 tiers: Sources and Repetitions.

Click on the Self-Repetitions activation button, select the language and click on the “Configure…” blue text
to fix options.

3.11.4 Perform SelfRepetitions with the CLI

selfrepetition.py is the program to perform automatic detection of self-repetitions.

Usage

selfrepetition.py [files] [options]

Self-repetitions: Self-repetitions searches for sources and echos of a

speaker. Requires time-aligned tokens.

optional arguments:

-h, --help show this help message and exit

--quiet Disable the verbosity

--log file File name for a Procedure Outcome Report (default: None)

Files (manual mode):

-i file Input time-aligned tokens file name.

-o file Output file name with syllables.

Files (auto mode):

-I file Input transcription file name (append).

-e .ext Output file extension. One of: .xra .TextGrid .eaf

.csv .mrk .txt .stm .ctm .lab .mlf .sub .srt .antx

.arff .xrff

Resources:

-r file List of stop-words

Options:

--span SPAN Span window length in number of IPUs (default: 3)

--stopwords STOPWORDS

Add stop-words estimated from the given data (default:

version 2.0 56

https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Newline

Chapter 3. Automatic Annotations

True)

--alpha ALPHA Coefficient to add data-specific stop-words (default:

0.5)

This program is part of SPPAS version 2.0. Copyright (C) 2011-2019 Brigitte

Bigi. Contact the author at: contact@sppas.org

Examples of use

python .\sppas\bin\selfrepetition.py -i .\samples\samples-fra\F_F_B003-P8-palign.xra

-r .\resources\vocab\fra.stp

python .\sppas\bin\selfrepetition.py -I .\samples\samples-fra\F_F_B003-P8.wav -l fra

3.12 Other-Repetitions

3.12.1 Overview

This automatic detection focus on other-repetitions, which can be either exact repetitions (named strict echos)
or repetitions with variations (named non-strict echos). The system is based only on lexical criteria (Bigi et
al. 2014). Notice that the algorithm is focusing on the detection of the source.
This system can use a list of stop-words of a given language. This is a list of very frequent words like
adjectives, pronouns, etc. Obviously, the result of the automatic detection is significantly better if such list
of stop-words is available.
Optionnaly, SPPAS can add new stop-words in the list: they are deduced from the given data. These new
entries in the stop-list are then different for each file.

3.12.2 Adapt to a language and support of a new one

This system can use a list of stop-words of a given language. This is a list of very frequent words like
adjectives, pronouns, etc. Obviously, the result of the automatic detection is significantly better if such list
of stop-words is available. It must be located in the “vocab” folder of the “resources” directory with “.stp”
extension. This file is with UTF-8 encoding and “LF” for newline.

3.12.3 Perform Other-Repetitions with the CLI

usage: otherrepetition.py -r stopwords [files] [options]

Files:

-i file Input file name with time-aligned tokens of the main

speaker.

-s file Input file name with time-aligned tokens of the

echoing speaker

-o file Output file name with syllables.

version 2.0 57

https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Newline

Chapter 3. Automatic Annotations

Options:

--span SPAN Span window length in number of IPUs (default: 3)

--stopwords STOPWORDS Add stop-words estimated from the given data

(default: True)

--alpha ALPHA Coefficient to add data-specific stop-words

(default: 0.5)

3.13 Momel and INTSINT

3.13.1 Momel (modelling melody)

Momel is an algorithm for the automatic modeling of fundamental frequency (F0) curves using a technique
called asymetric modal quadratic regression.

This technique makes it possible by an appropriate choice of parameters to factor an F0 curve into two
components:

• a macro-prosodic component represented by a a quadratic spline function defined by a sequence of
target points < ms, hz >.

• a micro-prosodic component represented by the ratio of each point on the F0 curve to the correspond-
ing point on the quadratic spline function.

For details, see the following reference:

Daniel Hirst and Robert Espesser (1993). Automatic modelling of fundamental frequency
using a quadratic spline function. Travaux de l’Institut de Phonétique d’Aix. vol. 15, pages
71-85.

The SPPAS implementation of Momel requires a file with the F0 values sampled at 10 ms. Two file formats
are supported:

• “.PitchTier”, from Praat.
• “.hz”, from any tool. It is a file with one F0 value per line.

The following options can be fixed:

• Window length used in the “cible” method
• F0 threshold: Maximum F0 value
• F0 ceiling: Minimum F0 value
• Maximum error: Acceptable ratio between two F0 values
• Window length used in the “reduc” method
• Minimal distance
• Minimal frequency ratio
• Eliminate glitch option: Filter f0 values before ‘cible’

version 2.0 58

Chapter 3. Automatic Annotations

Figure 3.15: INTSINT example

3.13.2 Encoding of F0 target points using the “INTSINT” system

INTSINT assumes that pitch patterns can be adequately described using a limited set of tonal symbols,
T,M,B,H,S,L,U,D (standing for : Top, Mid, Bottom, Higher, Same, Lower, Up-stepped, Down-stepped
respectively) each one of which characterises a point on the fundamental frequency curve.

The rationale behind the INTSINT system is that the F0 values of pitch targets are programmed in one of
two ways : either as absolute tones T, M, B which are assumed to refer to the speaker’s overall pitch range
(within the current Intonation Unit), or as relative tones H, S, L, U, D assumed to refer only to the value of
the preceding target point.

The rationale behind the INTSINT system is that the F0 values of pitch targets are programmed in one of
two ways : either as absolute tones T, M, B which are assumed to refer to the speaker’s overall pitch range
(within the current Intonation Unit), or as relative tones H, S, L, U, D assumed to refer only to the value of
the preceding target point.

A distinction is made between non-iterative H, S, L and iterative U, D relative tones since in a number of
descriptions it appears that iterative raising or lowering uses a smaller F0 interval than non-iterative raising
or lowering. It is further assumed that the tone S has no iterative equivalent since there would be no means
of deciding where intermediate tones are located.

version 2.0 59

Chapter 3. Automatic Annotations

D.-J. Hirst (2011). The analysis by synthesis of speech melody: from data to models, Journal
of Speech Sciences, vol. 1(1), pages 55-83.

3.13.3 Perform Momel and INTSINT with the GUI

Click on the Momel activation button, select the language and click on the “Configure…” blue text to fix
options. And click on the INTSINT activation button.

3.13.4 Perform Momel with the CLI

momel.py is the program to perform Momel annotation of a given file with F0 values sampled at 10ms.

Usage

momel.py [files] [options]

Momel: Proposed by D. Hirst and R. Espesser, Momel - Modelling of fundamental

frequency (F0) curves is using a technique called assymetric modal quaratic

regression. Requires pitch values.

optional arguments:

-h, --help show this help message and exit

--quiet Disable the verbosity

--log file File name for a Procedure Outcome Report (default: None)

Files (manual mode):

-i file Input file name (extension: .hz or .PitchTier)

-o file Output file name (default: stdout)

Files (auto mode):

version 2.0 60

Chapter 3. Automatic Annotations

-I file Input file name with pitch (append).

-e .ext Output file extension. One of: .xra .TextGrid .eaf .csv

.mrk .txt .stm .ctm .lab .mlf .sub .srt .antx .arff .xrff

Options:

--win1 WIN1 Target window length (default: 30)

--lo LO F0 threshold (default: 50)

--hi HI F0 ceiling (default: 600)

--maxerr MAXERR Maximum error (default: 1.04)

--win2 WIN2 Reduce window length (default: 20)

--mind MIND Minimal distance (default: 5)

--minr MINR Minimal frequency ratio (default: 0.05)

This program is part of SPPAS version 2.0. Copyright (C) 2011-2019 Brigitte

Bigi. Contact the author at: contact@sppas.rg

Examples of use

python .\sppas\bin\momel.py -i .\samples\samples-eng\ENG_M15_ENG_T02.PitchTier

2018-12-19 15:44:00,437 [INFO] Logging set up level=15

2018-12-19 15:44:00,674 [INFO] 41 anchors found.

1.301629 109.285503

1.534887 126.157058

1.639614 143.657446

1.969234 102.911464

2.155284 98.550759

2.354162 108.250869

2.595364 87.005994

2.749773 83.577924

2.933222 90.218382

3.356651 119.709142

3.502254 104.104568

3.707747 132.055286

4.000578 96.262109

4.141915 93.741407

4.383332 123.996736

4.702203 89.152708

4.987086 101.561180

5.283864 87.499710

5.538984 92.399690

5.707147 95.411586

5.906895 87.081095

6.705373 121.396919

7.052992 130.821479

7.218415 120.917642

7.670083 101.867028

7.841935 109.094053

8.124574 90.763267

8.455182 114.261067

8.746016 93.704705

9.575359 101.108444

9.996245 122.488120

10.265663 105.244429

10.576394 94.875460

version 2.0 61

Chapter 3. Automatic Annotations

11.730570 99.698799

12.083323 124.002313

12.411790 108.563104

12.707442 101.928297

12.963805 113.980850

13.443483 90.782781

13.921939 90.824376

14.377324 60.126506

Apply Momel on all files of a given folder:

python .\sppas\bin\momel.py -I .\samples\samples-eng

3.13.5 Perform INTSINT with the CLI

intsint.py is the program to perform INTSINT annotation of a given file with momel anchors.

Usage

intsint.py [files] [options]

INTSINT: INternational Transcription System for INTonation codes the

intonation of an utterance by means of an alphabet of 8 discrete symbols.

Requires Momel targets.

optional arguments:

-h, --help show this help message and exit

--quiet Disable the verbosity

--log file File name for a Procedure Outcome Report (default: None)

Files (manual mode):

-i file Input file name with anchors.

-o file Output file name (default: stdout)

Files (auto mode):

-I file Input file name with anchors (append).

-e .ext Output file extension. One of: .xra .TextGrid .eaf .csv .mrk

.txt .stm .ctm .lab .mlf .sub .srt .antx .arff .xrff

This program is part of SPPAS version 2.0. Copyright (C) 2011-2019 Brigitte

Bigi. Contact the author at: contact@sppas.org

Examples of use

Apply INTSINT on a single file and print the result on the standard output:

python .\sppas\bin\intsint.py -i .\samples\samples-eng\ENG_M15_ENG_T02-momel.xra --quiet

1.301629 M

version 2.0 62

Chapter 3. Automatic Annotations

1.534887 U

1.639614 H

1.969234 L

2.155284 S

2.354162 U

2.595364 L

2.749773 S

2.933222 S

3.356651 H

3.502254 D

3.707747 H

4.000578 L

4.141915 S

4.383332 H

4.702203 L

4.987086 U

5.283864 L

5.538984 U

5.707147 D

5.906895 S

6.705373 M

7.052992 U

7.218415 S

7.670083 D

7.841935 S

8.124574 D

8.455182 U

8.746016 D

9.575359 M

9.996245 U

10.265663 D

10.576394 D

11.730570 M

12.083323 U

12.411790 D

12.707442 S

12.963805 U

13.443483 L

13.921939 S

14.377324 B

Apply INTSINT in auto mode:

python .\sppas\bin\intsint.py -I .\samples\samples-eng\ENG_M15_ENG_T02.wav

python .\sppas\bin\intsint.py -I .\samples\samples-eng\ENG_M15_ENG_T02.PitchTier

python .\sppas\bin\intsint.py -I .\samples\samples-eng\ENG_M15_ENG_T02-momel.xra

version 2.0 63

Chapter 3. Automatic Annotations

version 2.0 64

4

Resources for Automatic Annotations

4.1 Overview

Automatic annotations included in SPPAS are implemented with language-independent algorithms. This
means that adding a new language into SPPAS only consists in adding resources related to the annotation
(like lexicons, dictionaries, models, set of rules, etc).

All resources can be edited, modified, changed or deleted by users.

To know what the resources are for and other information, refer to chapter 3 of this documentation: Each
resource is used by an automatic annotation.

The resources are language dependent and the name of the files are based on the ISO639-3 international
standard. See http://www-01.sil.org/iso639-3/ for the list of all languages and codes.

In the next sections, the table indicates the list of phonemes that are included in the resources required for
phonetization, alignment and syllabification of a given language. The first column represents the symbols
used by SPPAS and the other columns are intended to help users to better understand what it means.

The encoding of phonemes in SPPAS resources is based on a computer-readable phonetic list of 7-bit print-
able ASCII characters: X-SAMPA. This Extended Speech Assessment Methods Phonetic Alphabet was
developed in 1995 by John C. Wells, professor of phonetics at the University of London. X-SAMPA is
a language-independent notation covering the entire International Phonetic Alphabet - IPA repertoire. A
plugin allows to convert time-aligned phonemes from X-SAMPA to IPA.

The acoustic models created by the author, Brigitte Bigi, were trained using the HTK toolbox, version 3.4.1.
“HTK has been developed by the Machine Intelligence Laboratory (formerly know as the Speech Vision
Robotics Group) at the Cambridge University Engineering Department (CUED) and Entropic Ltd. Microsoft
has now licensed HTK back to CUED and is providing support so that CUED can redistribute HTK and
provide development support via the HTK3 web site.” (source: http://htk.eng.cam.ac.uk/) Notice
that HTK is available for free download after registration and users must first agree to the license. Notice
that the section 2.2 of the license terms mentions that HTK “either in whole or in part can not be distributed
or sub-licensed to any third party in any form.”

65

http://www-01.sil.org/iso639-3/
http://mi.eng.cam.ac.uk
http://www.entropic.com
http://htk.eng.cam.ac.uk/

Chapter 4. Resources for Automatic Annotations

4.2 French

All French resources are (c) Laboratoire Parole et Langage, Aix-en-Provence, France.

4.2.1 List of phonemes

Consonant Plosives

SPPAS IPA Description Examples
p p voiceless bilabial passé, par, appris
b b voiced bilabial beau, abris, baobab
t t voiceless alveolar tout, thé, patte
d d voiced alveolar doux, deux, addition
k k voiceless velar cabas, psycho, quatre, kelvin
g g voiced velar gain, guerre, second

Consonant Fricatives

SPPAS IPA Description Examples
f f voiceless labiodental fête, pharmacie
s s voiceless alveolar sa, hausse, ce, garçon, option, scie
S ʃ voiceless postalveolar choux, schème, shampooing
z z voiced alveolar hasard, zéro, transit
Z ʒ voiced postalveolar joue geai
v v voiced labiodental vous, wagon, neuf heures

Consonant Nasals

SPPAS IPA Description Examples
m m bilabial mou, homme
n n alveolar nous, bonne
N ŋ voiced velar camping, bingo

Consonant Liquids

SPPAS IPA Description Examples
l l alveolar lateral lit, ville, fil
R ʁ voiced uvular roue, rhume, arrive

Semivowels

version 2.0 66

Chapter 4. Resources for Automatic Annotations

SPPAS IPA Description Examples
j j palatal payer, fille, travail
w w voiced labiovelar oui, web, whisky
H ɥ labial-palatal huit, Puy

Vowels

SPPAS IPA Description Examples
E ɛ open-mid front unrounded crème, faite, peine, fête,

maître, mètre, reine
A/ a open front unrounded patte, là
A/ ɑ open back unrounded pâte glas
9 œ open-mid front rounded sœur, neuf, œuf
i i close front unrounded si, île, régie, y
e e close-mid front unrounded clé, les, chez, aller, pied,

journée
O/ ɔ open-mid back rounded sort, minimum
O/ o close-mid back rounded sot, hôtel, haut
u u close back rounded cou, clown, roue
y y close front rounded tu, sûr, rue
2 ø close-mid front rounded ceux, jeûner, deux
@ ə schwa le, reposer, faisons

Nasal vowels

SPPAS IPA Examples
a~ ɑ̃ sans, champ, vent, temps, Jean, taon
U~/ ɛ̃ vin, pain, brin, printemps
U~/ œ̃ un, parfum, brun
O~ ɔ̃ son, nom, bon

Fillers

SPPAS Description
laugh laughter
noise noises, unintelligible speech
fp filled pause (“euh”)

dummy un-transcribed speech

4.2.2 Pronunciation dictionary

The French pronunciation dictionary was created by Brigitte Bigi by collecting and merging several free
dictionaries loaded from the web. Some pronunciations were added using the LIA_Phon tool. Many words

version 2.0 67

Chapter 4. Resources for Automatic Annotations

were manually corrected and a large set of missing words and pronunciation variants were manually added.

It is distributed under the terms of the GNU General Public License.

4.2.3 Acoustic Model

The French acoustic model was created by Brigitte Bigi from various corpora mainly recorded at Laboratoire
Parole et Langage. Special thanks are addressed to Roxane Bertrand, Béatrice Priego-Valverde, Sophie
Herment, Amandine Michelas, Christine Meunier and Cristel Portes for kindly sharing their corpora.

It is distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Inter-
national Public License.

4.2.4 Syllabification configuration file

The syllabification configuration file corresponds to the one described in the paper (Bigi et al. 2010). It is
distributed under the terms of the GNU General Public License.

4.3 Italian

4.3.1 List of phonemes

Consonant Plosives

SPPAS IPA Description Examples
p p voiceless bilabial primo, ampio, copertura
b b voiced bilabial banca, cibo
t t voiceless alveolar tranne, mito, Fiat
d d voiced alveolar dove, idra
k k voiceless velar cavolo, acuto, anche, quei
g g voiced velar gatto, agro, glifo, ghetto

Consonant Fricatives

SPPAS IPA Description Examples
f f voiceless labiodental fatto, fosforo
s s voiceless alveolar sano, scatola, presentire
S ʃ voiceless postalveolar scena, sciame, pesci
z z voiced alveolar sbavare, presentare, asma
v v voiced labiodental vado, povero

Consonant Nasals

version 2.0 68

Chapter 4. Resources for Automatic Annotations

SPPAS IPA Description Examples
m m bilabial mano, amare, campo
n n alveolar nano, punto, pensare, anfibio
J ɲ palatal gnocco, ogni
N ŋ voiced velar fango, unghia, panchina, dunque

Consonant Liquids

SPPAS IPA Description Examples
l l alveolar lateral lato, lievemente
L ʎ palatal lateral gli, glielo, maglia
r r alveolar trill Roma, quattro, morte

Semivowels

SPPAS IPA Description Examples
j j voiced palatal ieri, più, Jesi
w w voiced labiovelar uovo, fuoco, qui

Vowels

SPPAS IPA Description Examples
E ɛ open-mid front unrounded elica, cioè
a a open front unrounded alto, sarà
o ɔ open-mid back rounded otto, posso, sarò
o o close-mid back rounded ombra, come
e e close-mid front unrounded vero, perché
i i close front unrounded imposta, colibrì, zie
u u close back rounded ultimo, caucciù, tuo

Affricates

SPPAS IPA Description Examples
tS tʃ͡ voiceless postalveolar Cennini, cinque, ciao
ts ts͡ voiceless alveolar sozzo canzone marzo
dz d͡z voiced alveolar zaino zelare mezzo
dZ d͡ʒ voiced postalveolar giungla, magia, fingere

Fillers

version 2.0 69

Chapter 4. Resources for Automatic Annotations

SPPAS Description
laugh laughter
noise noises, unintelligible speech
dummy un-transcribed speech
fp filled pause (eh, ah)

4.3.2 Pronunciation dictionary

The Italian dictionary was downloaded in 2011 from the Festival synthetizer tool. A large amount of the
phonetization were manually corrected by Brigitte Bigi and a large set of missing words and pronunciation
variants were added manually.

It is distributed under the terms of the GNU General Public License.

4.3.3 Acoustic Model

The Italian acoustic model was created during the Evalita 2011 evaluation campaign, from the CLIPS Map-
Task corpus (3h30), and updated during the Evalita 2014 evaluation campaign.

It is distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Inter-
national Public License.

4.3.4 Syllabification configuration file

The syllabification configuration file corresponds to the rules defined in the paper (Bigi and Petrone, 2014).
This file is distributed under the terms of the GNU General Public License.

