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Abstract

In this paper, we are interested in the connection between some stochastic
games, namely the Tug-of-War Games, and non-local PDEs on graphs. We
consider a general formulation of Tug-of-War Games related to many continous
PDEs. Using the framework of Partial difference Equation, we transcribe this
formulation on graph, and show that it encompasses several PDEs on graphs
such as ∞-Laplacian, Game p-Laplacian with and without gradient terms, and
Eikonal equation. We then interpret these discrete games as non-local Tug-of-
War Games. The proposed framework is illustrated with general interpolation
problems on graphs.

To cite this article: A. Elmoataz, P. Buyssens. Mecanique 333 (2005).

Résumé

Sur la connexion entre certains jeux stochastiques et les EDPs sur
graphes.

Dans cet article, nous nous intéressons à la connexion entre certains jeux sto-
chastiques et certaines Equations aux Dérivées Partielles (EDPs) sur graphes.
Nous considérons une formulation générale des jeux de type Tug-of-War reliés
à de nombreuses EDPs continues. En utilisant le cadre des Equations aux
différences Partielles, nous transcrivons cette formulation, et montrons qu’elle
inclue de nombreuses EDPs sur graphes telles que l’∞-Laplacien, le Game p-
Laplacien avec et sans termes de gradients, ainsi que l’équation Eikonale. Nous
interprétons ensuite ces jeux discrets comme des jeux de type Tug-of-War non-
locaux. La méthode proposée est illustrée à travers de nombreux problèmes
d’interpolation sur graphe.
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Email addresses: abderrahim.elmoataz-billah@unicaen.fr (Abderrahim Elmoataz),
pierre.buyssens@unicaen.fr (Pierre Buyssens)

Preprint submitted to Elsevier December 12, 2016



locales et non-locales sur graphes ; Interpolation sur graphes

Version française abrégée

Les jeux stochastiques ou déterministes ont récemment émergé comme une
nouvelle approche pour l’étude et l’approximation de nombreuses Équations
aux Dérivées Partielles (EDPs) non linéaires. En particulier, les jeux de type
Tug-of-War ont attiré beaucoup d’attention étant donné leurs liens avec l’infini-
Laplacien ou avec le p-Laplacien. Ils ont été présenté pour la première fois par
Peres, Schramm, Sheffiel, et Wilson dans [1, 2]. De nombreux travaux utilisent
désormais ce type de jeu pour étudier l’existence ou la régularité des solutions
de nombreuses EDPs (voir [3] et références inclues). La plupart de ces jeux
sont généralement formulés en tant que fonctionnelles statistiques impliquant les
opérateurs moyenne, min, ou max. Ils sont interprétés comme une approximation
discrète de l’EDP sous-jacente, et résoudre cette dernière revient à considérer
une solution limite appropriée du jeu discret.

Récemment, il y a un grand intérêt dans l’adaptation d’outils classiques en
traitement du signal, comme les ondelettes ou les EDPs [4, 5, 6], aux graphes et
réseaux. La nécessité de telles méthodes est motivée par des applications exis-
tantes et futures, comme l’apprentissage machine ou le traitement des images.
En fait, tout type de données peut être représenté sous forme une forme de
graphe abstrait pour lequel les sommets représentent les données, et les arcs les
interactions entre les données.

Dans cet article, nous considérons une équation générale de programmation
dynamique (équation 6) qui englobe de nombreuses versions du jeu de type
Tug-of-War ainsi que leur EDPs adjointes, dont l’infini-Laplacien, le Game p-
Laplacien, ou encore les équations de type Hamilton-Jacobi (Section 2). Nous
montrons à la section 3 que, dans le cadre des Équations aux différences Par-
tielles (EdPs) [7, 5], ces jeux discrets coincident avec des EDPs sur des graphes
Euclidiens particuliers.

Les mêmes EDPs sur des graphes pondérés de topologie arbitraire conduisent
à des fonctionnelles statistiques non-locales, incluant des opérateurs bien connus
tels le moyennage non-local, la dilatation ou encore l’érosion non-locale [8]. Nous
interprétons alors ces opérateurs comme des jeux de type Tug-of-War non-
locaux, et montrons leurs liens avec des EDPs non-locales sur graphe Euclidien.