4.4 Spanish

4.4.1 List of phonemes

Consonant Plosives

SPPAS IPA Description Examples
p p voiceless bilabial pozo, topo, perro
b b voiced bilabial bestia, embuste, vaca
t t voiceless alveolar tamiz, átomo
d d voiced alveolar dedo, cuando, aldaba
k k voiceless velar caña, laca, quise, kilo
g g voiced velar gato, lengua, gatouerra

Consonant Fricatives

version 2.0 70

http://www.cstr.ed.ac.uk/projects/festival/

Chapter 4. Resources for Automatic Annotations

SPPAS IPA Description Examples
f f voiceless labiodental fase, café
j\ ts͡ voiced palatal fricative ayer, haya
s s voiceless alveolar saco, zapato, cientos, espita
z z voiced alveolar isla, mismo, deshuesar
S ʃ voiceless postalveolar English, abacaxi, Shakira
T θ voiceless dental cereal, encima, zorro, enzima, paz
x x voiceless velar jamón, eje, reloj, general

Consonant Nasals

SPPAS IPA Description Examples
m m bilabial madre, campo, convertir
n n alveolar nido, anhelo, sin, álbum
J ɲ palatal ñandú, cañón, enyesar

Consonant Liquids

SPPAS IPA Description Examples
l l alveolar lateral lino, alhaja, principal
L ʎ palatal lateral llave, pollo, roughly
r r alveolar trill rumbo, carro, amor
4 ɾ alveolar flap caro, bravo, eterno

Semivowels

SPPAS IPA Description Examples
j j voiced palatal aliada, cielo, amplio
w w voiced labiovelar cuadro, fuego

Vowels

SPPAS IPA Description Examples
a a open front unrounded azahar
o o close-mid back rounded boscoso
e e close-mid front unrounded vehemente
i i close front unrounded dimitir, mío
u u close back rounded cucurucho, dúo

Affricates

version 2.0 71

Chapter 4. Resources for Automatic Annotations

SPPAS IPA Description Examples
tS tʃ͡ voiceless postalveolar chubasco, acechar

Fillers

SPPAS Description
laugh laughter
noise noises, unintelligible speech
dummy un-transcribed speech

4.4.2 Pronunciation Dictionary

The pronunciation dictionary was downloaded from the CMU web page in 2013. Brigitte Bigi converted the
CMU phoneset to X-SAMPA, and changed the format of the file. It is distributed under the terms of the
GNU General Public License.

4.4.3 Acoustic Model

The acoustic model was trained from Glissando corpus. We address special thanks to Juan-Maria Garrido
for giving us access to this corpus. It is distributed under the terms of the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International Public License.

GARRIDO, J. M. - ESCUDERO, D. - AGUILAR, L. -CARDEÑOSO, V. - RODERO, E.
- DE-LA-MOTA, C. - GONZÁLEZ, C. - RUSTULLET, S. - LARREA, O. - LAPLAZA,
Y. - VIZCAÍNO, F. - CABRERA, M. - BONAFONTE, A. (2013). Glissando: a corpus for
multidisciplinary prosodic studies in Spanish and Catalan, Language Resources and Evaluation,
DOI 10.1007/s10579-012-9213-0.

4.5 Catalan

4.5.1 List of phonemes

Consonant Plosives

SPPAS IPA Description Examples
p p voiceless bilabial pala
b b voiced bilabial bala, via
t t voiceless alveolar tela
d d voiced alveolar donar
k k voiceless velar cala
g g voiced velar gala

version 2.0 72

http://www.speech.cs.cmu.edu/

Chapter 4. Resources for Automatic Annotations

Consonant Fricatives

SPPAS IPA Description Examples
D ð voiced dental cada
G ɣ voiceless velar alga, mages
f f voiceless labiodental fals
s s voiceless alveolar si, sala
z z voiced alveolar desde
S ʃ voiceless postalveolar caixa
Z ʒ voiced postalveolar mújol
v v voiced labiodental va, vol
T θ voiceless dental circus

Consonant Nasals

SPPAS IPA Description Examples
m m bilabial mena
n n alveolar nena
J ɲ palatal any
N ŋ voiced velar lingot, lingual

Consonant Liquids

SPPAS IPA Description Examples
l l alveolar lateral líquid
L ʎ palatal lateral llamp
r r alveolar trill carro
4 ɾ alveolar flap cara

Semivowels

SPPAS IPA Description Examples
j j voiced palatal iaia, naciós, iogurt
w w voiced labiovelar veu, veuran

Vowels

SPPAS IPA Description Examples
E ɛ open-mid front unrounded sec, veça
a a open front unrounded sac
O ɔ open-mid back rounded soc

version 2.0 73

Chapter 4. Resources for Automatic Annotations

SPPAS IPA Description Examples
o o close-mid back rounded sóc
e e close-mid front unrounded séc, cec
i i close front unrounded sic, ric
u u close back rounded suc
@ ə schwa contra, estada
U ʊ near-close near-back rounded òpols

Affricates

SPPAS IPA Description Examples
dZ d͡ʒ voiced postalveolar metge
tS tʃ͡ voiceless postalveolar cotxe

Fillers

SPPAS Description
laugh laughter
noise noises, unintelligible speech
dummy un-transcribed speech

4.5.2 Pronunciation dictionary

The catalan pronunciation dictionary was downloaded in 2014 from the Ralf catalog of dictionaries for the
Simon ASR system at http://spirit.blau.in/simon/import-pls-dictionary/. It was then
converted (format and phoneset) by Brigitte Bigi. Some new words were also added and phonetized manually
by Eva Bosch i Roura. New entries were then added from observed pronunciations in Glissando corpus.

It is distributed under the terms of the GNU General Public License.

4.5.3 Acoustic Model

The acoustic model was trained from Glissando corpus. We address special thanks to Juan-Maria Garrido
for giving us access to this corpus. It is distributed under the terms of the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International Public License.

Reference of Glissande corpus is:

GARRIDO, J. M. - ESCUDERO, D. - AGUILAR, L. -CARDEÑOSO, V. - RODERO, E.
- DE-LA-MOTA, C. - GONZÁLEZ, C. - RUSTULLET, S. - LARREA, O. - LAPLAZA,
Y. - VIZCAÍNO, F. - CABRERA, M. - BONAFONTE, A. (2013). Glissando: a corpus for
multidisciplinary prosodic studies in Spanish and Catalan, Language Resources and Evaluation,
DOI 10.1007/s10579-012-9213-0.

version 2.0 74

http://spirit.blau.in/simon/import-pls-dictionary/

Chapter 4. Resources for Automatic Annotations

4.6 English

4.6.1 List of phonemes

Consonant Plosives

SPPAS IPA Description Examples
p p voiceless bilabial pie, spy, cap
b b voiced bilabial buy, cab
t t voiceless alveolar tie, sty, cat, atom
d d voiced alveolar dye, cad, do
k k voiceless velar sky, crack, quick
g g voiced velar guy, bag, luggage

Consonant Fricatives

SPPAS IPA Description Examples
D ð voiced dental thy, breathe, father
f f voiceless labiodental phi, caff, fan
s s voiceless alveolar sigh, mass
S ʃ voiceless postalveolar shy, cash, emotion
z z voiced alveolar zoo, has
Z ʒ voiced postalveolar equation, pleasure, vision, beige
v v voiced labiodental vie, have
T θ voiceless dental thigh, math
h h voiceless glottal high, ahead

Consonant Nasals

SPPAS IPA Description Examples
m m bilabial my, smile, cam
n n alveolar nigh, snide, can
N ŋ voiced velar sang, sink, singer

Consonant Liquids

SPPAS IPA Description Examples
l l alveolar lateral lie, sly, gal
4 ɾ alveolar flap lyda, maddy, makita
r\ ɹ alveolar approximant red, try, very

version 2.0 75

Chapter 4. Resources for Automatic Annotations

Semivowels

SPPAS IPA Description Examples
j j voiced palatal yes, yacht, william
w w voiced labiovelar wye, swine, why

Vowels

SPPAS IPA Description Examples
E ɛ open-mid front unrounded dress, bed, fell, men
A ɑ: open back unrounded palm, father, bra
A ɒ open back rounded lot, pod, John
O: ɔ: open-mid back rounded thought, Maud, dawn, fall
V ʌ open-mid back unrounded strut, mud, dull, gun
i i close front unrounded happy, serious
i: i: close front unrounded fleece, seed, feel, sea
u: u: close back rounded goose, food, chew, do
@ ə schwa a, baccus
I ɪ near-close near-front unrounded kit, lid, fill, bin
U ʊ near-close near-back rounded foot, full, woman
{ æ near-open front unrounded trap, pad, shall, ban

Affricates

SPPAS IPA Description Examples
dZ d͡ʒ voiced postalveolar giant, badge, jam
tS tʃ͡ voiceless postalveolar China, catch

Other symbols

SPPAS IPA Examples
aI aɪ price, ride, file, pie
aU aʊ mouth, loud, down, how
eI eɪ face, fail, vein, pay
OI ɔɪ choice, void, foil, boy
@U oʊ goat, code, foal, go
3:r ɜ:r liner, foundered, current

Fillers

version 2.0 76

Chapter 4. Resources for Automatic Annotations

SPPAS Description
laugh laughter
noise noises, unintelligible speech
dummy un-transcribed speech

4.6.2 Pronunciation dictionary

The pronunciation dictionary is for North American English. It was downloaded in 2011 from the CMU
web page. This Carnegie Mellon Pronouncing Dictionary (version 0.6) is Copyright (C) 1993-2008 by
Carnegie Mellon University. We acknowledge CMU for distributing freely this resource and allowing its
re-distribution.

Brigitte Bigi converted the original CMUdict encoded with ARPAbet into X-SAMPA and converted the
format of the file in HTK-ASCII.

4.6.3 Acoustic Model

The acoustic model distributed in SPPAS resources was downloaded in 2014 from the VoxForge project at
http://www.voxforge.org/.

Actually, two acoustic models are available:

• “eng-cd” is context-dependent (better accuracy) but does not contain the fillers;
• “eng” is context-independent, and contains the fillers (i.e. laugh, noise and dummy). The latter was
extracted from the first one.

Both English acoustic models are under the terms of the “GNU Public License”.

It has to be noticed that the first one will time-align with a better accuracy but it can’t be used if the speech
to align contains fillers.

4.7 Polish

4.7.1 List of phonemes

Consonant Plosives

SPPAS IPA Description Examples
p p voiceless bilabial pas
b b voiced bilabial
t t voiceless alveolar
d d voiced alveolar
k k voiceless velar
g g voiced velar
c c voiceless palatal

version 2.0 77

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://www.voxforge.org/

Chapter 4. Resources for Automatic Annotations

Consonant Fricatives

SPPAS IPA Description Examples
f f voiceless labiodental fac, feedback
s s voiceless alveolar sabat, subaru
s\ ɕ voiceless alveolo-palatal świerszcz, śam
s‘ ʂ voiceless alveolar with retroflex hook
S ʃ voiceless postalveolar
z z voiced alveolar
z\ ʑ voiced alveolo-palatal źrebak
Z ʒ voiced postalveolar
v v voiced labiodental
x x voiceless velar hak, chór
x ç
x h

Consonant Nasals

SPPAS IPA Description Examples
m m bilabial
n n alveolar
N ŋ voiced velar

Consonant Liquids

SPPAS IPA Description Examples
l l alveolar lateral
r r alveolar trill krok

Semivowels

SPPAS IPA Description Examples
j j palatal jak
w w voiced labiovelar

Vowels

SPPAS IPA Description Examples
E ɛ open-mid front unrounded test, ten
a a open front unrounded pat, ptak
O ɔ open-mid back rounded pot, kot

version 2.0 78

Chapter 4. Resources for Automatic Annotations

SPPAS IPA Description Examples
i i close front unrounded pit, bit, miś
i ɨ̞ near-close central unrounded ryba
u u close back rounded bum
y y close front rounded mysz

Nasal vowels

SPPAS IPA Examples
E~ ɛ̃ węże
o~ ɔ̃ wąż

Affricates

SPPAS IPA Description Examples
tS tʃ͡ voiceless postalveolar
ts ts͡ voiceless alveolar co
dz d͡z voiced alveolar dzwon
dZ d͡ʒ voiced postalveolar

Fillers

SPPAS Description
laugh laughter
noise noises, unintelligible speech
dummy un-transcribed speech

4.7.2 Pronunciation Dictionary

The Polish pronunciation dictionary was downloaded in 2015 from the Ralf catalog of dictionaries for the
Simon ASR system at http://spirit.blau.in/simon/import-pls-dictionary/.
It was then converted (format and phoneset) and corrected by Brigitte Bigi, thanks to the help of Katarzyna
Klessa http://katarzyna.klessa.pl/. An update was done in 2017 to correct systematic errors.
It is distributed under the terms of the GNU General Public License.

4.7.3 Acoustic Model

The acoustic model was created by Brigitte Bigi. We address special thanks to Katarzyna Klessa for giving
us access to a corpus.
It is distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Inter-
national Public License.

version 2.0 79

http://spirit.blau.in/simon/import-pls-dictionary/
http://katarzyna.klessa.pl/

Chapter 4. Resources for Automatic Annotations

4.8 Portuguese

List of phonemes

Consonant Plosives

SPPAS IPA Description Examples
p p voiceless bilabial pacto
b b voiced bilabial bato
t t voiceless alveolar tacto
d d voiced alveolar dato
k k voiceless velar cacto
g g voiced velar gato

Consonant Fricatives

SPPAS IPA Description Examples
f f voiceless labiodental facto
s s voiceless alveolar saca
S ʃ voiceless postalveolar chato
z z voiced alveolar zaca
Z ʒ voiced postalveolar jacto
v v voiced labiodental vaca
x x voiceless velar rabão

Consonant Nasals

SPPAS IPA Description Examples
m m bilabial mato
n n alveolar nato
N ŋ voiced velar hong-kong
J ɲ palatal pinha

Consonant Liquids

SPPAS IPA Description Examples
l l alveolar lateral galo
L ʎ palatal lateral galho
r r alveolar trill pira
R ʁ voiced uvular rato

version 2.0 80

Chapter 4. Resources for Automatic Annotations

Semivowels

SPPAS IPA Description Examples
j j voiced palatal yoga
w w voiced labiovelar uísque

Vowels

SPPAS IPA Description Examples
E ɛ open-mid front unrounded ego, eira
a a open front unrounded parto
O ɔ open-mid back rounded pôde
i i close front unrounded hidra
e e close-mid front unrounded pega, elo
o o close-mid back rounded bola
u u close back rounded hotel
y y close front rounded emile
I ɪ near-close near-front unrounded dois
U ʊ near-close near-back rounded ido

Nasal vowels

SPPAS IPA Examples
a~ ɑ̃ anis
u~ ũ humberto, unha

Fillers

SPPAS Description
laugh laughter
noise noises, unintelligible speech
dummy un-transcribed speech

4.8.1 Pronunciation Dictionary

The Portuguese pronunciation dictionary was downloaded from the Ralf catalog of dictionaries for the Si-
mon ASR system at http://spirit.blau.in/simon/import-pls-dictionary/. It was then
converted (format and phoneset) and corrected by Brigitte Bigi.

It is re-distributed under the terms of the GNU General Public License.

version 2.0 81

http://spirit.blau.in/simon/import-pls-dictionary/

Chapter 4. Resources for Automatic Annotations

4.8.2 Acoustic Model

The acoustic model was NOT trained from data. Monophones of other models were cut and pasted to create
this one, mainly from the Spanish and the French models. The Portuguese model is distributed under the
terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License.

New Portuguese data is welcome! Because data implies a better acoustic model then better alignments…

4.9 German

List of phonemes

Consonant Plosives

SPPAS IPA Description Examples
p p voiceless bilabial
b b voiced bilabial
t t voiceless alveolar
d d voiced alveolar
k k voiceless velar
g g voiced velar

Consonant Fricatives

SPPAS IPA Description Examples
f f voiceless labiodental
s s voiceless alveolar
S ʃ voiceless postalveolar
z z voiced alveolar
Z ʒ voiced postalveolar
v v voiced labiodental
x x voiceless velar
h h voiceless glottal
C ç voiceless palatal fricative ich , nicht

Consonant Liquids

SPPAS IPA Description Examples
l l alveolar lateral
R ʁ voiced uvular

Consonant Nasals

version 2.0 82

Chapter 4. Resources for Automatic Annotations

SPPAS IPA Description Examples
m m bilabial
n n alveolar
N ŋ voiced velar

Semivowels

SPPAS IPA Description Examples
j j voiced palatal
w w voiced labiovelar software

Vowels

SPPAS IPA Description Examples
E ɛ open-mid front unrounded
E: ɛ: open-mid front unrounded
O ɔ open-mid back rounded
U ʊ near-close near-back rounded
i i close front unrounded
i: i: close front unrounded
u: u: close back rounded
@ ə schwa
I ɪ near-close near-front unrounded
a a open front unrounded
a: a: open front unrounded
2: ø close-mid front rounded
9 œ open-mid front rounded
6 ɐ near-open central vowel besser
e e close-mid front unrounded
o: o: close-mid back rounded
y y close front rounded
y: y: close front rounded
Y ʏ near-close near-front rounded vowel hübsch

Affricates

SPPAS IPA Description Examples
tS tʃ͡ voiceless postalveolar
ts ts͡ voiceless alveolar
dZ d͡ʒ voiced postalveolar

Other symbols

version 2.0 83

Chapter 4. Resources for Automatic Annotations

SPPAS IPA Examples
? ʔ
aI aɪ
aU aʊ
OY ɔʏ

Fillers

SPPAS Description
laugh laughter
noise noises, unintelligible speech
fp filled pause (äh, eh)

dummy un-transcribed speech

4.9.1 Pronunciation Dictionary

The German pronunciation dictionary was downloaded from the Ralf catalog of dictionaries for the Simon
ASR system at http://spirit.blau.in/simon/import-pls-dictionary/. It was then con-
verted (format and phoneset) and corrected by Brigitte Bigi.

It is re-distributed under the terms of the GNU General Public License.

4.10 Mandarin Chinese

4.10.1 List of phonemes

Any help is welcome to improve the quality of both Mandarin Chinese resources and of this documentation.
Both are distributed without any warranty.

Consonant Plosives

SPPAS IPA Description Examples
p p voiceless bilabial �, ���
p_h pʰ voiceless bilabial aspirated �, �, �
t t voiceless alveolar �, �
t_h tʰ voiceless alveolar aspirated ��
k k voiceless velar �, �
k_h kʰ voiceless velar aspirated �, �

Consonant Fricatives

version 2.0 84

http://spirit.blau.in/simon/import-pls-dictionary/

Chapter 4. Resources for Automatic Annotations

SPPAS IPA Description Examples
f f voiceless labiodental �, �, �
s s voiceless alveolar �, �
s‘ ʂ voiceless alveolar with retroflex hook � �
z‘ ʐ voiced alveolar with retroflex hook �, �
S ʃ voiceless postalveolar �, �
x x voiceless velar �, �
ss �, �

Consonant Nasals

SPPAS IPA Description Examples
m m bilabial �, �, �
n n alveolar �, �, �
N ŋ voiced velar �, �, �

Consonant Liquids

SPPAS IPA Description Examples
l l alveolar lateral �, �

Vowels

SPPAS IPA Description Examples
a a open front unrounded �, �, �, �, �
o o close-mid back rounded �, �
e e close-mid front unrounded A, �
i i close front unrounded �, �, � �
i_d i ̪ close front unrounded dental �, �
i‘ ᶖ close front unrounded retroflex ��, �
u u close back rounded �, �, �
y y close front rounded �, �, �
@‘ ᶕ schwa with retroflex hook �, �

Affricates

SPPAS IPA Description Examples
ts ts͡ voiceless alveolar �, �
tss �, �
ts_h ts͡ʰ voiceless alveolar aspirated �, �
ts‘ voiceless alveolar retroflex hook �, �

version 2.0 85

Chapter 4. Resources for Automatic Annotations

SPPAS IPA Description Examples
ts_h‘ � �
ts_hs �, �

Fillers

SPPAS Description
laugh laughter
noise noises, unintelligible speech
dummy un-transcribed speech

4.10.2 Pronunciation dictionary

The pronunciation dictionary was manually created for the syllables by Zhi Na. We address special thanks
to her for sharing her work.

It is distributed under the terms of the GNU General Public License.

4.10.3 Acoustic model

The acoustic model was created by Brigitte Bigi from 2 corpora: the first one at Shanghai by Zhi Na, and
another one by Hongwei Ding. We address special thanks to hers for giving us access to their corpus. Both
recordings are a Chinese version of the Eurom1 corpus. See the following publication for details:

Daniel Hirst, Brigitte Bigi, Hyongsil Cho, Hongwei Ding, Sophie Herment, Ting Wang
(2013). Building OMProDat: an open multilingual prosodic database, Proceedings of Tools
ans Resources for the Analysis of Speech Prosody, Aix-en-Provence, France, Eds B. Bigi and
D. Hirst, ISBN: 978-2-7466-6443-2, pp. 11-14.

Notice that the current model was trained from a very small amount of data: this will impact on the results.
Do not expect to get good performances for the automatic alignment.

MoreMandarin Chinese data are welcome! Because more data implies a better acoustic model then better
alignments…

The model is distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International Public License.

4.11 Southern Min (or Min Nan)

4.11.1 List of phonemes

Consonant Plosives

version 2.0 86

Chapter 4. Resources for Automatic Annotations

SPPAS IPA Description
b b voiced bilabial
d d voiced alveolar
p p voiceless bilabial
p_h pʰ voiceless bilabial aspirated
t t voiceless alveolar
t_h tʰ voiceless alveolar aspirated
k k voiceless velar
k_h kʰ voiceless velar aspirated
g g voiced velar

Consonant Fricatives

SPPAS IPA Description
f f voiceless labiodental
s s voiceless alveolar
S ʃ voiceless postalveolar
x x voiceless velar
ss
v v voiced labiodental
z z voiced alveolar
h h voiceless glottal

Consonant Nasals

SPPAS IPA Description
m m bilabial
n n alveolar
N ŋ voiced velar

Consonant Liquids

SPPAS IPA Description
l l alveolar lateral

Semivowels

SPPAS IPA Description
w w voiced labiovelar

version 2.0 87

Chapter 4. Resources for Automatic Annotations

Vowels

SPPAS IPA Description
a a open front unrounded
o o close-mid back rounded
O ɔ open-mid back rounded
e e close-mid front unrounded
i i close front unrounded
u u close back rounded
y y close front rounded
@ ə schwa

Nasal vowels

SPPAS IPA
a~ ɑ̃
e~ ẽ
o~ õ
O~ ɔ̃
u~ ũ
i~ ĩ

Affricates

SPPAS IPA Description
ts ts͡ voiceless alveolar
ts_h ts͡ʰ voiceless alveolar aspirated
dz d͡z voiced alveolar

Fillers

SPPAS Description
laugh laughter
noise noises, unintelligible speech
dummy un-transcribed speech

4.11.2 Pronunciation Dictionary

The pronunciation dictionary was constructed from the most frequent observed pronunciations of the corpus
described below.

It is distributed under the terms of the GNU General Public License.

version 2.0 88

Chapter 4. Resources for Automatic Annotations

4.11.3 Acoustic Model

It is distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Inter-
national Public License.

The acoustic model was trained from a corpus of spontaneous speech. We address special thanks to Sheng-Fu
Wang for giving us access to his corpus.

S-F Wang, J. Fon (2013). A Taiwan Southern Min spontaneous speech corpus for discourse
prosody, Proceedings of Tools ans Resources for the Analysis of Speech Prosody, Aix-en-
Provence, France, Eds B. Bigi and D. Hirst, ISBN: 978-2-7466-6443-2, pp. 20-23.

4.12 Cantonese

4.12.1 List of phonemes

Consonant Plosives

SPPAS IPA Description
p p voiceless bilabial
p_h pʰ voiceless bilabial aspirated
t t voiceless alveolar
t_h tʰ voiceless alveolar aspirated
k k voiceless velar
k_h kʰ voiceless velar aspirated
k_w kʷ voiceless velar labialized
k_h_w kʰʷ voiceless velar aspirated labialized

Consonant Fricatives

SPPAS IPA Description
f f voiceless labiodental
s s voiceless alveolar
S ʃ voiceless postalveolar
h h voiceless glottal

Consonant Nasals

SPPAS IPA Description
m m bilabial
n n alveolar
N ŋ voiced velar

version 2.0 89

Chapter 4. Resources for Automatic Annotations

Consonant Liquids

SPPAS IPA Description
l l alveolar lateral

Semivowels

SPPAS IPA Description
j j palatal
w w voiced labiovelar

Vowels

SPPAS IPA Description
E: ɛ: open-mid front unrounded
a: a: open front unrounded
9: œ: open-mid front rounded
O: ɔ: open-mid back rounded
o o close-mid back rounded
e e close-mid front unrounded
8 ɵ close-mid central rounded vowel
i: i: close front unrounded
u: u: close back rounded
y: y: close front rounded
6 ɐ near-open central vowel
I ɪ near-close near-front unrounded
U ʊ near-close near-back rounded
@ ə schwa

Affricates

SPPAS IPA Description
ts ts͡ voiceless alveolar
ts_h ts͡ʰ voiceless alveolar aspirated
tS tʃ͡ voiceless postalveolar
tS_h tʃ͡ʰ voiceless postalveolar aspirated

4.12.2 Acoustic Model

The Cantonese acoustic model is copyrighted: (C) DSP and Speech Technology Laboratory, Department of
Electronic Engineering, the Chinese University of Hong Kong.

This is a monophone Cantonese acoustic model, based on Jyutping of the Linguistic Society of Hong Kong

version 2.0 90

Chapter 4. Resources for Automatic Annotations

(LSHK). Each state is trained with 32 Gaussian mixtures. The model is trained with HTK 3.4.1. The corpus
for training is CUSENT, also developed in our laboratory.

Generally speaking, you may use the model for non-commercial, academic or personal use.

See COPYRIGHT for the details of the license: “Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International Public License”.

We also have other well-trained Cantonese acoustic models. If you would like to use the models and/or
the CUSENT corpus for commercial applications or development, please contact Professor Tan LEE for
appropriate license terms.

The character pronunciation comes from Jyutping phrase box from the Linguistic Society of Hong Kong.

“The copyright of the Jyutping phrase box belongs to the Linguistic Society of Hong Kong. We would like
to thank the Jyutping Group of the Linguistic Society of Hong Kong for permission to use the electronic file
in our research and/or product development.”

If you use this model for academic research, please cite:

Tan Lee, W.K. Lo, P.C. Ching, Helen Meng (2002). Spoken language resources for Can-
tonese speech processing, Speech Communication, Volume 36, Issues 3–4, Pages 327-342

• Website: http://dsp.ee.cuhk.edu.hk
• Email: tanlee@ee.cuhk.edu.hk

4.13 Japanese

The linguistic resources for Japanese language are kindly shared by the authors of the Julius CSR engine.

For more detail, please contact csrc@astem.or.jp, or access the Julius website: http://julius.
osdn.jp/en_index.php?q=index-en.html#about_models

4.14 Korean

Korean resources are under construction.

4.14.1 List of phonemes

Consonant Plosives

SPPAS IPA Description Examples
b b voiced bilabial �, ��
p p voiceless bilabial �
p_h pʰ voiceless bilabial aspirated �, ��
p_> p͈ voiceless bilabial ejective �
t t voiceless alveolar �
t_h tʰ voiceless alveolar aspirated �
t_> t ͈ voiceless alveolar ejective �, �

version 2.0 91

http://dsp.ee.cuhk.edu.hk
http://julius.osdn.jp/en_index.php?q=index-en.html#about_models
http://julius.osdn.jp/en_index.php?q=index-en.html#about_models

Chapter 4. Resources for Automatic Annotations

SPPAS IPA Description Examples
d d voiced alveolar �, �, �
k k voiceless velar �, ���
k_h kʰ voiceless velar aspirated �
k_> k͈ voiceless velar ejective �, ��
g g voiced velar �, �, �

Consonant Fricatives

SPPAS IPA Description Examples
s s voiceless alveolar �, �, ��
s_> s͈ voiceless alveolar ejective �

Consonant Nasals

SPPAS IPA Description Examples
m m bilabial �, � , ��
n n alveolar �, ��
N ŋ voiced velar ��, ��, ��

Consonant Liquids

SPPAS IPA Description Examples
l l alveolar lateral �, �, �
4 ɾ alveolar flap �, ��, ��

Semivowels

SPPAS IPA Description Examples
j j voiced palatal �, �, �, �, �
w w voiced labiovelar �, �, �, �, �

Vowels

SPPAS IPA Description Examples
E ɛ open-mid front unrounded �, �
A ɑ open back unrounded �, �
i i close front unrounded �, �
e e close-mid front unrounded �, �
o o close-mid back rounded �, �

version 2.0 92

Chapter 4. Resources for Automatic Annotations

SPPAS IPA Description Examples
u u close back rounded �, �
2 ø close-mid front rounded �
V ʌ open-mid back unrounded �, �
M ɯ close back unrounded �, �

Affricates

SPPAS IPA Description Examples
dz d͡z voiced alveolar �
dZ d͡ʒ voiced postalveolar �
tS_> tʃ͈͡ voiceless postalveolar ejective �
tS_h tʃ͡ʰ voiceless postalveolar aspirated �

Fillers

SPPAS Description
laugh laughter
noise noises, unintelligible speech
dummy un-transcribed speech

4.14.2 Pronunciation dictionary

The Korean pronunciation dictionary was manually created and is still under construction. Any help is wel-
come!

It is distributed under the terms of the GNU General Public License.

4.14.3 Acoustic Model

The acoustic model was NOT trained from data. Monophones of other models were cut and pasted to create
this one, mainly the English and Taiwanese models.

Korean data are welcome! Because data implies a better acoustic model then better alignments…

It is distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Inter-
national Public License.

4.15 Naija

This work was financed by the French Agence Nationale pour la Recherche (ANR-16-CE27-0007), in the
context of the NaijaSynCor project.

version 2.0 93

http://naijasyncor.huma-num.fr/

Chapter 4. Resources for Automatic Annotations

4.15.1 List of phonemes

Consonant Plosives

SPPAS IPA Description Examples
p p voiceless bilabial public, palaver
b b voiced bilabial bye, bojuboju, boli
t t voiceless alveolar two, tree, tranga
d d voiced alveolar drop, duma, this
k k voiceless velar ketu, cut, quick
g g voiced velar gain, girl, guy

Consonant Fricatives

SPPAS IPA Description Examples
f f voiceless labiodental farm, phone, view
s s voiceless alveolar centre, safe, zero
S ʃ voiceless postalveolar cheque, sabi, ship
z z voiced alveolar used, diesel, eze
v v voiced labiodental visit, view
h h voiceless glottal happy, hope, who
T θ voiceless dental thing, ethnic, three

Consonant Nasals

SPPAS IPA Description Examples
m m bilabial make, milk, magaji
n n alveolar knock, name, nitel
N ŋ voiced velar bongo, sings

Consonant Liquids

SPPAS IPA Description Examples
l l alveolar lateral load, lokodan
r\ ɹ alveolar approximant radio, root, wrap

Semivowels

SPPAS IPA Description Examples
j j voiced palatal uni, yes, europe
w w voiced labiovelar one, wait, wowo

version 2.0 94

Chapter 4. Resources for Automatic Annotations

Vowels

SPPAS IPA Description Examples
E ɛ open-mid front unrounded air, early, egg, men
a a open front unrounded our, ask, above
O ɔ open-mid back rounded us, onion, all, oba
i i close front unrounded each, even, ile, is
e e close-mid front unrounded alone, eko
o o close-mid back rounded obodo, ojo
u u close back rounded ugu, una, upo

Nasal vowels

SPPAS IPA Examples
a~ ɑ̃ auntie, african, commander
e~ ẽ fiyen, britain, town
E~ ɛ̃ calendar, men, accent
i~ ĩ admin, ani, benin
O~ ɔ̃ election, lokodan, million
u~ ũ remove, segun, broken

Affricates

SPPAS IPA Description
tS tʃ͡ voiceless postalveolar
dZ d͡ʒ voiced postalveolar

Others

SPPAS IPA Examples
aI aɪ I, write, type
aU aʊ out, town
OI ɔɪ oil, boy
eI eɪ a, eight, age

Fillers

SPPAS Description
laugh laughter
noise noises, unintelligible speech
dummy un-transcribed speech

version 2.0 95

Chapter 4. Resources for Automatic Annotations

4.15.2 Pronunciation Dictionary

The dictionary was originally created by extracting the lexicon of the corpus published in annex of (Deuber
2005). New words with their orthographic variants and pronunciations were added to the dictionary by team
of four transcribers, native speakers of the language.

It is distributed under the terms of the GNU General Public License.

4.15.3 Acoustic Model

The Naija acoustic model was created in 2017-07 by Brigitte Bigi with the SPPAS training scripts.

An initial model was created on the basis of other language prototypes. Such prototypes weremostly extracted
from the English acousticmodel. For themissingmodels of phonemes, the nasals /O~/, /a~/, /e~/, /i~/ and /u~/
were picked off Southern Min language, and /E~/ was extracted from French language using /U~/ prototype.
The vowels /a/ and /e/ were extracted from the French model; and finally /O/ and /o/ from the Italian one. The
fillers were also added to the model in order to be automatically time-aligned too: silence, noise, laughter.

The acoustic model was then trained with a set of 8 files (totalling 3 min 29 seconds in length.) manually
phonetized and time-aligned.

It is distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Inter-
national Public License.

version 2.0 96

5

Analyses

5.1 Introduction

The analysis tools are useful for the analyses of annotated files: display the automatic alignments with the
audio signal, estimates statistics on the annotations, filter the annotated data to get only the annotations you
are interested in, etc.

To execute a specific analysis tool, select file(s) in the file explorer of the main frame, then click on the button
of the tool. It will open the window of the tool, and add the file(s) in its file manager.

Six tools are available:

1. DataRoamer allows to explore the annotated files: cut/copy/paste/rename/duplicate tiers, move a tier
from one file to another one, etc.

2. AudioRoamer allows to play and manage audio files: extract a channel, see clipping rates, change
framerate, etc.

3. IPUscriber is useful to perform manual orthographic transcription.
4. Visualizer displays audio files and annotated files, and is very useful to take a screenshot! Easy

way to zoom/scroll, change colours, choose the tiers to display, etc;
5. DataFilter allows to select a sub-set of annotations: fix a set of filters to create new tiers with only

the annotations you are interested in!
6. Statistics estimates the number of occurrences, the duration, etc. of the annotations, and allows

to save in CSV (for Excel, OpenOffice, R, MatLab,…).

All of such tools share the same look with:

• a menu at left
• a toolbar at top
• a list of files
• a notebook to open files in the tabs

97

Chapter 5. Analyses

Figure 5.1: The analysis tools

version 2.0 98

Chapter 5. Analyses

Figure 5.2: DataRoamer: explore annotated files

5.2 DataRoamer

DataRoamer displays detailed information about annotated files and allows to manage the tiers:
cut/copy/paste/rename/duplicate tiers, move a tier from one file to another one, etc.
When an annotated file is checked in the list of files, the file is opened in a new panel of the current tab of
the notebook and information about this file are displayed. At top, the name of the file is in dark green color.
It is turned to blue color if some changes were applied. Below the name of the file, each tier is represented
in a row of a spreadsheet:

• 1st column is a check box: select/deselect the tier;
• 2nd column indicates the number of the tier;
• 3rd column indicated the name of the tier;
• 4th column indicates the lower time value of the annotations;
• 5th column indicates the higher time values of the annotations;
• 6th column is the type of the tier: either “Interval” or “Point”;
• last column is the number of annotations in the tier.

The buttons of the toolbar can be applied on the tier(s) selected in the same tab of the notebook. For example,
it is possible to copy a tier of a file and to paste it in another file only if they are both open in the same tab.

• Rename: Fix a new name to the selected tier. If the given name is already assigned to a tier in the
same file, a number is automatically appended to the end of the new name.

• Delete: Definitively delete the selected tier. To recover the tier, the only way is to close the file without
saving changes and to re-open it.

version 2.0 99

Chapter 5. Analyses

• Cut: Delete the tier of the file and put it in the dashboard.
• Copy: Copy the selected tier into the dashboard.
• Paste: Paste the content of the dashboard into the currently selected file.
• Duplicate: Duplicate the selected tier in the file. A number is automatically appended to the end of
name of the copy.

• Move Up: Move the selected tier up in the list of tiers of the file.
• Move Down: Move the selected tier down in the list of tiers of the file.
• Radius: Fix the radius value of each localization of each annotation. A radius value indicates the
vagueness around the point. It is commonly ranging from 1ms for very (very) precise annotations up
to 40ms for annotations of videos for example. This value is safely saved only in XRA format. Other
formats don’t consider vagueness.

• View: Open a window and display the annotations of the tier.

Only the Delete and Radius actions can be applied on several selected tiers at a time. The other actions
can be applied only on one selected tier.

5.3 AudioRoamer

AudioRoamer allows to play audio files, to display general information about a digitalized audio-PCM file
and to manipulate the file.
Pulse-code modulation (PCM) is a method used to digitally represent sampled analog signals. In a PCM
stream, the amplitude of the analog signal is sampled regularly at uniform intervals. A PCM stream has two
basic properties that determine the stream’s fidelity to the original analog signal:

1. the sampling rate, which is the number of times per second that samples are taken;
2. the bit depth, which determines the number of possible digital values that can be used to represent

each sample.

Common sampling frequencies are 48 kHz as used with DVD format videos, or 44.1 kHz that was used
in Compact discs. Common sample depths is 16 bits per sample: it allows values to range from -32768 to
32767.
Support for multichannel audio depends on file format and relies on interweaving or synchronization of
streams.
When an audio file is checked in the list of files, a new page is opened in the notebook. The main information
about the audio file are then displayed in the panel at the middle and a player is displayed at bottom. The
audio file is not loaded in memory, so event very long audio files can be displayed. At the top of the page, a
button “Want more?” can be clicked: the audio file will then be fully read and analyzed, then a new window
will be opened to display detailed information. It will also allow to change some properties of the audio file,
extract a channel, etc.

5.3.1 Properties of the audio file

The main properties of any audio file are displayed. SPPAS can open audio files of type “Waveform Audio”
file format (WAVE), a Microsoft and IBM audio file format standard and “SunAu” file format, an audio file
format introduced by Sun Microsystems. The following information are extracted or deducted of the header
of the audio file:

version 2.0 100

Chapter 5. Analyses

Figure 5.3: AudioRoamer: play and manage audio files

• the duration given in seconds with a maximum of 3 digits;
• the frame rate given in Hz;
• the sample width in bits (one of 8, 16, 24 or 32);
• the number of channels.

A color code is used to indicate if the file is compatible with SPPAS automatic annotations:

• Green color: the value is perfectly matching the expectations;
• Orange color: the value is not the expected one but automatic annotations will be able to convert it to
the right one;

• Red color: none of the automatic annotations can work with the given value. The file must be modified.

5.3.2 Playing audio files

The following shortcuts can be used:

• TAB: Play
• ESC: Stop
• F6: Rewind
• F7: Pause
• F8: Next

version 2.0 101

Chapter 5. Analyses

Figure 5.4: AudioRoamer if you want more

5.3.3 Want more?

AudioRoamer allows to display a large amount of information for each channel. For a long audio file, it
can take a while to estimate such information… For example, a mono-audio file of 243 seconds (21.5Mb) is
loaded in 20 seconds. So be patient! It’s worth it!

There are 3 main columns of information, related to amplitude, clipping and volume.
At the bottom of the window, it is possible to click on buttons to:

1. Save the channel currently displayed;
2. Save a portion (from…to…) of the channel;
3. Save the displayed information in a text file;
4. Close the window.

Amplitude

The amplitude is a variable characterizing the sinusoidal oscillation of the digital-audio recording. It gives
the deflection of a physical quantity from its neutral position (zero point) up to a positive or negative value.
With sound waves, it is the extent to which air particles are displaced, and this amplitude of sound or sound
amplitude is experienced as the loudness of sound. The loudness perception of a sound is determined by the
amplitude of the sound waves − the higher the amplitude, the louder the sound or the noise.
The first column of AudioRoamer Data Manager gives amplitude values of each channel of the PCM file:

• Number of frames: the number of samples, i.e. the number of amplitude values;
• Min/Max values: minimum and maximum amplitude values in the channel;

version 2.0 102

Chapter 5. Analyses

• Zero crossings: number of times continuous values are crossing the 0 value.

The 5 information below can be modified and modifications can be saved separately for each channel:

• Frame rate: the sampling frequency observed in the channel is included in the default list of possible
values. If it is modified, the color is changed.

• Samp. width: the bit depth observed in the channel is included in the list of possible values. If it is
modified, the color is changed.

• Multiply values by: all samples in the original channel are multiplied by the floating-point value factor.
Sample values are truncated in case of overflow.

• Add bias value: a bias value is added to each sample. Sample values wrap around in case of overflow.
• Remove offset value: the average over all values is deduced to each sample. Sample values wrap
around in case of overflow.

Clipping

The second column displays the clipping rates of the sample values given a factor. It will consider that all
values outside the interval are clipped. The clipping rate is given as a percentage related to the total number
of values. For example, if factor is 0.5 and clipping rate is 10%, it means that 10% of the amplitude values
are more than the half of the maximum amplitude. This value is generally an expected rate while preparing
audio recordings.

Volume

RMS: Volume is estimated with root-mean-square (RMS) of the samples, i.e. sqrt(sum(S_i^2)/n). This
is a measure of the power in an audio signal. Between parenthesis, the volume in dB is estimated as:
20.log10(rms). Doubling of the rms value leads to an increase of 6.02dB.

Automatic detection of silences: Finally, the result of an automatic detection of silences is given. This
information is given for information only: It is estimated with default parameters which should be adapted!

5.4 IPUscriber

IPUscriber is useful to perform manual orthographic transcription. When an audio file is checked in the
list of files, the program search for a file with the IPUs Segmentation, i.e. a file with the same name (in the
same directory) with a known extension like .xra, .TextGrid, etc. If this file is not found, an error message is
displayed. Otherwise, the audio file is opened and the annotated file is loaded in a new page of the notebook.

Silences are hidden and the IPUs are displayed in a list of boxes with:

• at left: the name of the tier followed by the number of the interval, then the time values of start and
end of the interval, and the duration of the interval between parenthesis.

• at right: the content text of the IPU.