1. Introduction

Game theoretic stochastic or deterministic methods have recently emerged
as a novel approach to study and to approximate various non-linear Partial
Differential Equations (PDEs). In particular Tug-of-War Games (TOG) related
to the∞-Laplacian or to the p-Laplacian have attracted a lot of attention. They
were first introduced by Peres, Schramm, Sheffiel, and Wilson in [1, 2]. It is
now used in many works to study the existence or the regularity of solutions
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for many PDEs (see [3] and references therein). Many of these games generally
are formulated as well-known statistical functionals such as mean, min, or max
operators. They are interpreted as a discrete approximation of the underlying
PDE and solving the latter leads to taking a suitable limit of the solution of the
discrete game.

Recently, there is a high interest in adapting classical signal processing tools
on graphs and networks such as wavelets or PDEs [4, 5, 6]. The demand for
such methods is motivated by existing and potential future applications, such
as in machine learning and mathematical image processing. Indeed, any kind of
data can be represented by a graph in an abstract form in which the vertices are
associated to the data and the edges correspond to relationships within data.

In this paper, we consider a general Dynamic Programming Equation that
encompasses many versions Tug-of-War Games arising in the discrete game-
theoretic interpretation for various non-linear PDEs including ∞-Laplacian,
game p-Laplacian and Hamilton-Jacobi related equations. We show that un-
der our framework of Partial difference Equations (PdEs) [7, 5], these discrete
games coincide with PDEs on particular Euclidean graphs.

The same PDEs on weighted graph of arbitrary topology lead to non-local
statistical functionals, including well-known non-local means, non-local dilation,
and non-local erosion operators [8]. We interpret them as non-local Tug-of-War
Games and we show their connections to non-local PDEs on Euclidean graphs.

This paper unfolds as follows: first, we briefly introduce several discrete
games, their related PDEs, and the previously proposed Partial difference Equa-
tions (PdE) framework. Then, we naturally extend these games to non-local
forms, and illustrate some interpolation problems on image and point cloud
processing.

2. Tug-of-War Games and PDEs on Euclidean space

We first briefly review the principle of stochastic Tug-of-War Game (TOG)
as described in [2], and one of its variants, namely TOG with noise [9]. A
general formulation that encompasses these games is also described.

2.1. Tug-of-War Game (TOG) and continuous PDEs

Let us briefly review the notion of Tug-of-War Game (TOG). Let Ω ⊂ IRn

be an open, bounded domain, h : Ω → IR the running payoff function, and
g : ∂Ω → IR the payoff function. Fix a number ε > 0. The dynamics of the
game are as follows: a token is placed at an initial position x0 ∈ Ω. At the kth
stage of the game, Player I and Player II select points xIk and xIIk , respectively,
each belonging to a specified set Bε(xk−1) ⊆ Ω (where Bε(xk−1) is the ε-ball
centered in xk−1). The token is then moved to xk, where xk can be either xIk
or xIIk with equal probability. In other words, a fair coin is tossed to determine
where the token is placed (i.e., which player won this stage).

After the kth stage of the game, if xk ∈ Ω then the game continue to stage
k + 1. Otherwise, if xk ∈ ∂Ω, the game ends and Player II pays Player I the
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amount g(xk) + ε2
∑k−1
j=0 h(xj). Player I attempts to maximize the payoff while

Player II attempts to minimize it. If both player are using optimal strategy,
according to the Dynamic Programming Principle (DPP), the value functions
for Player I and Player II for standard ε-turn Tug-of-War satisfy the relation:

 uε(x) = 1
2

[
sup

y∈Bε(x)

uε(y) + inf
y∈Bε(x)

uε(y)

]
+ ε2h(x), x ∈ Ω,

uε(x) = g(x), x ∈ ∂Ω.

(1)

The authors of [2] have shown that if the running payoff function h is of
constant sign, the value function uε converges to the unique viscosity solution
of the normalized ∞-Poisson equation:{

∆N
∞u(x) = −h(x), x ∈ Ω,
u(x) = g(x), x ∈ ∂Ω,

(2)

where ∆N
∞u = 1

|∇u|2 ∆∞u is the normalized ∞-Laplacian and

∆∞u = |∇u|−2
∑
i,j

uxi
uxixj

uxj
. (3)

2.2. TOG with noise

In its version with noise, the game is modified as follows: at point xk in Ω,
player I and player II play ε-step Tug-of-War game with probability β ∈ [0, 1],
and a random point in ball of radius ε centered at xk is chosen with probability
1− β. The value functions of the game satisfy the DPP:

uε(x) =
β

2

[
sup

y∈Bε(x)

uε(y) + inf
y∈Bε(x)

uε(y)

]
+

1− β
|Bε(x)|

∫
Bε(x)

uε(y)dy+ε2h(x) (4)

with the boundary condition uε(x) = g(x) for x in δΩ. A detailed proof for
existence and uniqueness of these types of function was shown in [9].