At the bottom of the tab, green buttons perform actions on the audio file: get information, play, auto-play,
make pause and stop playing. The following keyboard shortcuts can also be used:

version 2.0 103

Chapter 5. Analyses

Figure 5.5: IPUscriber: for manual orthographic transcription

version 2.0 104

Chapter 5. Analyses

Figure 5.6: Visualizer: displays audio files and annotated files

• TAB: Play
• ESC: Stop
• F6: Rewind
• F7: Pause
• F8: Next

By default, only 50 IPUs are displayed at a time in a tab. To get access to the next/previous IPUs, 4 small
buttons in gray allow to navigate in the pages.

To transcribe an IPU, click on the IPU text box, play sound and write the corresponding text: refer to the
transcription convention of this document.

5.5 Visualizer

Visualizer displays speech files and annotated files, and is very useful to take a nice screenshot.

This tool is still under-development, some “troubles/crashes” can occur while using it… however the data
will never been corrupted!

When a file is checked on the file of files, it is opened and displayed in the currently opened tab of the notebook.
There is not limit on the number of audio files that can be displayed nor on the number of annotated files. To
select a displayed file, click anywhere of the displayed part.

At the bottom of the tab, 3 series of buttons are available:

• at left, red buttons allow to manage the selected annotated file:

version 2.0 105

Chapter 5. Analyses

1. select to tiers to display
2. get information about the file and tiers
3. search for annotations in the tier

• at the middle, green buttons are related to an audio file

1. get information about the file
2. play sound
3. pause

• at right, blue buttons are related to zoom and scroll.

1. move at the beginning of the file
2. move at left (show previous data)
3. move at right (show next data)
4. move at the end of the file
5. show the selection. Selected part is the one between the blue arrows of the rule
6. display a specific time period (from… to…)
7. zoom in: show a smaller period
8. zoom out: show a higher period
9. vertical zoom in
10. vertical zoom out

5.6 DataFilter

DataFilter allows to select annotations: define a set of filters to create new tiers with only the annotations
you are interested in! This system is based on the creation of 2 different types of filters:

1. single filters, i.e. search in a/several tier(s) depending on the data content, the time values or the
duration of each annotation;

2. relation filters, i.e. search on annotations of a/several tier(s) in time-relation with annotations of another
one.

These later are applied on tiers of many kind of input files (TextGrid, eaf, trs, csv…). The filtering process
results in a new tier, that can re-filtered and so on.

5.6.1 Filtering annotations of a tier: SingleFilter

Pattern selection is an important part to extract data of a corpus and is obviously and important part of any
filtering system. Thus, if the label of an annotation is a string, the following filters are proposed in DataFilter:

• exact match: an annotation is selected if its label strictly corresponds to the given pattern;
• contains: an annotation is selected if its label contains the given pattern;
• starts with: an annotation is selected if its label starts with the given pattern;
• ends with: an annotation is selected if its label ends with the given pattern.

version 2.0 106

Chapter 5. Analyses

Figure 5.7: DataFilter: select annotations

All these matches can be reversed to represent respectively: does not exactly match, does not contain, does
not start with or does not end with. Moreover, this pattern matching can be case sensitive or not.

For complex search, a selection based on regular expressions is available for advanced users.

A multiple pattern selection can be expressed in both ways:

• enter multiple patterns at the same time (separated by commas) to mention the system to retrieve either
one pattern or the other, etc.

• enter one pattern at a time and choose the appropriate button: “Apply All” or “Apply any”.

Another important feature for a filtering system is the possibility to retrieve annotated data of a certain
duration, and in a certain range of time in the timeline.

Search can also starts and/or ends at specific time values in a tier.

All the given filters are then summarized in the “SingleFilter” frame. To complete the filtering process, it
must be clicked on one of the apply buttons and the new resulting tiers are added in the annotation file(s).

In the given example:

• click on “Apply All” to get either a, @ or E vowels during more than 80ms, after the 5th minute.
• click on “Apply Any” to get a, @ or E vowels, and all annotations during more than 80 ms, and all
annotations after the 5th minute.

version 2.0 107

Chapter 5. Analyses

Figure 5.8: Frame to create a filter on annotation labels. In that case, filtering annotations that exactly match
either a, @ or E

Figure 5.9: Frame to create a filter on annotation durations. In that case, filtering annotations that are during
more that 80 ms

Figure 5.10: Frame to create a filter on annotation time values. In that case, filtering annotations that are
starting after the 5th minute.

version 2.0 108

Chapter 5. Analyses

Figure 5.11: DataFilter: SingleFilter frame

5.6.2 Filtering on time-relations between two tiers

Regarding the searching problem, linguists are typically interested in locating patterns on specific tiers, with
the possibility to relate different annotations a tier from another. The proposed system offers a powerful way
to request/extract data, with the help of Allen’s interval algebra.

In 1983 James F. Allen published a paper in which he proposed 13 basic relations between time intervals
that are distinct, exhaustive, and qualitative:

• distinct because no pair of definite intervals can be related by more than one of the relationships;
• exhaustive because any pair of definite intervals are described by one of the relations;
• qualitative (rather than quantitative) because no numeric time spans are considered.

These relations and the operations on them form Allen’s interval algebra. These relations were extended to
Interval-Tiers as Point-Tiers to be used to find/select/filter annotations of any kind of time-aligned tiers.

For the sake of simplicity, only the 13 relations of the Allen’s algebra are available in the GUI. But actually,
we implemented the 25 relations proposed Pujari and al. (1999) in the INDU model. This model is fixing
constraints on INtervals (with Allen’s relations) and on DUration (duration are equals, one is less/greater than
the other). Such relations are available while requesting with Python.

At a first stage, the user must select the tiers to be filtered and click on “RelationFilter”. The second stage is
to select the tier that will be used for time-relations.

The next step consists in checking the Allen’s relations that will be applied. The last stage is to fix the name
of the resulting tier. The above screenshots illustrates how to select the first phoneme of each token, except
for tokens that are containing only one phoneme (in this later case, the “equal” relation should be checked).

To complete the filtering process, it must be clicked on the “Apply” button and the new resulting tiers are
added in the annotation file(s).

version 2.0 109

Chapter 5. Analyses

Figure 5.12: Fix time-relation tier name

Figure 5.13: DataFilter: RelationFilter frame

version 2.0 110

Chapter 5. Analyses

Figure 5.14: Statistics: descriptive statistics and TGA

5.7 Statistics

5.7.1 Descriptive statistics

It allows to estimate the number of occurrences, the duration, etc. of the annotations of a set of selected tiers,
and allows to save in CSV (for Excel, OpenOffice, R, MatLab,…). It offers a serie of sheets organized in a
notebook. The first tab is displaying a summary of descriptive statistics of the set of given tiers. The other
tabs are indicating one of the statistics over the given tiers. The followings are estimated:

• occurrences: the number of observations
• total durations: the sum of the durations
• mean durations: the arithmetic mean of the duration
• median durations: the median value of the distribution of durations
• std dev. durations: the standard deviation value of the distribution of durations

All of them can be estimated on a single annotation label or on a serie of them. The length of this context
can be optionally changed while fixing the “N-gram” value (available from 1 to 5), just above the sheets.
Each displayed sheet can be saved as a CSV file, which is a useful file format to be read by R, Excel, OpenOf-
fice, LibreOffice, and so… To do so, display the sheet you want to save and click on the button “Save sheet”,
just below the sheets. If you plan to open this CSV file with Excel under Windows, it is recommended to
change the encoding to UTF-16. For the other cases, UTF-8 is probably the most relevant.
The annotation durations are commonly estimated on the Midpoint value, without taking the radius into
account; see (Bigi et al, 2012) for explanations about the Midpoint/Radius. Optionally, the duration can

version 2.0 111

Chapter 5. Analyses

Figure 5.15: Descriptive statistics

either be estimated by taking the vagueness into account, then check “Add the radius value” button, or by
ignoring the vagueness and estimating only on the central part of the annotation, then check “Deduct the
radius value”.

For those who are estimating statistics on XRA files, you can either estimate stats only on the best label (the
label with the higher score) or on all labels, i.e. the best label and all its alternatives (if any).

5.7.2 User agreement

SPPAS implements the estimation of the Cohen’s Kappa. It is currently limited to the evaluation of this user
agreement between labels of 2 tiers with the same number of intervals. It is under-development…

version 2.0 112

6

Scripting with Python and SPPAS

6.1 Introduction

Since version 1.8.7, SPPAS implements an Application Programming Interface (API), named anndata, to
deal with annotated files. Previously, SPPAS was based on another API named annotationdata which is still
distributed in the package but no longer updated or maintained.

anndataAPI is a free and open source Python library to access and search data from annotated data of any of
the supported formats (xra, TextGrid, eaf…). It can either be used with the Programming Language Python
2.7 or Python 3.4+. This API is PEP8 and PEP257 compliant and the internationalization of the messages
is implemented (English and French are available in the “po” directory).

In this chapter, it is assumed that a version of Python is installed and configured. It is also assumed that the
Python IDLE is ready-to-use. For more details about Python, see:

The Python Website: http://www.python.org

This chapter firstly introduces basic programming concepts, then it gradually introduces how to write scripts
with Python. Those who are familiar with programming in Python can directly go to the last section related
to the description of the anndata API and how to use it in Python scripts.

This API can convert file formats like Elan’s EAF, Praat’s TextGrid and others into a
sppasTranscription object and convert this object into any of these formats. This object allows
unified access to linguistic data from a wide range sources.

This chapter includes exercises. The solution scripts are included in

the package directory *documentation*, folder *scripting_solutions*.

6.2 A gentle introduction to programming

113

http://www.python.org

Chapter 6. Scripting with Python and SPPAS

Figure 6.1: The Python IDLE logo

6.2.1 Introduction

This section includes examples in Python programming language. You may want to try out some of the
examples that come with the description. In order to do this, execute the Python IDLE - available in the
Application-Menu of your operating system, and write the examples after the prompt “>>>”.

To get information about the IDLE, get access to the IDLE documentation

Writing any program consists of writing statements so using a programming language. A statement is often
known as a line of code that can be one of:

• comment,
• documentation,
• assignment,
• conditions,
• iterations, etc.

Lines of code are grouped in blocks. Depending on the programming language, blocks delimited by brackets,
braces or by the indentation.

Each language has its own syntax to write these lines and the user has to follow strictly this syntax for the
program to be able to interpret the program. However, the amount of freedom the user has to use capital
letters, whitespace and so on is very high. Recommendations for Python language are available in the PEP8
- Style Guide for Python Code.

6.2.2 Variables: Assignment and Typing

A variable is a name to give to a piece of memory with some information inside. Assignment is then the
action of setting a variable to a value. The equal sign (=) is used to assign values to variables.

>>>a = 1

>>>b = 1.0

>>>c = ”c”

>>>hello = ”Hello world!”

>>>vrai = True

In the previous example, a, b, c, hello and vrai are variables, a = 1 is a declaration.

Assignments to variables with Python language can be performed with the following operators:

>>> a = 10 # simple assignment operator

>>> a += 2 # add and assignment operator, so a is 12

>>> a -= 7 # minus and assignment, so a is 5

version 2.0 114

https://docs.python.org/2/library/idle.html
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/

Chapter 6. Scripting with Python and SPPAS

Figure 6.2: Variable declarations and print in the Python IDLE

>>> a *= 20 # multiply and assignment, so a is 100

>>> a /= 10 # divide and assignment, so a is 10

>>> a # verify the value of a...

10

6.2.3 Basic Operators

Basic operators are used to manipulate variables. The following is the list of operators that can be used with
Python, i.e. equal (assignment), plus, minus, multiply, divide:

>>> a = 10

>>> b = 20 # assignment

>>> a + b # addition

>>> a - b # subtraction

>>> a * b # multiplication

>>> a / b # division

6.2.4 Data types

The variables are of a data-type. For example, the declarations a=1 and a=1.0 are respectively assigning
an integer and a real number. In Python, the command type allows to get the type of a variable, like in the
following:

>>> type(a)

<type ’int’>

>>> type(b)

<type ’float’>

>>> type(c)

<type ’str’>

>>> type(cc)

<type ’unicode’>

>>> type(vrai)

<type ’bool’>

Here is a list of some fundamental data types, and their characteristics:

version 2.0 115

Chapter 6. Scripting with Python and SPPAS

• str String of characters
• unicode Unicode string of characters
• int Integer in range from -2147483648 to 2147483647
• bool Boolean value, can take value True (=1) or False (=0)
• float Floating point number (max 15 digits)

Python is assigning data types dynamically. As a consequence, the result of the sum between an int and a
float is a float. The next examples illustrate that the type of the variables have to be carefully managed.

>>> a = 10

>>> a += 0.

>>> a

10.0

>>> a += True

>>> a

11.0

>>> a += ”a”

Traceback (most recent call last):

File ”<input>”, line 1, in <module>

TypeError: unsupported operand type(s) for +=: ’float’ and ’str’

>>> a = ”a”

>>> a *= 5

>>> a

’aaaaa’

The type of a variable can be explicitly changed. This is called a “cast”:

>>> a = 10

>>> b = 2

>>> a/b

5

>>> float(a) / float(b)

5.0

>>> a = 1

>>> b = 1

>>> str(a) + str(b)

’11’

Complex data types are often used to store variables sharing the same properties like a list of numbers, and
so on. Common types in languages are lists/arrays and dictionaries. The following is the assignment of a list
with name fruits, then the assignment of a sub-part of the list to the to_buy list:

>>> fruits = [’apples’, ’tomatoes’, ’peers’, ’bananas’, ’lemons’]

>>> to_buy = fruits[1:3]

>>> to_buy

[’tomatoes’, ’peers’]

version 2.0 116

Chapter 6. Scripting with Python and SPPAS

6.2.5 Conditions

Conditions aim to test whether a statement is True or False. The statement of the condition can include a vari-
able, or be a variable and is written with operators. The following shows examples of conditions/comparisons
in Python. Notice that the comparison of variables of a different data-type is possible (but not recom-
mended!).

>>> var = 100

>>> if var == 100:

... print(”Value of expression is 100.”)

...

Value of expression is 100.

>>> if var == ”100”:

... print(”This message won’t be printed out.”)

...

Conditions can be expressed in a more complex way like:

>>> if a == b:

... print(’a and b are equals’)

... elif a > b:

... print(’a is greater than b’)

... else:

... print(’b is greater than a’)

The simple operators for comparisons are summarized in the next examples:

>>> a == b # check if equals

>>> a != b # check if different

>>> a > b # check if a is greater than b

>>> a >= b # check if a is greater or equal to b

>>> a < b # check if a is lesser than b

>>> a <= b # check if a is lesser or equal to b

It is also possible to use the following operators:

• and: called “Logical AND operator”. If both the operands are true then the condition becomes true.
• or: called “Logical OR operator”. If any of the two operands are non zero then the condition becomes
true.

• not called “Logical NOT operator”. Use to reverses the logical state of its operand. If a condition is
true then Logical NOT operator will make false.

• in: evaluates to true if it finds a variable in the specified sequence and false otherwise.

>>> if a == ”apples” and b == ”peers”:

... print(”You need to buy fruits.”)

version 2.0 117

Chapter 6. Scripting with Python and SPPAS

>>> if a == ”apples” or b == ”apples”:

... print(”You already have bought apples.”)

>>> if ”tomatoas” not in to_buy:

... print(”You don’t have to buy tomatoes.”)

6.2.6 Loops

The for loop statement iterates over the items of any sequence. The next Python lines of code print items
of a list on the screen:

>>> to_buy = [’fruits’, ’viande’, ’poisson’, ’oeufs’]

>>> for item in to_buy:

... print(item)

...

fruits

viande

poisson

oeufs

A while loop statement repeatedly executes a target statement as long as a given condition returns True.
The following example prints exactly the same result as the previous one:

>>> to_buy = [’fruits’, ’viande’, ’poisson’, ’oeufs’]

>>> i = 0

>>> while i < len(to_buy):

... print(to_buy[i])

... i += 1

...

fruits

viande

poisson

oeufs

6.2.7 Dictionaries

A dictionary is a very useful data type. It consists of pairs of keys and their corresponding values.

>>> fruits = dict()

>>> fruits[’apples’] = 3

>>> fruits[’peers’] = 5

>>> fruits[’tomatoas’] = 1

fruits[’apples’] is a way to get the value - i.e. 3, of the apple key. However, an error is sent
if the key is unknown, like fruits[bananas]. Alternatively, the get function can be used, like
fruits.get(”bananas”, 0) that returns 0 instead of an error.
The next example is showing how use a simple dictionary:

version 2.0 118

Chapter 6. Scripting with Python and SPPAS

>>> for key in fruits:

... value = fruits.get(key, 0)

... if value < 3:

... print(”You have to buy new {:s}.”.format(key))

...

You have to buy new tomatoes.

To learn more about data structures and how to manage them, get access to the Python documentation

6.3 Scripting with Python

This section describes how to create simple Python lines of code in separated files commonly called scripts,
and run them. Some practical exercises, appropriate to the content of each action, are proposed and test
exercises are suggested at the end of the section.

To practice, you have first to create a new folder in your computer - on your Desktop for example; with name
“pythonscripts” for example, and to execute the python IDLE.

For an advanced use of Python, the installation of a dedicated IDE is very useful. SPPAS is developed with
PyCharm: See the PyCharm Help webpage

6.3.1 Comments and documentation

Comments are not required by the program to work. But comments are necessary! Comments are expected
to be appropriate, useful, relevant, adequate and always reasonable.

This script is doing this and that.

It is under the terms of a license.

and I can continue to write what I want after the # symbol

except that it’s not the right way to tell the story of my life

The documentation of a program complements the comments. Both are not sharing the same goal: comments
are used in all kind of programs but documentation is appended to comments for the biggest programs and/or
projects. Documentation is automatically extracted and formatted thanks to dedicated tools. Documentation
is required for sharing the program. See the Docstring Conventions for details. Documentation must follow
a convention like for example the markup language reST - reStructured Text. Both conventions are used into
SPPAS API, programs and scripts.

6.3.2 Getting started with scripting in Python

In the IDLE, create a new empty file either by clicking on “File” menu, then “New File”, or with the shortcut
“CTRL”+N.

Copy the following line of code in this newly created file:

1 print(”Hello world!”)

version 2.0 119

https://docs.python.org/2/tutorial/datastructures.html
https://www.jetbrains.com/help/pycharm/meet-pycharm.html
https://www.python.org/dev/peps/pep-0257/
https://en.wikipedia.org/wiki/ReStructuredText

Chapter 6. Scripting with Python and SPPAS

Figure 6.3: Hello world! in a Python script

Figure 6.4: Output of the first script

Then, save the file in the “pythonscripts” folder. By convention, Python source files end with a .py extension,
and so the name 01_helloworld.py could be fine.

To execute the program, you can do one of:

• with the mouse: Click on the Menu “Run”, then “Run module”
• with the keyboard: Press F5

The expected output is as follow:

A better practice while writing scripts is to describe by who, what and why this script was done. A nifty trick
is to create a skeleton for any future script that will be written. Such ready-to-use script is available in the
SPPAS package with the name skeleton.py.

6.3.3 Blocks

Blocks in Python are created from the indentation. Tab and spaces can be used but using spaces is recom-
mended.

version 2.0 120

Chapter 6. Scripting with Python and SPPAS

>>>if a == 3:

... # this is a block using 4 spaces for indentation

... print(”a is 3”)

6.3.4 Functions

Simple function

A function does something: it stats with its definition then is followed by its lines of code in a block.
Here is an example of function:

27 def print_vowels():

28 ””” Print the list of French vowels on the screen. ”””

29

30 vowels = [’a’, ’e’, ’E’, ’i’, ’o’, ’u’, ’y’, ’@’, ’2’, ’9’, ’a~’, ’o~’, ’U~’]

31 print(”List of French vowels:”)

32 for v in vowels:

33 print(v)

What the print_vowels() function is doing? This function declares a list with name vowels. Each
item of the list is a string representing a vowel in French encoded in X-SAMPA. Of course, this list can be
overridden with any other set of strings. The next line prints a message. Then, a loop prints each item of the
list.
At this stage, if a script with this function is executed, it will do… nothing! Actually, the function is created,
but it must be invoked in the main function to be interpreted by Python. The main is as follow:

34 if __name__ == ’__main__’:

35 print_vowels()

Practice: create a copy of the file skeleton.py, then make a function to print “HelloWorld!”.
(solution: ex01_hello_world.py).

Practice: Create a function to print plosives and call it in the main function (solution:
ex02_functions.py).

One can also create a function to print glides, another one to print affricates, and so on. Hum… this sounds
a little bit fastidious!

Function with parameters

Rather than writing the same lines of code with only a minor difference over and over, we can declare
parameters to the function to make it more generic. Notice that the number of parameters of a function is
not limited!
In the example, we can replace the print_vowels() function and the print_plosives() function by
a single function print_list(mylist) where mylist can be any list containing strings or characters.
If the list contains other typed-variables like numerical values, they must be converted to string to be printed
out. This can result in the following function:

version 2.0 121

Chapter 6. Scripting with Python and SPPAS

Figure 6.5: Output of the second script

27 def print_list(mylist, message=” -”):

28 ””” Print a list on the screen.

29

30 :param mylist: (list) the list to print

31 :param message: (string) an optional message to print before each element

32

33 ”””

34 for item in mylist:

35 print(”{:s} {:s}”.format(message, item))

Function return values

Functions are used to do a specific job and the result of the function can be captured by the program. In the
following example, the function would return a boolean value, i.e. True if the given string has no character.

27 def is_empty(mystr):

28 ””” Return True if mystr is empty. ”””

29

30 return len(mystr.strip()) == 0

Practice: Add this function in a new script and try to print various lists (solution:
ex03_functions.py)

version 2.0 122

Chapter 6. Scripting with Python and SPPAS

Figure 6.6: Expected output of the 3rd script

6.3.5 Reading/Writing files

Reading data from a file

Now, we’ll try to get data from a file. Create a new empty file with the following lines - and add as many
lines as you want; then, save it with the name “phonemes.csv” by using UTF-8 encoding:

occlusives ; b ; b

occlusives ; d ; d

fricatives ; f ; f

liquids ; l ; l

nasals ; m ; m

nasals ; n ; n

occlusives ; p ; p

glides ; w ; w

vowels ; a ; a

vowels ; e ; e

The following statements are typical statements used to read the content of a file. The first parameter of the
open function is the name of the file, including the path (relative or absolute); and the second argument is
the opening mode (‘r’ is the default value, used for reading).

Practice: Add these lines of code in a new script and try it (solution: ex04_reading_simple.py)

21 fp = open(”phonemes.csv”, ’r’)

22 for line in fp:

23 # do something with the line stored in variable l

version 2.0 123

Chapter 6. Scripting with Python and SPPAS

24 print(line.strip())

25 f.close()

The following is a solution with the ability to deal with various file encodings, thanks to the codecs library:

21 def read_file(filename):

22 ””” Get the content of file.

23

24 :param filename: (string) Name of the file to read, including path.

25 :returns: List of lines

26

27 ”””

28 with codecs.open(filename, ’r’, encoding=”utf8”) as fp:

29 return fp.readlines()

In the previous code, the codecs.open functions got 3 parameters: the name of the file, the mode to open,
and the encoding. The readlines() function gets each line of the file and store it into a list.

Practice: Write a script to print the content of a file (solution: ex05_reading_file.py)

Notice that Python osmodule provides useful methods to perform file-processing operations, such as renam-
ing and deleting. See Python documentation for details: https://docs.python.org/2/

Writing data to a file

Writing a file requires to open it in a writing mode:

• ‘w’ is the mode to write data; it will erase any existing file;
• ‘a’ is the mode to append data in an existing file.

A file can be opened in an encoding and saved in another one. This could be useful to write a script to convert
the encoding of a set of files. The following could help to create such script:

10 # getting all files of a given folder:

11 path = ’C:\Users\Me\data’

12 dirs = os.listdir(path)

15 # Converting the encoding of a file:

16 file_stream = codecs.open(file_location, ’r’, file_encoding)

17 file_output = codecs.open(file_location+’utf8’, ’w’, ’utf-8’)

18

19 for line in file_stream:

20 file_output.write(line)

version 2.0 124

https://docs.python.org/2/

Chapter 6. Scripting with Python and SPPAS

6.3.6 Python tutorials

Here is a list of web sites with tutorials, from the easiest to the most complete:

1. Learn Python, by DataCamp
2. Tutorial Points
3. The Python documentation

6.3.7 Exercises to practice

Exercise 1: How many vowels are in a list of phonemes? (solution: ex06_list.py)

Exercise 2: Write a X-SAMPA to IPA converter. (solution: ex07_dict.py)

Exercise 3: Compare 2 sets of data using NLP techniques (Zipf law, Tf.Idf) (solution:
ex08_counter.py)

6.4 anndata, an API to manage annotated data

6.4.1 Overview

We are now going to write Python scripts using the anndata API included in SPPAS. This API is useful to
read/write and manipulate files annotated from various annotation tools like SPPAS, Praat or Elan.

First of all, it is important to understand the data structure included into the API to be able to use it efficiently.

6.4.2 Why developing a new API?

In the Linguistics field, multimodal annotations contain information ranging from general linguistic to do-
main specific information. Some are annotated with automatic tools, and some are manually annotated. In
annotation tools, annotated data are mainly represented in the form of “tiers” or “tracks” of annotations. Tiers
are mostly series of intervals defined by:

• a time point to represent the beginning of the interval;
• a time point to represent the end of the interval;
• a label to represent the annotation itself.

Of course, depending on the annotation tool, the internal data representation and the file formats are different.
In Praat, tiers can be represented by a time point and a label (such tiers are respectively named PointTiers
and IntervalTiers). IntervalTiers are made of a succession of consecutive intervals (labelled or un-labelled).
In Elan, points are not supported; and unlabelled intervals are not represented nor saved.

The anndata API was designed to be able to manipulate all data in the same way, regardless of the file type.
It supports to merge data and annotations from a wide range of heterogeneous data sources.

version 2.0 125

http://www.learnpython.org/
https://www.tutorialspoint.com/python/
https://docs.python.org/2/tutorial/

Chapter 6. Scripting with Python and SPPAS

Figure 6.7: API class diagram

6.4.3 The API class diagram

After opening/loading a file, its content is stored in a sppasTranscription object. A
sppasTranscription has a name, and a list of sppasTier objects. Tiers can’t share the same
name, the list of tiers can be empty, and a hierarchy between tiers can be defined. Actually, subdivision
relations can be established between tiers. For example, a tier with phonemes is a subdivision reference for
syllables, or for tokens; and tokens are a subdivision reference for the orthographic transcription in IPUs.
Such subdivisions can be of two categories: alignment or association.
A sppasTier object has a name, and a list of sppasAnnotation objects. It can also be associated to a
controlled vocabulary, or a media.
Al these objects contain a set of meta-data.
An annotation is made of 2 objects:

• a sppasLocation object,
• a list of sppasLabel objects.

A sppasLabel object is representing the “content” of the annotation. It is a list of sppasTag each one
associated to a score.
A sppasLocation is representing where this annotation occurs in the media. Then, a sppasLocation
is made of a list of localization each one associated with a score. A localization is one of:

• a sppasPoint object; or
• a sppasInterval object, which is made of 2 sppasPoint objects; or
• a sppasDisjoint object which is a list of sppasInterval.

Label representation

Each annotation holds a serie of 0..N labels, mainly represented in the form of a string, freely written by the
annotator or selected from a list of categories.

Location representation

In the anndata API, a sppasPoint is considered as an imprecise value. It is possible to characterize a
point in a space immediately allowing its vagueness by using:

• a midpoint value (center) of the point;
• a radius value.

version 2.0 126

Chapter 6. Scripting with Python and SPPAS

Figure 6.8: Representation of a sppasPoint

Figure 6.9: Example of multimodal data

Example

The screenshot below shows an example of multimodal annotated data, imported from 3 different annotation
tools. Each sppasPoint is represented by a vertical dark-blue line with a gradient color to refer to the
radius value.
In the screenshot the following radius values were assigned:

• 0ms for prosody,
• 5ms for phonetics, discourse and syntax
• 40ms for gestures.

6.5 Creating scripts with anndata

6.5.1 Preparing the data

To practice, you have first to create a new folder in your computer - on your Desktop for example; with name
“sppasscripts” for example, and to execute the python IDLE.
Open a File Explorer window and go to the SPPAS folder location. Then, copy the sppas directory
into the newly created “sppasscripts” folder. Then, go to the solution directory and copy/paste the files

version 2.0 127

Chapter 6. Scripting with Python and SPPAS

skeleton-sppas.py and F_F_B003-P9-merge.TextGrid into your “sppasscripts” folder. Then,
open the skeleton script with the python IDLE and execute it. It will do… nothing! But now, you are ready
to do something with the API of SPPAS!

When using the API, if something forbidden is attempted, the object will raise an Exception. It means that
the program will stop except if the script “raises” the exception.

6.5.2 Read/Write annotated files

We are being to Open/Read an annotated file of any format (XRA, TextGrid, Elan, …) and store it into a
sppasTranscription object instance. Then, it will be saved into another file.

1 # Create a parser object then parse the input file.

2 parser = sppasRW(input_filename)

3 trs = parser.read()

4

5 # Save the sppasTranscription object into a file.

6 parser.set_filename(output_filename)

7 parser.write(trs)

Only these two lines of code are required to convert a file from a format to another one! The appropriate
parsing system is extracted from the extension of file name.

To get the list of accepted extensions that the API can read, just use aio.extensions_in. The list of
accepted extensions that the API can write is given by aio.extensions_out.

Practice: Write a script to convert a TextGrid file into CSV (solution: ex10_read_write.py)

6.5.3 Manipulating a sppasTranscription object

The most useful functions to manage tiers of a sppasTranscription object are:

• create_tier() to create an empty tier and to append it,
• append(tier) to add a tier into the sppasTranscription,
• pop(index) to remove a tier of the sppasTranscription,
• find(name, case_sensitive=True) to find a tier from its name.

15 for tier in trs:

16 # do something with the tier:

17 print(tier.get_name())

18 phons_tier = trs.find(”PhonAlign”)

Practice: Write a script to select a set of tiers of a file and save them into a new file (solution:
ex11_transcription.py).

version 2.0 128

Chapter 6. Scripting with Python and SPPAS

6.5.4 Manipulating a sppasTier object

A tier is made of a name, a list of annotations, and optionally a controlled vocabulary and a media. To get
the name of a tier, or to fix a new name, the easier way is to use tier.get_name(). The following block
of code allows to get a tier and change its name.

43 # Get the first tier, with index=0

44 tier = trs[0]

45 print(tier.get_name())

46 tier.set_name(”NewName”)

47 print(tier.get_name())

The most useful functions to manage annotations of a sppasTier object are:

• create_annotation(location, labels) to create and add a new annotation
• append(annotation) to add a new annotation at the end of the list
• add(annotation) to add a new annotation
• pop(index) to delete the annotation of a given index
• remove(begin, end) to remove annotations of a given localization range
• is_disjoint(), is_interval(), is_point() to know the type of location
• is_string(), is_int(), is_float(), is_bool() to know the type of labels
• find(begin, end) to get annotations in a given localization range
• get_first_point(), get_last_point() to get respectively the point with the lowest or high-
est localization

• set_radius(radius) to fix the same vagueness value to each localization point

Practice: Write a script to open an annotated file and print information about tiers (solution:
ex12_tiers_info.py)

6.5.5 Manipulating a sppasAnnotation object

An annotation is a container for a location and optionally a list of labels. It can be used to manage the labels
and tags with the following methods:

• is_labelled() returns True if at least a sppasTag exists and is not None
• append_label(label) to add a label at the end of the list of labels
• get_labels_best_tag() returns a list with the best tag of each label
• add_tag(tag, score, label_index) to add a tag into a label
• remove_tag(tag, label_index) to remove a tag of a label
• serialize_labels() to get a string representing the sequence of labels

An annotation object can also be copied with the method copy(). The location, the labels and the metadata
are all copied; and the ‘id’ of the returned annotation is then the same. It is expected that each annotation of
a tier as its own ‘id’, but the API doesn’t check this.

Practice: Write a script to print information about annotations of a tier (solution:
ex13_tiers_info.py)

version 2.0 129

Chapter 6. Scripting with Python and SPPAS

6.5.6 Search in annotations: Filters

Overview

This section focuses on the problem of searching and retrieving data from annotated corpora.

The filter implementation can only be used together with the sppasTier() class. The idea is that each
sppasTier() can contain a set of filters, that each reduce the full list of annotations to a subset.

SPPAS filtering system proposes 2 main axis to filter such data:

• with a boolean function based either on the content, the duration or on the time of annotations,
• with a relation function between annotation locations of 2 tiers.

A set of filters can be created and combined to get the expected result. To be able to apply filters to a tier,
some data must be loaded first. First, a new sppasTranscription() has to be created when loading a
file. Then, the tier(s) to apply filters on must be fixed. Finally, if the input file was NOT an XRA, it is widely
recommended to fix a radius value before using a relation filter.

f = sppasFilter(tier)

When a filter is applied, it returns an instance of sppasAnnSet which is the set of annotations matching
with the request. It also contains a ‘value’ which is the list of functions that are truly matching for each
annotation. Finally, sppasAnnSet objects can be combined with the operators ‘|’ and ‘&’, and expected to
a sppasTier instance.

Filter on the tag content

The following matching names are proposed to select annotations:

• ‘exact’: means that a tag is valid if it strictly corresponds to the expected pattern;
• ‘contains’ means that a tag is valid if it contains the expected pattern;
• ‘startswith’ means that a tag is valid if it starts with the expected pattern;
• ‘endswith’ means that a tag is valid if it ends with the expected pattern.
• ‘regexp’ to define regular expressions.

All these matches can be reversed, to represent does not exactly match, does not contain, does
not start with or does not end with. Moreover, they can be case-insensitive by adding ‘i’ at
the beginning like ‘iexact’, etc. The full list of tag matching functions is obtained by invoking
sppasTagCompare().get_function_names().

The next examples illustrate how to work with such pattern matching filter. In this example, f1 is a filter used
to get all phonemes with the exact label ‘a’. On the other side, f2 is a filter that ignores all phonemes matching
with ‘a’ (mentioned by the symbol ‘~’) with a case insensitive comparison (iexact means insensitive-exact).

tier = trs.find(”PhonAlign”)

f = sppasFilter(tier)

ann_set_a = f.tag(exact=’a’)

ann_set_aA = f.tag(iexact=’a’)

version 2.0 130

Chapter 6. Scripting with Python and SPPAS

The next example illustrates how to write a complex request. Notice that r1 is equal to r2, but getting r1 is
faster:

tier = trs.find(”TokensAlign”)

f = sppasFilter(tier)

r1 = f.tag(startswith=”pa”, not_endswith=’a’, logic_bool=”and”)

r2 = f.tag(startswith=”pa”) & f.tag(not_endswith=’a’)

With this notation in hands, it is easy to formulate queries like for example: Extract words starting by “ch” or
“sh” :

result = f.tag(startswith=”ch”) | f.tag(startswith=”sh”)

Practice:: Write a script to extract phonemes /a/ then phonemes /a/, /e/, /A/ and /E/. (solution:
ex15_annotation_label_filter.py).

Filter on the duration

The following matching names are proposed to select annotations:

• ‘lt’ means that the duration of the annotation is lower than the given one;
• ‘le’ means that the duration of the annotation is lower or equal than the given one;
• ‘gt’ means that the duration of the annotation is greater than the given one;
• ‘ge’ means that the duration of the annotation is greater or equal than the given one;
• ‘eq’ means that the duration of the annotation is equal to the given one;
• ‘ne’ means that the duration of the annotation is not equal to the given one.

The full list of durationmatching functions is obtained by invokingsppasDurationCompare().get_function_names().
Next example shows how to get phonemes during between 30 ms and 70 ms. Notice that r1 and r2 are equals!

tier = trs.find(”PhonAlign”)

f = sppasFilter(tier)

r1 = f.dur(ge=0.03) & f.dur(le=0.07)

r2 = f.dur(ge=0.03, le=0.07, logic_bool=”and”)

Practice: Extract phonemes ‘a’ or ‘e’ duringmore than 100ms (solution: ex16_annotation_dur_filter.py).

Filter on position in time

The following matching names are proposed to select annotations:

• rangefrom allows to fix the begin time value,
• rangeto allows to fix the end time value.

Next example allows to extract phonemes ‘a’ of the 5 first seconds:

tier = trs.find(”PhonAlign”)

f = sppasFilter(tier)

result = f.tag(exact=’a’) & f.loc(rangefrom=0., rangeto=5., logic_bool=”and”)

version 2.0 131

Chapter 6. Scripting with Python and SPPAS

Creating a relation function

Relations between annotations is crucial if we want to extract multimodal data. The aim here is to select
intervals of a tier depending on what is represented in another tier.
James Allen, in 1983, proposed an algebraic framework named Interval Algebra (IA), for qualitative reason-
ing with time intervals where the binary relationship between a pair of intervals is represented by a subset of
13 atomic relation, that are:

• distinct because no pair of definite intervals can be related by more than one of the relationships;

• exhaustive because any pair of definite intervals are described by one of the relations;

• qualitative (rather than quantitative) because no numeric time spans are considered.

These relations and the operations on them form “Allen’s Interval Algebra”.
Pujari, Kumari and Sattar proposed INDU in 1999: an Interval & Duration network. They extended the IA
to model qualitative information about intervals and durations in a single binary constraint network. Duration
relations are: greater, lower and equal. INDU comprises of 25 basic relations between a pair of two intervals.
anndata implements the 13 Allen interval relations: before, after, meets, met by, overlaps, over-
lapped by, starts, started by, finishes, finished by, contains, during and equals; and it also contains the
relations proposed in the INDU model. The full list of matching functions is obtained by invoking
sppasIntervalCompare().get_function_names().
Moreover, in the implementation of anndata, some functions accept options:

• before and after accept a max_delay value,
• overlaps and overlappedby accept an overlap_min value and a boolean percent which
defines whether the value is absolute or is a percentage.

The next example returns monosyllabic tokens and tokens that are overlapping a syllable (only if the overlap
is during more than 40 ms):

tier = trs.find(”TokensAlign”)

other_tier = trs.find(”Syllables”)

f = sppasFilter(tier)

f.rel(other_tier, ”equals”, ”overlaps”, ”overlappedby”, min_overlap=0.04)

Below is another example of implementing a request. Which syllables stretch across 2 words?

1 # Get tiers from a sppasTranscription object

2 tier_syll = trs.find(”Syllables”)

3 tier_toks = trs.find(”TokensAlign”)

4 f = sppasFilter(tier_syll)

5

6 # Apply the filter with the relation function

7 ann_set = f.rel(tier_toks, ”overlaps”, ”overlappedby”)

8

9 # To convert filtered data into a tier:

10 tier = ann_set.to_tier(”SyllStretch”)

version 2.0 132

Chapter 6. Scripting with Python and SPPAS

Practice 1: Create a script to get tokens followed by a silence. (solution:
ex17_annotations_relation_filter1.py).

Practice 2: Create a script to get tokens preceded by OR followed by a silence. (solution:
ex17_annotations_relation_filter2.py).

Practice 3: Create a script to get tokens preceded by AND followed by a silence. (solution:
ex17_annotations_relation_filter3.py).

6.6 More with SPPAS…

In addition to anndata, SPPAS contains several other API. They are all free and open source Python libraries,
with a documentation and a set of tests.

Among others:

• audiodata to manage digital audio data: load, get information, extract channels, re-sample, search for
silences, mix channels, etc.

• calculus to perform some math on data, including descriptive statistics.
• resources to access and manage linguistic resources like lexicons, dictionaries, etc.

version 2.0 133

Chapter 6. Scripting with Python and SPPAS

version 2.0 134

7

References

7.1 References

7.1.1 How to cite SPPAS?

For a general citation of SPPAS, simply use the main reference below. A PDF version of this publication is
available in the folder documentation of the package.

Brigitte Bigi (2015). SPPAS - Multi-lingual Approaches to the Automatic Annotation of
Speech. In “the Phonetician” - International Society of Phonetic Sciences, ISSN 0741-6164,
Number 111-112 / 2015-I-II, pages 54-69.

For a specific purpose of SPPAS, like for automatic syllabification, forced-alignment, or for the request
system, please refer to the related specific publication. All the papers are available on the author website, at
the following URL: http://www.lpl-aix.fr/~bigi/publications.html

7.1.2 SPPAS software description

Brigitte Bigi (2012). SPPAS: a tool for the phonetic segmentations of Speech, The eight
international conference on Language Resources and Evaluation, Istanbul (Turkey), pages 1748-
1755, ISBN 978-2-9517408-7-7.

Brigitte Bigi, Daniel Hirst (2012) SPeech Phonetization Alignment and Syllabification (SP-
PAS): a tool for the automatic analysis of speech prosody, Speech Prosody, Tongji University
Press, ISBN 978-7-5608-4869-3, pages 19-22, Shanghai (China).

Brigitte Bigi, Daniel Hirst (2013). What’s new in SPPAS 1.5?, Tools ans Resources for the
Analysis of Speech Prosody, Aix-en-Provence, France, pp. 62-65.

135

http://www.lpl-aix.fr/~bigi
http://www.lpl-aix.fr/~bigi/publications.html

Chapter 7. References

7.1.3 About Text Normalization

Brigitte Bigi (2011). AMultilingual Text Normalization Approach, 2nd Less-Resourced Lan-
guages workshop, 5th Language & Technology Conference, Poznan (Poland).

Brigitte Bigi (2014). A Multilingual Text Normalization Approach, Human Language Tech-
nologies Challenges for Computer Science and Linguistics LNAI 8387, Springer, Heidelberg.
ISBN: 978-3-319-14120-6. Pages 515-526.