Choosing the probability β = p−2
p+n , this DPP gives a connection to viscosity

solutions of the following p-Laplace equation [10, 11, 3]:{
∆N
p u(x) = −h(x), x ∈ Ω,
u(x) = g(x), x ∈ ∂Ω,

(5)

for p ≥ 2 with ∆N
p u = 1

p |∇u|
2−p div

(
|∇u|p−2∇u

)
.

2.3. General formulation

A general formulation that encompasses these previous games can be defined
as follows: xIk+1 is chosen with a probability of α, xIIk+1 with a probability of
β, and there is a probability equal to γ that a random point in ball of radius ε
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centered at xk is chosen. In this setting, α+β+γ = 1, and the value functions
of the game satisfy:

uε(x) = α sup
y∈Bε(x)

uε(y) + β inf
y∈Bε(x)

uε(y) +
γ

|Bε(x)|

∫
Bε(x)

uε(y)dy + ε2h(x) (6)

This general formulation recovers the Tug-of-War Game (α = β, γ = 0), its
variant with noise (γ > 0, α = β), and its biased version [12, 13] (α 6= β,
γ = 0).

3. From Discrete Tug-of-War Games to PDEs on graphs

3.1. Notations and definitions

We recall here definitions and operators on graphs that constitute the basis
of the Partial difference Equation (PdE) framework on graphs. These definitions
are borrowed from [7, 5] and references therein.

A weighted graph G = (V,E,w) is composed of a finite set V = {v1, . . . , vN}
of N vertices and a finite set E ⊂ V × V of weighted edges. G is assumed to
be simple (no self-loops nor multiple edges), connected, and undirected. Let
(u, v) ∈ E be the edge that connects two vertices u and v from V . Its weight,
denoted by w(u, v), represents the similarity between vertices u and v. It is
usually computed by using a positive symmetric function w : V × V → R+

satisfying w(u, v) = 0 if (u, v) /∈ E. The notation u ∼ v is also used in the
following to denote two adjacent vertices. In the following, we consider the real
valued function f defined on V .

Définition 3.1. Discrete upwind non-local weighted gradients are defined as:

(∇±wf)(u) = ((∂±v f)(u))Tv∈V (7)

where (∂±v f)(u) =
(√

w(u, v)(f(v)− f(u))
)±

, with (x)+ = max(x, 0) and (x)− =

−min(x, 0).
The Lp and L∞ norms of these gradients are defined as:

‖(∇±wf)(u)‖p =

[∑
v∼u

√
w(u, v)

p
(f(v)− f(u))p±

] 1
p

,

‖(∇±wf)(u)‖∞ = max
v∼u

(√
w(u, v) · (f(v)− f(u))±

) (8)

Définition 3.2. The 2-Laplacian on graph is defined as:

(∆w,2f)(u) =

∑
u∼v w(u, v)f(v)∑
u∼v w(u, v)

− f(u) (9)

Définition 3.3. The ∞-Laplacian on graph is defined as:

(∆w,∞f)(u) =
1

2

[
‖(∇+

wf)(u)‖∞ − ‖(∇−wf)(u)‖∞
]
. (10)
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Définition 3.4. The game p-Laplacian on graph is defined as:

(∆G
w,pf)(u) = a(p)∆w,∞f(u) + b(p)∆w,2f(u) (11)

with 2 ≤ p <∞, a(p) = p−2
p and b(p) = 2

p .

3.2. Transcription of TOG on graphs

Now, let us investigate the Euclidean graph G = (V,E,w) with V = Ω ⊂ Rn,
E = {(u, v) ∈ V × V |w(u, v) > 0}, and

w(u, v) =

{
1
ε4 , if |v − u| < ε,
0 otherwise.

(12)

Using w in the discrete upwind gradient L∞-norm, we get

‖(∇+
wf)(u)‖∞ = max

v∼u

(√
w(u, v)(f(v)− f(u))

)
= 1

ε2

(
max
v∼u

(f(v))− f(u)
)

‖(∇−wf)(u)‖∞ = 1
ε2

(
f(u)−min

v∼u
(f(v))

) (13)

We can define the min and max functions as:

max
v∼u

f(v) = ε2‖(∇+
wf)(u)‖∞ − f(u),

min
y∼u

f(v) = f(u)− ε2‖(∇−wf)(u)‖∞. (14)

By replacing the min and max functions in equation 6 by their respective
discrete gradient variants, we get the following PDE on graph:

α‖(∇+
wf)(u)‖∞ − β‖(∇−wf)(u)‖∞ + γ(∆w,2f)(u) = −h(u) (15)

This formulation recovers the Tug-of-War Game (equation 2) with α = β =
0.5, γ = 0, the Biased TOG [12, 13] with α 6= β, γ = 0, the Eikonal equation
with α = γ = 0, β = 1, and the TOG with noise (equation 5) with γ 6= 0, α = β.
Equation 15 can also be written as

2 min(α, β)∆w,∞f(u)+γ∆w,2f(u)+(α−β)+|∇+
wf(u)|∞−(α−β)−|∇−wf(u)|∞ = −h(u) (16)

that clearly exhibits the discrete approximations on graphs of∞-Laplacian and
game p-Laplacian with or without gradient terms.

4. Extension to non-local discrete TOG

In this section, we consider a general weighted connected graphG = (V,E,w),
and a null running payoff function h(u) = 0,∀u.
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4.1. Interpolation and the associated Dirichlet problem

Let A ⊂ V be a subset of vertices, and g : ∂A → R a function defined on
the boundary of A. We consider the general PdE:{

α‖(∇+
wf)(u)‖∞ − β‖(∇−wf)(u)‖∞ + γ(∆w,2f)(u) = 0, u ∈ A

f(u) = g(u), u ∈ ∂A (17)

Solving this general PdE is an interpolation problem aiming at determining the
value of f on the whole domain A from known values defined on ∂A. The
existence and uniqueness of the solution of equation 17 can be shown by using
the Brouwer fixed point theorem and the comparison principle respectively [14,
15].

4.2. Extension to non-local TOG

Before interpreting the PDE (equation 15) as a non-local game, we first
introduce 3 non-local operators defined on graphs, namely non-local dilation
(NLD), non-local erosion (NLE), and non-local mean (NLM), by:

NLD(f) = ‖∇+
w‖∞ + f (18)

NLE(f) = f − ‖∇−w‖∞ (19)

NLM(f) = ∆w,2f + f (20)

Due to the generality of the weight function w and the arbitrary graph
topology, these operators do not necessarily act locally.

Incorporating these operators into equation 15 and setting h(u) = 0,∀u leads
to the equation:

f(u) = αNLD(f) + βNLE(f) + γNLM(f) (21)

This last equation can be interpreted as a non-local Tug-of-War Game as follows:
the token at the k-th stage of the game is moved to a new destination xIk ∈ Ω
with a probability

P1 =
α
√
w(u, y)

α
√
w(u, y) + β

√
w(u, z) + γ

(22)

xk = xIIk with a probability P2 =
β
√
w(u,z)

α
√
w(u,y)+β

√
w(u,z)+γ

and xk = xIIIk chosen

randomly in {xk ∈ V | xk ∼ xk−1} with a probability 1− P1 − P2.

4.3. Connection to non-local PDEs on Euclidean graphs

Let G = (V,E,W ) be an Euclidean graph with V = Ω ⊂ Rn, E = {(x, y) ∈
V × V |w(x, y) > 0}.
• Setting γ = 0, α = β 6= 0, and

w(x, y) =

{ 1
|x−y|2s x 6= y, s ∈ [0, 1]

0 otherwise,
(23)
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equation 15 corresponds to the Hölder∞-Laplacian equation proposed by Cham-
bolle et al. in [16], which is given by

∆w,∞f(x) =
1

2

[
max

y∈Ω,y 6=x

(
f(y)− f(x)

|y − x|s

)
+ min
y∈Ω,y 6=x

(
f(y)− f(x)

|y − x|s

)]
(24)

This operator is formally derived from the minimization of the following energy
functional ∫

Ω

∫
Ω

|f(y)− f(x)|p

|y − x|p×s
dxdy (25)

with p→∞.
• Setting α = β = 0, and for a general weighting function w, it gets clear that
equation 15 recovers the continuous non-local Laplacian equation:∫

Ω

w(x, y) · (f(y)− f(x)) dy = 0 (26)

This operator has been recently used in many applications including con-
tinuum mechanics, population dynamics, and many different non-local diffusion
problems [17]. A particular case is given by

w(x, y) =

{ 1
|y−x|n+2s , x 6= y, s ∈ [0, 1]

0, otherwise.
(27)

Here, we recover the continuous fractional Laplacian which is commonly used

to model anomalous diffusion (−∆)sf(x) = Cn,s ·
∫
Rn

f(x)−f(y)
|x−y|n+2s dy where Cn,s is

a normalization constant.
• In a more general way, the proposed formulation of non-local graph p-Laplacian
(eq. 15, with arbitrary values for α, β, γ, and w) corresponds to PDEs that in-
terpolates between the ∞-Laplacian, the Laplacian, and gradient terms.