Roxana Fung, Brigitte Bigi* (2015). Automatic Word Segmentation for Spoken Cantonese,
The Oriental Chapter of COCOSDA (International Committee for the Co-ordination and Stan-
dardization of Speech Databases and Assessment Techniques).

7.1.4 About Phonetization

Brigitte Bigi, Pauline Péri, Roxane Bertrand (2012). Orthographic Transcription: Which
Enrichment is required for Phonetization?, Language Resources and Evaluation Conference,
Istanbul (Turkey), pages 1756-1763, ISBN 978-2-9517408-7-7.

Brigitte Bigi (2013). A phonetization approach for the forced-alignment task, 3rd Less-
Resourced Languages workshop, 6th Language & Technology Conference, Poznan (Poland).

Brigitte Bigi (2016). A phonetization approach for the forced-alignment task in SPPAS,
Human Language Technologies Challenges for Computer Science and Linguistics, LNAI 9561,
, pp. 515–526, Springer, Heidelberg. ISBN: 978-3-319-14120-6.

7.1.5 About Forced-Alignment

Brigitte Bigi (2012). The SPPAS participation to Evalita 2011, Working Notes of EVALITA
2011, Rome (Italy), ISSN: 2240-5186.

Brigitte Bigi (2014). Automatic Speech Segmentation of French: Corpus Adaptation. 2nd
Asian Pacific Corpus Linguistics Conference, p. 32, Hong Kong.

Brigitte Bigi (2014). The SPPAS participation to Evalita 2014, Proceedings of the First Italian
Conference on Computational Linguistics CLiC-it 2014 and the Fourth InternationalWorkshop
EVALITA 2014, Pisa (Italy). Editors R. Basili, A. Lenci, B. Magnini. ISBN 978-886741-472-
7. Volume 2. Pages 127-130.

Brigitte Bigi, Christine Meunier (2018). euh, rire et bruits en parole spontanée : applica-
tion à l’alignement forcé, Actes des 32èmes Journées d’études sur la Parole, Aix-en-Provence,
France.

Brigitte Bigi, Christine Meunier (2018). Automatic speech segmentation of spontaneous
speech. Revista de Estudos da Linguagem. International Thematic Issue: Speech Segmen-
tation. Editors: Tommaso Raso, Heliana Mello, Plinio Barbosa, Volume 26, number 4, pages
1489-1530, e-ISSN 2237-2083.

version 2.0 136

Chapter 7. References

7.1.6 About Syllabification

Brigitte Bigi, Christine Meunier, Irina Nesterenko, Roxane Bertrand (2010). Automatic de-
tection of syllable boundaries in spontaneous speech, Language Resource and Evaluation
Conference, pages 3285-3292, La Valetta, Malte.

Brigitte Bigi, Caterina Petrone, Leonardo Lancia (2014). Automatic Syllabification of Ital-
ian: adaptation from French. Laboratory Approaches to Romance Phonology VII, Aix-en-
Provence (France).

Brigitte Bigi, Caterina Petrone (2014). A generic tool for the automatic syllabification of
Italian, Proceedings of the First Italian Conference on Computational Linguistics CLiC-it 2014
and the Fourth International Workshop EVALITA 2014, Pisa (Italy). Editors R. Basili, A.
Lenci, B. Magnini. ISBN 978-886741-472-7. Volume 1. Pages 73-77.

Brigitte Bigi, Katarzyna Klessa (2015). Automatic Syllabification of Polish, 7th Language and
Technology Conference: Human Language Technologies as a Challenge for Computer Science
and Linguistics, pp. 262–266, Poznan, Poland.

7.1.7 About Repetitions

Brigitte Bigi, Roxane Bertrand, Mathilde Guardiola (2014). Automatic detection of other-
repetition occurrences: application to French conversational speech, 9th International con-
ference on Language Resources and Evaluation (LREC), Reykjavik (Iceland), pp. 2648-2652.
ISBN: 978-2-9517408-8-4.

7.1.8 About analyses tools

Brigitte Bigi, Jorane Saubesty (2015). Searching and retrieving multi-levels annotated data,
Proceedings of Gesture and Speech in Interaction, Nantes (France).

7.1.9 About the API

Brigitte Bigi, Tatsuya Watanabe, Laurent Prévot (2014). Representing Multimodal Linguis-
tics Annotated Data, 9th International conference on Language Resources and Evaluation
(LREC), Reykjavik (Iceland), pages 3386-3392. ISBN: 978-2-9517408-8-4.

Brigitte Bigi (2017). Annotation representation and file conversion tool, Contributi del Cen-
tro Linceo Interdisciplinare ‘Beniamino Segre’ (ISSN 0394-0705), vol. –, pp. –. (TO BE
PUBLISHED)

7.1.10 Related references

Some results of analyses

Marion Tellier, Gale Stam, Brigitte Bigi (2012). Same speech, different gestures?, 5th Inter-
national Society for Gesture Studies (ISGS), Lund, Sweden.

version 2.0 137

Chapter 7. References

Marion Tellier, Gale Stam, Brigitte Bigi (2013). Gesturing While Pausing In Conversation:
Self-oriented Or Partner-oriented?, TIGER, Tillburg.

Laurent Prévot, Brigitte Bigi, Roxane Bertrand (2013). Aquantitative view of feedback lexical
markers in conversational French, 14th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, Metz, France.

Brigitte Bigi, Katarzyna Klessa, Laurianne Georgeton, Christine Meunier (2015). A syllable-
based analysis of speech temporal organization: a comparison between speaking styles in
dysarthric and healthy populations. Interspeech2015, Dresden (Germany), pages 2977-2981.

Laurent Prevot, Jan Gorisch, Roxane Bertrand, Emilien Gorene and Brigitte Bigi (2015). ASIP
of CoFee: A Sample of Interesting Productions of Conversational Feedback, 16th Annual
Meeting of the Special Interest Group on Discourse and Dialogue, Prague (Czech Republic),
pp. 149–153.

Brigitte Bigi, Roxane Bertrand (2016). Laughter in French Spontaneous Conversational Di-
alogs, Tenth International Conference on Language Resources and Evaluation (LREC 2016),
pp. 2168-2174, Portoroz, Slovenia.

Béatrice Priego-Valverde, Brigitte Bigi, Salvatore Attardo, Lucy Pickering, Elisa Gironzetti
(2018). Is smiling during humor so obvious? A cross-cultural comparison of smiling be-
havior in humorous sequences in American English and French interactions. Intercultural
Pragmatics. 10/2018; 15(4):563-591.

Some corpora

Sophie Herment, Anastasia Loukina, Anne Tortel, Daniel Hirst, Brigitte Bigi (2012). AixOx,
a multi-layered learners corpus: automatic annotation, Proceedings of international confer-
ence on corpus linguistics, Jaèn (Spain).

Ellen Gurman Bard, Corine Astésano, Alice Turk, Mariapaola D’imperio, Noel Nguyen, Lau-
rent Prévot, Brigitte Bigi (2013). AixMapTask: A (rather) new French resource for prosodic
and discourse studies, Proceedins of Tools ans Resources for the Analysis of Speech Prosody,
Aix-en-Provence, France, Eds B. Bigi and D. Hirst, ISBN: 978-2-7466-6443-2, pp. 15-19.

Daniel Hirst, Brigitte Bigi, Hyongsil Cho, Hongwei Ding, Sophie Herment, Ting Wang (2013).
Building OMProDat: an open multilingual prosodic database, Proceedins of Tools ans Re-
sources for the Analysis of Speech Prosody, Aix-en-Provence, France, Eds B. Bigi and D. Hirst,
ISBN: 978-2-7466-6443-2, pp. 11-14.

Jan Gorish, Corine Astésano, Ellen Gurman Bard, Brigitte Bigi, Laurent Prévot (2014). Aix
Map Task corpus: The French multimodal corpus of task-oriented dialogue, 9th Interna-
tional conference on Language Resources and Evaluation (LREC), Reykjavik (Iceland), pages
2648-2652. ISBN: 978-2-9517408-8-4.

version 2.0 138

Chapter 7. References

Christine Meunier, Cécile Fougeron, Corinne Fredouille, Brigitte Bigi, Lise Crevier-Buchman,
Elisabeth Delais-Roussarie, Laurianne Georgeton, Alain Ghio, Imed Laaridh, Thierry Legou,
Claire Pillot-Loiseau, Gilles Pouchoulin (2016). The TYPALOC Corpus: A Collection of
Various Dysarthric Speech Recordings in Read and Spontaneous Styles, Tenth International
Conference on Language Resources and Evaluation (LREC 2016), pp. 4658-4665, Portoroz,
Slovenia.

Tools re-implemented into SPPAS

Daniel Hirst and Robert Espesser (1993). Automatic modelling of fundamental frequency
using a quadratic spline function. Travaux de l’Institut de Phonétique d’Aix. vol. 15, pages
71-85.

D.-J. Hirst (2011). The analysis by synthesis of speech melody: from data to models, Journal
of Speech Sciences, vol. 1(1), pages 55-83.

Dafydd Gibbon (2013). TGA: a web tool for Time Group Analysis, Tools ans Resources for
the Analysis of Speech Prosody, Aix-en-Provence, France, pp. 66-69.

7.2 SPPAS in research projects

You used SPPAS into your research project? Send an e-mail to the author to append it into this section!

7.2.1 MULTIPHONIA

SPPAS was used to annotate the MULTIPHONIA corpus (MULTImodal database of PHONetics teaching
methods in classroom InterActions) created by Charlotte ALAZARD, Corine ASTESANO, Michel BIL-
LIÈRES.

This database consists of audio-video classroom recording comparing two methods of phonetic correction
(the “traditional” articulatory method, and the Verbo-Tonal Method). This database is composed of 96 hours
of pronunciation classes with beginners and advanced students of French as a Foreign Language. Every class
lasted approximatively 90 minutes. This multimodal database constitutes an important resource for Second
Language Acquisition’s researchers. Hence, MULTIPHONIA will be enriched at many different levels, to
allow for segmental, prosodic, morphosyntaxic, syntaxic, lexical and gestural analyses of L2 speech.

Charlotte Alazard, Corine Astésano, Michel Billières MULTIPHONIA: a MULTImodal
database of PHONetics teaching methods in classroom InterActions, Language Resources
and Evaluation Conference, Istanbul (Turkey), May 2012.

MULTIPHONIA: http://www.sldr.org/sldr000780/en

7.2.2 Amennpro

SPPAS was used for the annotation of the French part of the AixOx corpus.

version 2.0 139

http://www.sldr.org/sldr000780/en

Chapter 7. References

• four way recordings of French and English texts;
• read by English and French speakers;
• non-native speakers were divided into advanced and beginners.

Download the AixOx corpus: http://www.sldr.fr/sldr000784/

Remark:

Some examples are located in the samples-fra directory (files F_F_*.*) and

in the samples-eng (files E_E*.*).

7.2.3 Evalita 2011: Italian phonetization and alignment

Evalita 2011 was the third evaluation campaign of Natural Language Processing and Speech tools for Italian,
supported by the NLP working group of AI*IA (Associazione Italiana per l’Intelligenza Artificiale/Italian
Association for Artificial Intelligence) and AISV (Associazione Italiana di Scienze della Voce/Italian Asso-
ciation of Speech Science).

SPPAS participated to the Forced Alignment on Spontaneous Speech for both tasks:

• Phone segmentation
• Word segmentation

The corpus was a set of Dialogues, map-tasks:

• 3h30 speech;
• 15% phones are: “sil”, filled-pauses, garbage.

7.2.4 Cofee: Conversational Feedback

In a conversation, feedback is mostly performed through short utterances produced by another participant
than the main current speaker. These utterances are among the most frequent in conversational data. They
are also considered as crucial communicative tools for achieving coordination in dialogue. They have been
the topic of various descriptive studies and often given a central role in applications such as dialogue systems.
Cofee project addresses this issue from a linguistic viewpoint and combines fine-grained corpus analyses of
semi- controlled data with formal and statistical modelling.

Cofee is managed by Laurent Prévot: http://cofee.hypotheses.org/

Cofee corpora and the use of SPPAS on such corpora is presented in:

Jan Gorish, Corine Astésano, Ellen Gurman Bard, Brigitte Bigi, Laurent Prévot (2014).
Aix Map Task corpus: The French multimodal corpus of task-oriented dialogue, 9th Interna-
tional conference on Language Resources and Evaluation (LREC), Reykjavik (Iceland).

version 2.0 140

http://www.sldr.fr/sldr000784/
http://cofee.hypotheses.org/

Chapter 7. References

7.2.5 Variamu: Variations in Action: a MUltilingual approach

Variamu is an international collaborative joint project co-funded by Amidex. The scientific object of the
collaboration is the issue of language variation addressed from a comparative perspective. Speech and lan-
guage knowledge supports a growing number of strategic domains such as Human Language Technologies
(HLT), Language Learning (LL), and Clinical Linguistics (CL). A crucial issue to these domains is language
variation, which can result from dysfunction, proficiency, dialectal specificities, communicative contexts or
even inter-individual differences. Variation is often an important part of the question itself.

This network will be structured around 3 research axes, all centered on the variation concept:

1. Language technologies,
2. Linguistics and Phonetics,
3. Speech and Language Pathologies.

SPPAS is mainly concerned by the first axe.

The first result of this project is the participation of SPPAS at the Evalita 2014 campaign, for the FACS task:
Forced-Alignment on Children Speech.

The second result of this project is the support of Cantonese into SPPAS, thanks to a collaboration with
Prof. Tan Lee of the University of Hong Kong.

version 2.0 141

Chapter 7. References

version 2.0 142

8

SPPAS Release notes

8.1 The early versions

Versions 1.0 to 1.3 was made only of tcsh and gawk scripts. It was developed under Linux system and was
efficiently tested under Windows with Cygwin.

8.1.1 Version 1.0

(2011, 9th March)
The only feature was that it was able to perform speech segmentation of English read speech.

8.1.2 Version 1.1

(2011, 7th June)
This was mainly the debug of the previous version and some code re-organization and cleaning.

8.1.3 Version 1.2

(2011, 23th July)
The support of English, French and Italian was added: a lexicon, a pronunciation dictionary and an acoustic
model of each language was created. Three annotations were implemented: Tokenization, Phonetization,
Alignment.
The basis for a multi-lingual methodology was already there.

8.1.4 Version 1.3

(2011, 12th December)
This is a transitional version, from the scripts language to Python programming language. The main fixes
and improvements were:

143

Chapter 8. SPPAS Release notes

Development:

• MacOS support
• bugs corrected in many scripts
• check.csh -> check.py
• sppas.csh -> sppas.py
• GUI: zenity -> pyGtk
• sox limited to the use of re-sampling audio signal
• a python library to manage wav files is added.
• IPUs segmentation automatic annotation

Resources:

• Italian dictionary improved
• Italian acoustic model changed (triphones trained from map-task dialogues)
• French acoustic model changed

But the program still haven’t a name and isn’t distributed.

8.2 The birth of SPPAS

8.2.1 SPPAS 1.4.0

(2012, 14th June)

It’s the official birth of SPPAS: the software has a name, a license, a GUI, a web-page and is freely distributed
to the community.

The source code is only based on Python 2.7 language and the GUI is based on WxPython 2.8.x or 2.9.x (on
MacOS, wxpython must be 32 bits). SPPAS requires also sox and julius software to be installed.

Automatic annotations:

• add Momel: Momel (MOdelling MELody) is an algorithm developed by Daniel Hirst and Robert
Espesser for the analysis and synthesis of intonation patterns. Momel needs a .hz files with pitch
values: ASCII file with one value each 10ms. This Momel implementation can be used directly, with
a large set of options: > python $SPPAS/scripts/lib/momel.py -h
or in SPPAS, using the GUI, or in text-mode (only with default options): > $SPPAS/sppas.py -i INPUT
–momel

• add the first version of INTSINT, proposed by Daniel Hirst. INTSINT is an acronym for INternational
Transcription System for INTonation. INTSINT codes the intonation of an utterance by means of an
alphabet of i 8 discrete symbols constituting a surface phonological representation of the intonation.

Packaging:

• merge AUTHORS, VERSION and README files in the README file

version 2.0 144

Chapter 8. SPPAS Release notes

• create packages in the lib directory (2012-03-20)
• ipu-segmentation in python (2012-02-16)
• improve ipu segmentation algorithm (2012-05-24)
• phonetization in python (2012-02-27), with an unknown word phonetization.
• alignment entirely in python (2012-03-29)
• syllabification implemented with python, and tool/syllabify.py
• add a simple terminal controller (not needed for Unix, just for “DOS”)
• Momel can read PitchTier (from Praat) files
• Momel can deal with long sounds (not only one IPU)
• manage source files, comments, exceptions…
• SPPAS works as a single instance by mean of a lock file.
• SPPAS can be installed in a directory containing spaces and can deal with file names with spaces (bug
fixed: 2012-06-11)

GUI:

• GUI with the wxpython library (2012-03-27)
• Manage a list of selected files
• Add a “File information”
• Add a “Wav player”
• Fix options to each annotation step with the menu
• Open the log file after each process

Resources:

• French dictionary is using UTF-8 (instead of iso8859-1 in previous versions)
• French dictionary is based on X-SAMPA phone set
• Chinese: work with chinese characters instead of pinyin.

Known Bugs:

• The wav player can not play wav files if the filename contains ‘#’.
• The first line of the Italian dictionary must be changed to “# [#] #”.

8.2.2 SPPAS 1.4.1

(2012, 13th July)

Resources:

• Updated English acoustic model (from voxforge, 2012-06-25)
• English acoustic models converted to X-SAMPA

Automatic annotations:

• IPUs Segmentation annotation performs a simple silence detection if no transcription is available (the
volume is automatically adjusted)

version 2.0 145

Chapter 8. SPPAS Release notes

• A specific language can be selected for each annotation depending on available resources
• Updated transcription conventions:

– truncated words: a ‘-’ at the end of the token string (an ex- example)
– liaisons: the ‘letter’ between ‘=’ (an =n= example)
– noises: * (only for FR and IT)
– short pauses: + (a + example)
– silences: # (a # example)

GUI:

• Create (systematically) a merged annotations TextGrid file.

Development:

• Package’s management

8.2.3 SPPAS 1.4.2

(2012, 2nd August)

GUI:

• add a panel with a Transcription editor
• IPU segmentation can split a wav into tracks
• IPU segmentation can fix a shift value to boundaries
• IPU segmentation: min-volume option is removed (because the min-volume value is automatically
adjusted)

• “File Information” button adds some tiermanipulation tools: cut/copy/paste/rename/duplicate/move/preview/filter

Known bug:

• The filter frame is not working under Windows XP.

8.2.4 SPPAS 1.4.3

(2012, 10th October)

This is primarily a bug-fix release. The author is addressing many thanks to all users who send their com-
ments!

GUI:

• Frames and Dialog design is more uniform.
• Users preferences changed. Themes and colors introduced.
• Help is available.

version 2.0 146

Chapter 8. SPPAS Release notes

Automatic annotations:

• Bug fixed for phonetization/alignement if the input transcription contains series of silence intervals or
series of speech intervals. Previous versions was supposing a strict IPUs input transcription.

• Tokenization is done.

Development:

• Code cleaning in the package wxGUI.
• Debug…

8.2.5 SPPAS 1.4.4

(2012, 6th December)

GUI:

• add information/options when “Request” a file
• debug Request/Filter (for Windows systems)

Automatic annotations:

• New Italian acoustic model
• New Chinese acoustic model, and some minor changes in the dictionary

Development:

• “.trs” files support (transcriptions from Transcriber)
• debug (alignment, tokenization)
• add “.lab” files export (HTK format)

Known bugs:

• Alignment: it fails under Windows, if julius is not installed properly.
• Syllabification: the last syllable of each file is “broken”.
• Alignment error if unknown words during phonetization.

8.2.6 SPPAS 1.4.5

(2013, 15th January)

Development:

• Correct a few bugs of the previous version (phonetization, alignment, syllabification)
• “.eaf” files support (transcriptions from Elan software)
• add script tierfilter.py
• add script tiercombine.py

version 2.0 147

Chapter 8. SPPAS Release notes

Automatic annotations:

• Experimental version of Vietnamese
• add Tokenization as a specific annotation level
• add Phonetization of PinYin

GUI:

• Request/Filter a tier: multiple patterns filtering
• Request: add a “New File” button

8.2.7 SPPAS 1.4.6

(2013, 12th February)

GUI:

• Improved Request/Filter a tier:

– add new modes: not contains, not starts with, not ends with
– add time constraints: minimum duration, maximum duration, meets
– multiple modes selection (replace radio buttons by check buttons)

• Add Requests/Stats to obtain basic statistics
• Requests Copy/Cut/Paste/Duplicate/Save debugged

utomatic annotations:

• IPU segmentation: can take a “Name” tier to fix names of tracks (if the “Split into tracks” option is
checked)

8.2.8 SPPAS 1.4.7

(2013, 25th March)

Development:

• re-organization of lib, except for the wxGUI library.
• Cancel the sppas.lock file creation when SPPAS is running.
• Requests/Filter: “Starts search at…” and “Ends search at…”
• Requests/Filter: remove negative search (because of a bug…). Replaced by a “reverse” option.