5. Illustrations of interpolation problems on graphs

Our framework can handle many interpolation problems on graphs such as
inpainting, colorization, and distance computation. For details about graph
construction for images and point clouds, see [18] and references therein.

Figure 1 (rows 1 to 3) shows local and non-local inpaintings of a 2D image
and a 3D point cloud for different values of α, β, and γ. Distance computation
on a mesh using β = 1 (Eikonal equation), and 3D point cloud colorization from
scribbles using α = β = 0.5 also illustrates the benefits of using PDEs on graphs
(fourth row).
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Original image Local, γ = 1 Non-local, γ = 1

Masked image Local, α = β = 0.5 Non-local, α = β = 0.5

Original point cloud Masked point cloud Local Non-local

Original mesh Local, β = 1 Scribbles Local, α = β = 0.5

Figure 1: Illustrations of some interpolation problems on images and 3D point clouds: in-
painting, distance computation, and colorization.

6. Conclusion and further work

We have proposed a transcription of several Dynamic Programming Equa-
tions arising in the discrete game-theoretic interpretation for various non-linear
PDEs. Build upon our simple Partial difference Equations framework, we have
shown that these discrete games coincide with PDEs on Euclidean graphs, and
that their extension to non-local forms can be interpreted as non-local Tug-of-
War games. This paper makes a bridge between stochastic games, continuous
local and non-local PDEs and their graph-based counterparts. We plan to pro-
pose in the future new algorithms based on the min/max operators to solve
efficiently these PDEs on graphs.
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laplacian equation on graphs with applications in image processing and
machine learning, Mathematics and Computers in Simulation 102 (2014)
153–163.

[6] A. L. Bertozzi, A. Flenner, Diffuse interface models on graphs for classifi-
cation of high dimensional data, Multiscale Modeling & Simulation 10 (3)
(2012) 1090–1118.

[7] A. Elmoataz, O. Lezoray, S. Bougleux, Nonlocal discrete regularization on
weighted graphs: a framework for image and manifold processing, IEEE
transactions on Image Processing 17 (7) (2008) 1047–1060.

[8] G. Gilboa, S. Osher, Nonlocal operators with applications to image pro-
cessing, Multiscale Modeling & Simulation 7 (3) (2008) 1005–1028.

[9] J. J. Manfredi, M. Parviainen, J. D. Rossi, Dynamic programming prin-
ciple for tug-of-war games with noise, ESAIM: Control, Optimisation and
Calculus of Variations 18 (01) (2012) 81–90.

[10] J. J. Manfredi, M. Parviainen, J. D. Rossi, On the definition and properties
of p-harmonious functions, Annali della Scuola Normale Superiore di Pisa-
Classe di Scienze-Serie V 11 (2) (2012) 215.

[11] M. Lewicka, J. J. Manfredi, Game theoretical methods in pdes, Bollettino
dell’Unione Matematica Italiana 7 (3) (2014) 211–216.

[12] Q. Liu, A. Schikorra, A game-tree approach to discrete infinity laplacian
with running costs, arXiv preprint arXiv:1305.7372.

[13] A. P. Sviridov, p-harmonious functions with drift on graphs via games,
Electronic Journal of Differential Equations 2011 (114) (2011) 1–11.

[14] J. J. Manfredi, A. M. Oberman, A. P. Sviridov, Nonlinear elliptic par-
tial differential equations and p-harmonic functions on graphs, Differential
Integral Equations 28 (1–2) (2015) 79–102.

[15] A. Elmoataz, F. Lozes, M. Toutain, Nonlocal pdes on graphs: From tug-
of-war games to unified interpolation on images and point clouds, Journal
of Mathematical Imaging and Vision (2016) 1–21.

[16] A. Chambolle, E. Lindgren, R. Monneau, A hölder infinity laplacian,
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