Resources:

• add experimental version of Taiwanese automatic segmentation (from romanized transcriptions)

version 2.0 148

Chapter 8. SPPAS Release notes

Annotations:

• New version of INTSINT, based on the algorithm proposed in (Hirst 2011) and implemented in the
last version of Momel/INTSINT Praat plugin!

8.2.9 SPPAS 1.4.8

(2013, 30th May)

Development:

• reorganization of the GUI code. SPPAS is made of:

– automatic annotations;
– 3 components (wavplayer, transcriber, requests).

• sppas.py removed. sppas.bat created (for Windows).

• Input/Output library entirely changed

GUI:

• components (wavplayer, transcriber, requests) in separate frames
• new design
• Help and documentation changed, expanded and improved

8.2.10 SPPAS 1.4.9

(2013, 3rd July)
SPPAS has a new and more colored logo!

Development:

• bug correction:

– Bug fixed in IPU segmentation with option “Split into tracks”
– Bug fixed in Momel with some rare files
– Bug fixed to create a merged file
– Bug fixed in align and IPU seg.
– Bug fixed in Transcriber

• library organization revised

GUI:

• Add an export button to the File List Panel
• Migrate wav infos from the Requests component to the Wav player component
• Volume control removed in the Wav Player component
• Save As improved in the Requests component

version 2.0 149

Chapter 8. SPPAS Release notes

8.2.11 SPPAS 1.5.0

(2013, 2nd August)

Development:

• bug correction

Annotation:

• Tokenization: TOE support finalized

GUI:

• Transcribe: debug of IPU player, for MacOS

Resources:

• New French acoustic model. Attention: phoneset changed.
• New French dictionary: use the new phoneset!
• New Taiwanese acoustic model. Attention: phoneset changed: accept some chinese…
• New Taiwanese dictionary: use the new phoneset + some chinese syllabes added.
• Vietnamese removed: due to the lack of data, the model can’t be improved.

8.2.12 SPPAS 1.5.1

(2013, 29th August)

Development:

• bug correction in annotations
• help system debugged

Annotation:

• Phonetization of unknown words improved

Resources:

• French dict modified

8.2.13 SPPAS 1.5.2

(2013, 27th September)
All resources are moved into the “resources” directory.

version 2.0 150

Chapter 8. SPPAS Release notes

Development:

• bug correction in annotations and GUI

Resources:

• French dict modified
• New resources for the tokenization

Components:

• “Statistics”: an avanced component to estimate (and save!) descriptive statistics on multiple annotated
files

8.2.14 SPPAS 1.5.3

(2013, 25th October)

Resources:

• Add Spanish support

Components:

• improved Statistics component
• Add a “Filter” component, first version with a basic GUI

GUI:

• Help updated.

8.2.15 SPPAS 1.5.4

(2013, 3rd December)

Components:

• Wav Player changed.
• Information and Requests removed. Replaced by Data Roamer.
• Transcriber removed. Replaced by IPU Transcriber.
• Statistics updated.
• Filter updated.

version 2.0 151

Chapter 8. SPPAS Release notes

Annotations:

• Add Repetitions (detection of sources only)

Notice that this is the first stable release.

8.2.16 SPPAS 1.5.5

(2013, 23th December)

Development:

• improved annotationdata (add methods: Find, Index; add uncertain label; debug radius).

Components:

• debug

GUI:

• Tips at start-up
• New theme: Christmast

8.2.17 SPPAS 1.5.6

(2014, 28th January)

Development:

• improved annotationdata (add methods: Near, Search).
• Package cleaning!

Components:

• debug

Resources:

• New Italian dictionary (including gemination)

8.2.18 SPPAS 1.5.7

(2014, 18th February)

version 2.0 152

Chapter 8. SPPAS Release notes

Development:

• Plugins manager added.

Resources:

• Japanese support, thanks to the resources available on the Julius website.

8.2.19 SPPAS 1.5.8

(2014, 18th March)

Development:

• annotationdata: more flexibility while adding annotations, add sub-divisions, export csv modified, doc-
strings, import/export in a native format (xra, version 1.0).

Documentation:

• add a PDF file of slides: “SPPAS for dummies”

8.2.20 SPPAS 1.5.9

(2014, 15th April)

Components:

• new: DataViewer, experimental version

Annotations:

• syllabification rules: accept 2 types of vowels (V and W)
• syllabification: faster!

Development:

• Export Elan
• Import/Export xra. XRA is the native format of SPPAS annotation files. See etc/xra for details.

Resources:

• New French acoustic model

version 2.0 153

Chapter 8. SPPAS Release notes

8.2.21 SPPAS 1.6.0

(2014, 22th May)

Package:

• Rename folder “Doc” to “documentation”
• A documentation is created
• SPPAS-for-dummies updated

Development:

• helpsystem removed
• GUI: package re-organization, re-implementation.
• Alignment: choice of the aligner (julius, hvite or basic)

Resources:

• new acoustic model: FR-Read and FR
• new acoustic model: ZH
• new acoustic model: TW
• new acoustic model: SP

8.2.22 SPPAS 1.6.1

(2014, 26th September)

Development:

• bug correction (export, syllabification, alignment)
• DataViewer, major bugs corrected.

Resources:

• Italian: new pronunciation dictionary and new acoustic model
• add resources for Catalan

GUI:

• add a new Export button

8.2.23 SPPAS 1.6.2

(2014, 21th October)

version 2.0 154

Chapter 8. SPPAS Release notes

Resources:

• language names changed. They are now corresponding to the international standard ISO639-3. See
http://www-01.sil.org/iso639-3/

• Mandarin Chinese dictionary changed.
• Catalan dictionary changed.

8.2.24 SPPAS 1.6.3

(2014, 2nd November)

Resources:

• Add resources for Cantonese

Documentation:

• It’s now (more or less) finished!

Development:

• Support of Elan improved (add Controlled vocabulary)

GUI:

• Change the organization of the main frame: annotations above components

This version is known to be a stable release.

8.3 The childhood of SPPAS

8.3.1 SPPAS 1.6.4

(2014, 5th December)

From this version, SPPAS requires wxpython to be updated to version 3.0, particularly for MacOS users,
and they need to install the 64 bits version. It is recommended to Windows users to install Python 2.7 and
wxpython in 32bits.

Development:

• Package re-organized!
• Phonetization of unknown words improved
• Support of upper/lower of the extension of speech files (wav, WAV)
• Tokenization of languages with dictionaries in upper case (eng, ita): bug fixed.

version 2.0 155

http://www-01.sil.org/iso639-3/

Chapter 8. SPPAS Release notes

• Creates systematically a dump file of resources for a faster load at the next use
• Read TextGrid files exported by Elan: bug fixed.
• sppas.command checks the system and run either in 32 or 64 bits (MacOS)

Components:

• IPUscribe replaces IPUTranscriber mainly for the support of large files: tested with a file of 1 hour
speech (143 Go) and 800 IPUs.

• SndRoamer replaces WavPlayer
• Dataroamer has also a new version

8.3.2 SPPAS 1.6.5

(2014, 17th December)

This is primarily a bug-fix release.

Development:

• all programs in “bin” and “scripts” sub-directories were revised and tested, or removed.

Annotation:

• Tokenization: code cleaning and re-organisation.

GUI:

• Procedure outcome report: print a warning message in the log file if no file is matching the expected
extension

8.3.3 SPPAS 1.6.6

(2015, 19th January)

Web site host has changed: http://sldr.org/sldr00800/preview/

Documentation completed and updated. Now, only the documentation of all the components is missing.

Annotations:

• log messages more explicit and status printed with intuitive colors.
• management of input/output file format re-done: now easier for the user.

version 2.0 156

http://sldr.org/sldr00800/preview/

Chapter 8. SPPAS Release notes

Development:

• package architecture revised: mainly “sppasgui” and “components” merged in “wxgui”, and many
other changes.

• thread removed in automatic annotation process.
• debug of alignment: if too short units.
• radius value properly fixed in most of the automatic annotations.

GUI:

• GUI is more homogeneous and pretty (hope!)

• Show the date in the status bar

• New Settings frame:

– 4 icon themes available
– Choice of foreground and background colours
– Choice of the font
– Choice of the input/output file format of annotations

• New in Help menu:

– access to the project homepage
– access to the online documentation

• New Feedback window

• New Help browser

• Add Keyboard shortcuts:

– ALT+F4 to exit,
– CTRL+A to add files in FLP
– SHIFT+CTRL+A to add a directory in FLP
– Del to remove selected files of the FLP
– SHIFT+Del to erase selected files of the FLP
– CTRL+C to copy files
– CTRL+E to export files
– F5 to refresh the FLP
– F1 to open the help browser
– F2 to open the “About” frame

Components:

• GUI design unified for DataRoamer, SndPlayer, IPUscribe and SppasEdit

• New Tier Preview frame (still under development)

• SndPlayer print information about a sound file with colors:

– Green: the information corresponds to the SPPAS requirements

version 2.0 157

Chapter 8. SPPAS Release notes

– Orange: the information does not exactly corresponds to the requirements however SPPAS is
able to deal with (after conversion)

– Red: SPPAS does not support. It must be converted before using it!

8.3.4 SPPAS-1.6.7

(2015, 16th February)

Automatic Annotations:

• By default, tokenization produces only one tier. Check an option to get TokensStd and TokensFaked,
in case of EOT.

• radius value properly fixed in most of the automatic annotations.

GUI:

• Tested and debugged on MacOS (version 10.9.5, with wxpython 3.0.2)

Development:

• Tier hierarchy partly implemented: TimeAlignement and TimeAssociation are two “links” that can be
fixed between tiers.

Annotations:

• Add Polish support

8.3.5 SPPAS-1.6.8

(2015, 9th April)

Resources:

• new French acoustic model
• new English acoustic model (VoxForge nightly build of March, 15th, 2015)
• add phoneset mapping tables

Development:

• Add a phoneme mapping in models, to allow both the dictionary to include real X-SAMPA symbols
and the acoustic model to be compatible with Hvite requirements (only ASCII).

• annotationdata bug correction with min and max values

• IPUs Segmentation:

version 2.0 158

Chapter 8. SPPAS Release notes

– bug correction when split into tracks with a tier “Name”
– add the ipu number in speech segments if silence/speech segmentation

• Self-repetitions debug in finding the repetition interval

GUI:

• DataRoamer: “New” button debugged
• DataRoamer: Add a button “Radius” to adjust manually the vagueness of each bounday of a tier

8.4 The development phase

8.4.1 SPPAS-1.6.9

(2015, 14th May)

The installation of dependencies is simplified: sox is unnecessary. Python 2.7.x, WxPython and Julius are
the only remaining dependencies.

Development:

• package annotationdata.filter updated to support last changes in annotationdata: multiple labels and
numerical labels.

• package annotationdata.io:

– praat.py newly created. Support of TextGrid, PitchTier and IntensityTier files completely re-
written

– htk.py newly created to support .lab and .mlf files
– sclite.py newly created to support .stm and .ctm files
– signaix.py newly created to support .hz files
– SPPAS native format XRA upgraded to version 1.1 to support improvements of the library.

• package annotationdata:

– updated object Transcription to support more/different input data
– updated hierarchy
– updated meta-data

• package signal: partially re-written. As a consequence, sox won’t be neither used, but the file conver-
sion (if required) is slower.

GUI:

• DataFilter component partially re-written to facilitate its use
• Preview frame modified

version 2.0 159

Chapter 8. SPPAS Release notes

8.4.2 SPPAS-1.7.0

(2015, 3th July)

Development:

• package annotationdata.io:

– add support of subtitles: sub, srt
– elan.py created to replace eaf.py: allows a full support of Elan annotations
– transcriber.py created to replace trs.py for a better support of Transcriber files
– anvil.py allows to import anvil files

• package annotationdata:

– updated hierarchy (simplified)
– updated meta-data

• package signal:

– support of audio files re-written: can open/save wav, aiff and au files
– add a lot of possibilities to manage one channel of an audio file

GUI:

• DataFilter component finalized: can deal with alternative labels, and typed labels (string, number,
boolean)

• Statistics component fully re-written to facilitate its use
• SndRoamer displays more properties of audio files (min, mean and max added)

Annotations:

• IPUs Segmentation produces 2 tiers if a transcription is given: the IPUs segmentation itself, and the
Transcription time-aligned at the IPUs level.

8.4.3 SPPAS-1.7.1

(2015, 5th August)

Development:

• package re-organization:

– package signal is now standalone
– package resources is now standalone
– package presenters created

• updated statistics estimations

• package annotationdata:

version 2.0 160

Chapter 8. SPPAS Release notes

– add Media object
– add CtrlVocab object
– add inheritance of MetaObject for Annotation

• package annotationdata.io:

– full debug of all file formats
– add comments and documentation
– add also some tests
– add Media/CtrlVocab in some file formats
– add Annotation Pro support of antx files (in API)

Components:

• add Time Group Analyser (TGA) in Statistics
• add Kappa estimation on labels of 2 tiers with the same number of intervals

Annotations:

• New version of XRA: 1.2
• Make XRA the default input/output file format

8.4.4 SPPAS-1.7.2

(2015, 3th September)

Development:

• updated XRA reader/writer to solve problems with upper/lower cases of elements
• updated Elan reader to be compatible with format 2.8
• updated Praat reader/writer for single/double quotes
• support of AnnotationPro antx files in the GUI
• add the julius score in PhonAlign annotation (can be seen only if XRA)
• remove tk dependency

8.4.5 SPPAS-1.7.3

(2015, 9th October)

Resources:

• New word-based vocab for Cantonese
• New word-based dict for Cantonese
• New phoneme-based acoustic model for Cantonese

version 2.0 161

Chapter 8. SPPAS Release notes

Development:

• Descriptive statistics debugged for detailed panels.

8.4.6 SPPAS-1.7.4

(2015, 6th November)

Resources:

• Add a vocab for Portuguese
• Add a dict for Portuguese
• Add an acoustic model for Portuguese. It has to be noticed that it was constructed from
French/Spanish/Italian models, not trained from data.

Samples:

• Add Portuguese
• Change some samples in various languages

Development:

• Debug of the Tokenizer.

8.4.7 SPPAS-1.7.5

(2015, 11th December)

Development:

• Add vagueness to the annotation duration estimation
• Bug correction while saving the procedure outcome report in the GUI

GUI:

• Changed all pictures to remove the problem with colorset of some of them

• Add a christmast theme for the pictures of tips

• IPUscribe improvements:

– add keyboard shortcuts to play/pause/stop the sound
– add a new button to auto-play the sound

version 2.0 162

Chapter 8. SPPAS Release notes

8.4.8 SPPAS-1.7.6

(2016, 28th January)

Web site host has changed: http://www.sppas.org/

Development:

• IPU segmentation:

– bug correction with option “split into tracks”
– new option to add or not add the IPU index of each IPU into the transcription tier

• Tokenization:

– bug correction in input tier selection
– bug correction for replacements

Resources:

• add a vocabulary of Korean
• add an acoustic model for Korean (made from the English and the Taiwanese ones).

GUI:

• DataRoamer: bug correction of “Duplicate”

Others:

• Add a sample in Korean
• Updated references to cite SPPAS in publications

8.4.9 SPPAS-1.7.7

(2016, 30th March)

Resources:

• Correction of errors in most of the acoustics models, for /@@/ and /dummy/ models
• New vocabulary and pronunciation dictionary for Mandarin Chinese.

GUI:

• Dialogs are customized
• DataRoamer debug and changes: save buttons moved in the main toolbar.
• HelpSystem is (welcome) back!

version 2.0 163

http://www.sppas.org/

Chapter 8. SPPAS Release notes

Development:

• Add the API and a script to train acoustic models with HTK.
• Add Kullback-Leibler distance estimator.
• Add a script to compare segmentation of 2 tiers.
• Classes of the package resources are debugged, improved and extended.
• Alignment: bug correction if input starts by an empty interval.
• sppas.command modified for MacOS-X (use python if python2 not available)
• GUIs in bin directory are updated (test of python, wxpython, and so on).

8.4.10 SPPAS-1.7.8

(2016, 5th May)

Resources:

• Add a pronunciationmapping table eng-fra.map: to be used for the speech segmentation for French
speakers reading an English text.

Development:

• Phonetization is extended: it can take into account a mapping table of phones to generate new pronun-
ciation variants.

• Phonetization: use of minus instead of dots to separate phones as recommended in X-SAMPA stan-
dard.

• Alignment is restructured and extended: it can take into account two acoustics models and mix them.
• Filter is extended: Relations can be based on a delay between the intervals
• annotationdata: add Xtrans reader (extension: .tdf)
• Code cleaning in several packages.

GUI:

• Automatic annotations: more explicit log messages.

8.4.11 SPPAS-1.7.9

(2016, 3th June)

GUI:

• Some debug in SppasEdit

• SndPlayer renamed AudioRoamer because new functionalities were added:

– See detailed information about each channel of an audio file
– Can extract/save a channel or a fragment of channel
– Can modify the frame rate and the sample width of a channel

version 2.0 164

Chapter 8. SPPAS Release notes

– Can add a bias on amplitude values of a channel
– Can multiply amplitude values of a channel
– Can remove the offset of amplitude values of a channel

Automatic annotations:

• IPUs Segmentation fully re-implemented.

– Silence/speech segmentation improved for both quality and fastness
– Package code cleaning and re-organization.

8.5 The stabilization phase

8.5.1 SPPAS-1.8.0

(2016, 30th August)

GUI:

• Design fully revisited and tested under Linux Mint, Windows 10 and MacOS 10.9

Development:

• SLM package created: can estimate a statistical language model (without smooth method) on a small
corpus

Automatic annotations:

• Add a diagnosis of files
• Tokenize extended: applied also on alternative labels
• Phonetize extended: applied also on alternative labels
• Alignment code cleaning and partly re-implemented
• Add “Chunk alignment”
• Use of a .ini file to configure each annotation instead of a sppas.conf file

8.5.2 SPPAS-1.8.1

(2016, 28th November)
A few tutorials are available on the web site.

Automatic annotations:

• Align: an ActivityDuration tier can be optionally added.
• Support of 3-columns tab-delimited files with .txt extension. It allows the compatibility with Audacity
Label track files.

• Acoustic models training validated.

version 2.0 165

Chapter 8. SPPAS Release notes

Resources:

• Catalan: new pronunciation dictionary and new acoustic model.

8.5.3 SPPAS-1.8.2

(2017, 18th January)

Analysis:

• debug of DataFilter

Resources:

• French vocabulary and dictionary updated

Development:

• new plugins package with a new plugin manager
• GUI integration of this new plugins system
• some unittest appended and all existing ones updated
• annotationdata.io renamed annotationdata.aio
• docstrings of some packages converted from epytext to reST syntax

GUI:

• DataStats, DataFilter and DataRoamer toolbars don’t scroll anymore
• Themes management changed.
• Main font is managed by the Themes.

8.5.4 SPPAS-1.8.3

(2017, 10th March)

Development:

• Elan reader highly improved (faster reader).
• updated plugins

8.5.5 SPPAS 1.8.4

(2017, 10th April)

Development:

• Elan writer modified: create a time slot for each localization.

version 2.0 166

Chapter 8. SPPAS Release notes

8.5.6 SPPAS 1.8.5

(2017, 20th April)

Development:

• Vizualizer renamed Visualizer
• AudioRoamer: bug with an icon corrected
• New Phonedit mrk format support.
• Updated AnnotationPro Antx reader/writer

8.5.7 SPPAS 1.8.6

(2017, 19th June)

Resources:

• Polish dictionary and acoustic model updated.

8.5.8 SPPAS 1.9.0

(2017, 28th July)

Programming:

• Relative imports used in the standard way for Python

• PEP 8 code style (except for wxgui/annotationdata)

• PEP 257 reST code documentation style (except for wxqui/annotationdata)

• Unittests:

- existing tests verified, improved, extended

- new tests added

- tests migrated into the packages

• Compatibility for both Python 2.7 and Python > 3.2:

– makeunicode.py contains functions and classes to deal with strings
– utils, term, structs, resources, presenters, plugins, calculus packages: migration is done

• Exceptions are separately managed

• Introduction of a system for the internationalization of the messages. Done in English and French for
the packages: audiodata, calculus, plugins, resources, structs, term, utils

• Package re-organization:

version 2.0 167

Chapter 8. SPPAS Release notes

– new package “models”, with acm and slm
– utils
– resources
– …

• meta.py is replacing sp_glob.py

• new scripts: tieraligntophon.py, dictmerge.py

• new bin: pluginbuild.py

• Robustness to read malformed HTK-ASCII pronunciation dictionaries.

• Bug corrected in the management of pronunciation variants

• re-structured package TextNormalization

• re-structured package Repetitions

• new version of the plugins: updated and debugged.

Resources:

• Add support of Naija language (pcm)
• English-French mapping table updated

Annotations:

• Tokenizer renamed into Text Normalization:

– a lot of debug mainly for English language, and punctuation managements
– new option: can output a customized tier.

• Repetitions:

– some debug

Communication:

• Add a description document of the orthographic transcription convention in the package.
• Web page updated, new tutorials available
• Documentation updated
• Better information about the licenses

8.5.9 SPPAS 1.9.1

(2017, 1st September)

version 2.0 168

Chapter 8. SPPAS Release notes

Programming:

• Bug correction in the ELAN reader.
• Bug correction with quotation marks of the Praat writer.

Resources:

• Add an acoustic model for English, including laughter and noises.

8.5.10 SPPAS 1.9.2

(2017, 6th October)

Programming:

• Bug correction in the diagnosis of audio files.
• Package “anndata” continued, in the scope of replacing “annotationdata”.
• Acoustic model training procedure debugged and improved, code cleaned, scripts updated, etc.

8.5.11 SPPAS 1.9.3

(2017, 18th October)

Programming:

• Critical bug correction in Alignment: error when loading the tiedlist.
• Correction of TextNormalization of broken words: “-” is now not removed.

Resources:

• Italian pronunciation dictionary updated.
• French vocabulary updated: list of compound words revised.

Known bugs:

• Spanish alignment does not work: corrupted acoustic model

8.5.12 SPPAS 1.9.4

(2018, 15th January)

Programming:

• Script to train acoustic models updated
• Script to evaluate alignments updated
• Bug corrections of the search tier system

version 2.0 169

Chapter 8. SPPAS Release notes

Resources:

• Spanish:

– new pronunciation dictionary
– new acoustic model

8.5.13 SPPAS 1.9.5

(2018, 26th April)

Programming:

• I/O development of the package “anndata”.
• Reading and writing of annotated files is now based on the new ‘anndata’ package instead of the old
‘annotationdata’ package. This was a big issue and it allows a better support of annotated files (less
bugs and the amount of lost information is drastically reduced).

8.5.14 SPPAS 1.9.6

(2018, 25th May)

Resources:

• New: support of German language for Text Normalization (except num2letter), Phonetization and
Alignment.

• French: new acoustic model with an updated phoneset and a better accuracy.
• Laugh and noise are uniformly represented in all languages.
• English: context-independent model is the default, instead of context-dependent model, for Alignment.

Development

• debug of the Transcriber file reader.
• debug in the management of the hierarchy in file readers/writers.
• Resources package: add compatibility with PLS (W3C xml) pronunciation dictionaries

Known bugs:

• Syllabification of French: the configuration file is not correct.

8.5.15 SPPAS 1.9.7

(2018, 23th July)

version 2.0 170

Chapter 8. SPPAS Release notes

Development

• new filter system in anndata
• IPUs segmentation: debug in fixing automatically the threshold for the search of silences (can’t be
negative!)

• Annotations: improved messages for the procedure outcome report
• Annotations: Text normalization is based on anndata API instead of annotationdata

– the result is now a sequence of individual tokens (each token is a sppasLabel()), instead of a
single string separating tokens with space.

• Annotations: Phonetization is based on anndata API instead of annotationdata

– the result is now a sequence of sppasLabel() with alternative tags: each tag corresponds to a
pronunciation variant

• Annotations: Syllabification re-programmed and now based on anndata API

– only sequences of phonemes are syllabified (i.e. no silence, no laugh nor noise in the result)
– O class name changed into P class name
– do not generate the tier “structures” tier anymore
– generating the “classes” tier is optional

• Annotations: INTSINT is based on anndata API instead of annotationdata
• IPUScriber is based on anndata API instead of annotationdata

Resources:

• French syllabification rules updated to be compliant with the new phoneset (used since version 1.9.6)

Documentation

• updated chapter 6: scripting with Python and SPPAS. It is now based on anndata API instead of
annotationdata.

8.5.16 SPPAS 1.9.8

(2018, 06th September)
e-mail contact is changed to:

• contact@sppas.org for general questions of users
• develop@sppas.org for developer questions or for a bug alert

Development

• bug correction for GMT with a negative value, like GMT-4.
• most of the scripts are based on anndata API instead of annotationdata
• dependency to markdown removed
• new solution to work with global variables with the new package config and the new classes like
sppasGlobalSettings, sppasPathSettings, …

version 2.0 171

Chapter 8. SPPAS Release notes

• translation management moved in package config
• better way to work with imports
• increased pep8 and pep257 compatibility (should be continued)
• anndata is used in DataRoamer, Visualizer, DataFilter
• new script trsshift.py to shift the transcription of a delay in time

Documentation

The API documentation is based on Sphinx http://www.sphinx-doc.org.

8.5.17 SPPAS 1.9.9

(2018, 23th October)

Development

• package for the ‘aligment’ is fully re-structured (re-implemented partially), new unittests are added,
and compatibility with python 3, pep8 and pep257.

• new GUI based on python3 + phoenix: it prints an information message in case SPPAS is launched
with these versions.

• package ‘prensenters’ updated: unittests, python 3, pep8 and pep257.

Plugins

• sampa2ipa included to the SPPAS package
• audiosegmenter included to the SPPAS package

Annotations

• IPUs Segmentation removed. It is replaced by:

1. Search for IPUs: to find silences/tracks from an audio file
2. Fill in IPUs: to find silences/tracks from an audio file and its transcription
3. AudioSegmenter plugin: to segment audio files into several tracks

• annotation.py: bug correction with the default output extension

• bug correction when the phonetization was unknown

Resources

• add a file ‘monophones’ into each model, for the compatibility with HVite.
• errors of the acoustic models of “spa” and “nan” corrected.

version 2.0 172

http://www.sphinx-doc.org

Chapter 8. SPPAS Release notes

8.5.18 SPPAS 2.0

(2019, 4th January)

Themain change of this release is that the packageannotationdata has been removed, so that all packages
are usinganndata instead. One of themost important consequence of this change is that all packages, except
the wxGUI, are compatible with both Python 2.7 and Python 3.4+.

Annotations

• Alignment: bug correction if the last unit is empty.
• Self-Repetitions and Other-Repetitions split into two different packages
• Un-used package ‘Chunks’ removed
• Better management of annotations: sppasBaseAnnot, sppasParam and sppasManager revised.

UI

• All programs in bin folder updated. A ‘manual mode’ and an ‘auto mode’ are available in the annota-
tions to fix input/output, and a –log option is proposed to save a report.

• Plugins: marsatagplugin added and debugged.

version 2.0 173

Chapter 8. SPPAS Release notes

version 2.0 174

9

Appendix

9.1 List of error messages

Since version 1.9.0, SPPAS introduced a system for internationalization of the messages. In the same time,
a quality and a number was assigned progressively to each of them in the packages. The following indicates
the list of error messages that can occur while using SPPAS.

From “annotations” package

:ERROR 1010: Unknown option with key {key}.

:ERROR 1020: Empty input tier {name}.

:ERROR 1030: Missing input tier. Please read the documentation.

:ERROR 1040: Bad input tier type. Expected time-aligned intervals.

:ERROR 1050: Inconsistency between the number of intervals of the input tiers. Got: {:d} and {:d}.

From “utils” package

:ERROR 1210: The directory {dirname} does not exist.

:ERROR 1220: The directory {dirname} does not contain relevant data.

From “audiodata” package

:ERROR 2000: No audio file is defined.

:ERROR 2005: Audio type error: not supported file format {extension}.

:ERROR 2010: Opening, reading or writing error.

:ERROR 2015: No data or corrupted data in the audio file {filename}.

:ERROR 2020: {number} is not a right index of channel.

175

Chapter 9. Appendix

:ERROR 2025: From {value1} to {value2} is not a proper interval.

:ERROR 2050: No channel defined.

:ERROR 2060: Channels have not the same sample width.

:ERROR 2061: Channels have not the same frame rate.

:ERROR 2062: Channels have not the same number of frames.

:ERROR 2070: Invalid sample width {value}.

:ERROR 2080: Invalid frame rate {value}.

From “calculus” package

:ERROR 3010: Both vectors p and q must have the same length and must contain probabilities.

:ERROR 3015: Value must range between 0 and 1. Got {:f}.

:ERROR 3016: Probabilities must sum to 1. Got {:f}.

:ERROR 3025: Error while estimating Euclidian distances of rows and columns.

:ERROR 3030: The given data must be defined or must not be empty.

:ERROR 3040: Value {value} is out of range: expected value in range [{min_value},{max_value}].

From “plugins” package

:ERROR 4010: Missing plugin configuration file.

:ERROR 4014: Missing section {section_name} in the configuration file.

:ERROR 4016: Missing option {:s} in section {:s} of the configuration file.

:ERROR 4020: Unsupported plugin file type.

:ERROR 4024: Unsupported plugin file type.

:ERROR 4030: A plugin with the same name is already existing in the plugins folder.

:ERROR 4040: No plugin with identifier {plugin_id} is available.

:ERROR 4050: No such plugin folder: {:s}.

:ERROR 4060: A plugin with the same key is already existing or plugin already loaded.

:ERROR 4070: {command_name} is not a valid command on your operating system.

:ERROR 4075: No command was defined for the system: {:s}. Supported systems of this plugin are: {:s}.”””

:ERROR 4080: No option with key {:s}.

From “resources” package

:ERROR 5005: Encoding error while trying to read the file: {name}.

:ERROR 5010: Error while trying to open and read the file: {name}.

:ERROR 5015: Read file failed at line number {number}: {string}.

version 2.0 176

Chapter 9. Appendix

:ERROR 5020: The n value of n-grams pattern matching must range [1;{maximum}]. Got {observed}.

:ERROR 5022: The gap value of pattern matching must range [0;{maximum}]. Got {observed}.

:ERROR 5024: The score value of unigrams pattern matching must range [0;1]. Got {observed}.

:ERROR 5030: The dump file can’t have the same extension as the ASCII file ({extension}).

:ERROR 5040: The count value must be positive. Got ({count}).

From “structs” package

:ERROR 6010: {meta} is not a known meta information.

:ERROR 6020: Unknown resource type: expected file or directory. Got: {string}.

:ERROR 6024: The resource folder {dirname} does not exists.

:ERROR 6028: The language must be “und” or one of the language list. Unknown language {lang}.

From “models” package

:ERROR 7010: Expected a {data_name} of type {expected_type}. Got {data_type} instead.

:ERROR 7500: The file {!s:s} contains non UTF-8 characters: {:s}.

:ERROR 7505: Fail formats: unrecognized file format {!s:s}.

:ERROR 7510: Fail formats: the folder {!s:s} does not contain a known model.

:ERROR 7515: No model found or empty model in {!s:s}.

9.2 GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document “free”
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be
free in the same sense. It complements the GNUGeneral Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software

version 2.0 177

http://fsf.org/

Chapter 9. Appendix

does. But this License is not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this License principally for works
whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
“Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document’s overall subject (or
to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of In-
variant Sections, in the notice that says that the Document is released under this License. If a section does
not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are
none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification
by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text.
A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF produced by some word processors for
output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear in the title page. For works in formats which do not

version 2.0 178

Chapter 9. Appendix

have any title page as such, “Title Page” means the text near the most prominent appearance of the work’s
title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or
“History”.) To “Preserve the Title” of such a section when you modify the Document means that it remains
a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to
the Document. These Warranty Disclaimers are considered to be included by reference in this License, but
only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is
void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, pro-
vided that this License, the copyright notices, and the license notice saying this License applies to the Docu-
ment are reproduced in all copies, and that you add no other conditions whatsoever to those of this License.
You may not use technical measures to obstruct or control the reading or further copying of the copies you
make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and
Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition. Copying with changes limited to the covers,
as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim
copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location fromwhich the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers)
of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

version 2.0 179

Chapter 9. Appendix

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

• C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
• D. Preserve all the copyright notices of the Document.
• E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
• F. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum below.

• G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document’s license notice.

• H. Include an unaltered copy of this License.
• I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is
no section Entitled “History” in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified Version as stated
in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the “History” section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

• K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

• M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified
Version.

• N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any
Invariant Section.

• O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

version 2.0 180

Chapter 9. Appendix

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Mod-
ified Version by various parties—for example, statements of peer review or that the text has been approved
by an organization as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-
Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If
the Document already includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but you may replace the old
one, on explicit permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined work.
In the combination, you must combine any sections Entitled “History” in the various original documents,
forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

Youmay make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim copying of each of the documents
in all other respects.
You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATIONWITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from
the compilation is not used to limit the legal rights of the compilation’s users beyond what the individual
works permit. When the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of theDocument, then if theDocument
is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket

version 2.0 181

Chapter 9. Appendix

the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic
form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License, and all the license notices
in the Document, and any Warranty Disclaimers, provided that you also include the original English version
of this License and the original versions of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically
terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is
reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license,
and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first time you have received notice of
violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30
days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received
copies or rights from you under this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a partic-
ular numbered version of this License “or any later version” applies to it, you have the option of following the
terms and conditions either of that specified version or of any later version that has been published (not as a
draft) by the Free Software Foundation. If the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Docu-
ment specifies that a proxy can decide which future versions of this License can be used, that proxy’s public
statement of acceptance of a version permanently authorizes you to choose that version for the Document.

version 2.0 182

http://www.gnu.org/copyleft/

Chapter 9. Appendix

11. RELICENSING

“MassiveMultiauthor Collaboration Site” (or “MMC Site”) means anyWorldWideWeb server that publishes
copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki
that anybody can edit is an example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”)
contained in the site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Com-
mons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California,
as well as future copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first
published under this License somewhere other than this MMC, and subsequently incorporated in whole or
in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to
November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same
site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

version 2.0 183

	Introduction
	What is SPPAS?
	Overview
	User engagement
	Need help
	About the author
	Licenses
	Supports

	Getting and installing
	Websites
	External programs
	Download and install SPPAS
	The package
	Update

	Features
	How to use SPPAS?
	What SPPAS can do?

	Main and important recommendations
	About files
	About automatic annotations
	About linguistic resources

	Interoperability and compatibility: convert files
	About this documentation

	User interfaces
	The graphical user interface
	Launch SPPAS
	The tips
	The menu
	The file explorer
	Settings
	About
	Help
	Plugins

	The command-line user interface
	Usage
	Arguments for input/output

	Automatic Annotations
	Introduction
	About this chapter
	Annotations methodology
	File formats and tier names
	Recorded speech
	Automatic Annotations with GUI
	Automatic Annotations with CLI
	The procedure outcome report

	New language support
	Orthographic Transcription
	Search for Inter-Pausal Units (IPUs)
	Overview
	How does it work
	Perform ``Search for IPUs'' with the GUI
	Perform ``Search for IPUs'' with the CLI

	Fill in Inter-Pausal Units (IPUs)
	Overview
	How does it work
	Perform ``Fill in IPUs'' with the GUI
	Perform ``Fill in IPUs'' with the CLI

	Text normalization
	Overview
	Adapt Text normalization
	Support of a new language
	Perform Text Normalization with the GUI
	Perform Text Normalization with the CLI

	Phonetization
	Overview
	Adapt Phonetization
	Support of a new language
	Perform Phonetization with the GUI
	Perform Phonetization with the CLI

	Alignment
	Overview
	Adapt Alignment
	Support of a new language
	Perform Alignment with the GUI
	Perform Alignment with the CLI

	Syllabification
	Overview
	Adapt Syllabification
	Support of a new language
	Perform Syllabification with the GUI
	Perform Syllabification with the CLI

	TGA - Time Groups Analyzer
	Overview
	Result of TGA into SPPAS
	Perform TAG with the GUI
	Perform TGA with the CLI

	Self-Repetitions
	Overview
	Adapt to a new language
	Perform Self-Repetitions with the GUI
	Perform SelfRepetitions with the CLI

	Other-Repetitions
	Overview
	Adapt to a language and support of a new one
	Perform Other-Repetitions with the CLI

	Momel and INTSINT
	Momel (modelling melody)
	Encoding of F0 target points using the ``INTSINT'' system
	Perform Momel and INTSINT with the GUI
	Perform Momel with the CLI
	Perform INTSINT with the CLI

	Resources for Automatic Annotations
	Overview
	French
	List of phonemes
	Pronunciation dictionary
	Acoustic Model
	Syllabification configuration file

	Italian
	List of phonemes
	Pronunciation dictionary
	Acoustic Model
	Syllabification configuration file

	Spanish
	List of phonemes
	Pronunciation Dictionary
	Acoustic Model

	Catalan
	List of phonemes
	Pronunciation dictionary
	Acoustic Model

	English
	List of phonemes
	Pronunciation dictionary
	Acoustic Model

	Polish
	List of phonemes
	Pronunciation Dictionary
	Acoustic Model

	Portuguese
	Pronunciation Dictionary
	Acoustic Model

	German
	Pronunciation Dictionary

	Mandarin Chinese
	List of phonemes
	Pronunciation dictionary
	Acoustic model

	Southern Min (or Min Nan)
	List of phonemes
	Pronunciation Dictionary
	Acoustic Model

	Cantonese
	List of phonemes
	Acoustic Model

	Japanese
	Korean
	List of phonemes
	Pronunciation dictionary
	Acoustic Model

	Naija
	List of phonemes
	Pronunciation Dictionary
	Acoustic Model

	Analyses
	Introduction
	DataRoamer
	AudioRoamer
	Properties of the audio file
	Playing audio files
	Want more?

	IPUscriber
	Visualizer
	DataFilter
	Filtering annotations of a tier: SingleFilter
	Filtering on time-relations between two tiers

	Statistics
	Descriptive statistics
	User agreement

	Scripting with Python and SPPAS
	Introduction
	A gentle introduction to programming
	Introduction
	Variables: Assignment and Typing
	Basic Operators
	Data types
	Conditions
	Loops
	Dictionaries

	Scripting with Python
	Comments and documentation
	Getting started with scripting in Python
	Blocks
	Functions
	Reading/Writing files
	Python tutorials
	Exercises to practice

	anndata, an API to manage annotated data
	Overview
	Why developing a new API?
	The API class diagram

	Creating scripts with anndata
	Preparing the data
	Read/Write annotated files
	Manipulating a sppasTranscription object
	Manipulating a sppasTier object
	Manipulating a sppasAnnotation object
	Search in annotations: Filters

	More with SPPAS…

	References
	References
	How to cite SPPAS?
	SPPAS software description
	About Text Normalization
	About Phonetization
	About Forced-Alignment
	About Syllabification
	About Repetitions
	About analyses tools
	About the API
	Related references

	SPPAS in research projects
	MULTIPHONIA
	Amennpro
	Evalita 2011: Italian phonetization and alignment
	Cofee: Conversational Feedback
	Variamu: Variations in Action: a MUltilingual approach

	SPPAS Release notes
	The early versions
	Version 1.0
	Version 1.1
	Version 1.2
	Version 1.3

	The birth of SPPAS
	SPPAS 1.4.0
	SPPAS 1.4.1
	SPPAS 1.4.2
	SPPAS 1.4.3
	SPPAS 1.4.4
	SPPAS 1.4.5
	SPPAS 1.4.6
	SPPAS 1.4.7
	SPPAS 1.4.8
	SPPAS 1.4.9
	SPPAS 1.5.0
	SPPAS 1.5.1
	SPPAS 1.5.2
	SPPAS 1.5.3
	SPPAS 1.5.4
	SPPAS 1.5.5
	SPPAS 1.5.6
	SPPAS 1.5.7
	SPPAS 1.5.8
	SPPAS 1.5.9
	SPPAS 1.6.0
	SPPAS 1.6.1
	SPPAS 1.6.2
	SPPAS 1.6.3

	The childhood of SPPAS
	SPPAS 1.6.4
	SPPAS 1.6.5
	SPPAS 1.6.6
	SPPAS-1.6.7
	SPPAS-1.6.8

	The development phase
	SPPAS-1.6.9
	SPPAS-1.7.0
	SPPAS-1.7.1
	SPPAS-1.7.2
	SPPAS-1.7.3
	SPPAS-1.7.4
	SPPAS-1.7.5
	SPPAS-1.7.6
	SPPAS-1.7.7
	SPPAS-1.7.8
	SPPAS-1.7.9

	The stabilization phase
	SPPAS-1.8.0
	SPPAS-1.8.1
	SPPAS-1.8.2
	SPPAS-1.8.3
	SPPAS 1.8.4
	SPPAS 1.8.5
	SPPAS 1.8.6
	SPPAS 1.9.0
	SPPAS 1.9.1
	SPPAS 1.9.2
	SPPAS 1.9.3
	SPPAS 1.9.4
	SPPAS 1.9.5
	SPPAS 1.9.6
	SPPAS 1.9.7
	SPPAS 1.9.8
	SPPAS 1.9.9
	SPPAS 2.0

	Appendix
	List of error messages
	GNU Free Documentation License

