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ON THE TANGENT GROUPOID OF A FILTERED
MANIFOLD

ERIK VAN ERP AND ROBERT YUNCKEN

ABSTRACT. We give an intrinsic (coordinate-free) construction of
the tangent groupoid of a filtered manifold.

1. INTRODUCTION
Connes’ tangent groupoid,
T™ =TM x {0} U (M x M) x R*

provides a powerful conceptual framework for studying pseudo-
differential operators. The power of the tangent groupoid lies in the
smooth glueing of the fibres M x M (which carries the Schwartz
kernel of a pseudodifferential operator) to the tangent space TM
(which carries the principal cosymbol). Connes famously used this
construction in a proof of the Atiyah-Singer Index Theorem [Con94].
In a recent paper we showed how the tangent groupoid can be used
as the foundation for the definition of the classical pseudodifferential
calculus [VEY16].

By now we have tangent groupoids associated to many different
classes of pseudodifferential operators. One example is the Heisen-
berg calculus which is relevant to contact and CR geometries. Here
the tangent bundle TM must be replaced by a bundle of Heisenberg
groups Ty M called the osculating groupoid. The Heisenberg calculus
was developed by Folland-Stein and Taylor in the 1970s.
An adaptation of the tangent groupoid to the Heisenberg calculus
was developed in [VE05| Pon06]], and this led to the index theorem
for the Heisenberg calculus [vEIOa, vET0D].

We have shown in [VEY16] that a pseudodifferential calculus for
filtered manifolds, a la Melin [Mel82]], can be easily produced from
a tangent groupoid for filtered manifolds. The relevant tangent
groupoid appears in Choi-Ponge [CP15], with a construction based
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2 ERIK VAN ERP AND ROBERT YUNCKEN

on preferred local coordinate systems. For our purposes, we made
an instrinsic (coordinate-free) construction of the same groupoid.
The goal of this paper is to describe this construction.

We follow a classic strategy: just as it is easier to construct a Lie
algebra than a Lie group, so it is easier to define a Lie algebroid
than a Lie groupoid. We therefore begin by constructing the Lie
algebroid tyM. This is just a matter of glueing a filtered bundle
to its associated graded bundle—a process which is most efficiently
carried out by working with their modules of sections. We then
appeal to Lie’s Third Theorem for Lie algeboids (on the existence of
a Lie groupoid for a given Lie algebroid, under mild conditions) to
produce the tangent groupoid TyM.

Acknowledgements. It’s a pleasure to thank Claire Debord, Georges
Skandalis, Nigel Higson and Jean-Marie Lescure for their input on
this project.

Notation. We will be considering various fibrations over M x R,
and often regard them as families of fibrations over M indexed by
t e R. If m: E— M x R is a submersion, we shall denote by E|; =
= 1(M x {t}) its restriction to t € R. Similarly, if X: M x R — E is
a section of E, we will denote by X; its restriction to M x {t}.

2. LIE ALGEBROIDS

We will construct the tangent groupoid of a filtered manifold by
tirst constructing its Lie algebroid.
Recall that a Lie algebroid over a smooth manifold M is a vector
bundle g — M equipped with two compatible structures:
e A Lie bracket on smooth sections |-, -] : T'(g) x I'(g) — T'(g),
e A vector bundle map p : g — TM, called the anchor,

such that

(1) The induced map on sections p : I'(g) — I'(TM) is a Lie
algebra homomorphism,
(2) Forany X,Y €T'(g), f € C®(M),

(X fY] = FIX YT+ (p(X)f)Y-
To understand the tangent groupoid, two key examples are needed.

Example 1. The tangent bundle itself TM — M is a Lie algebroid over
M, with the usual Lie bracket of vector fields and the identity map
as anchor. This is the Lie algebroid of the pair groupoid M x M.

Example 2. If the anchor of a Lie algebroid g is the zero map, then
g is a smooth bundle of Lie algebras. This is because the Lie bracket
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[+, -] on sections I'(g) is a C*(M)-linear map, and so restricts to a
well-defined Lie bracket on each fibre g, (x € M).

In particular, if we equip I'(TM) with the zero Lie bracket, then
the tangent bundle TM has an alternative Lie algebroid structure as
a bundle of abelian Lie algebras.

3. CONNES’ TANGENT GROUPOID

We start with a brief review of the classical tangent groupoid TM

of Connes [Con94].
Let M be a smooth manifold without boundary. Algebraically,

the tangent groupoid TM is the disjoint union
TM=TMx {0} UM x M x R*.

The t = 0 fiber TM x {0} is glued to M x M x R* by blowing up
the diagonal in M x M. To make this precise, it is easier to first
construct the Lie algebroid tM of TM.

As a vector bundle over M x R, the Lie algebroid tM of the tan-
gent groupoid TM is

M =TM xR — M xR 1)
The bracket of two smooth sections X, Y € I'(tM) is rescaled by ¢,
[X/ Y]f =t [Xf/ Yf]/

where the right hand bracket is the ordinary bracket of vector fields
Xt and Yy in T(TM). The anchor on tM is

p(X)r = tX;

Note that multiplication by ¢ is injective on smooth sections I'(tM),
and that the image of this map is

X = {XeT(TM xR) | X|;_o = 0}

We may define tM efficiently but indirectly as the vector bundle
on M x R underlying the C*(M x R) module X. Note that the
isomorphism
t:I(tM)=x X—1tX

intertwines the Lie algebroid bracket and anchor of tM with the
standard (constant in t) bracket and anchor of the product Lie alge-
broid TM x R. Thus, the C*(M x R)-module X implicitly defines
the Lie algebroid tM.

General results on integrability of Lie algebroids imply the ex-
istence of a minimal Lie groupoid with Lie algebroid tM (see e.g.
[CEQ3, Deb01al, [Deb01b]]). This Lie groupoid is the tangent
groupoid TM.
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Explicitly, the smooth structure of TM is as follows. Let V be a
connection on TM and expY : TyM — M the associated geometric
exponential maps. An exponential map from the Lie algebroid tM
to the Lie groupoid TM is

ExpY : tM = TM x R — TM;
(x,0,t) = (expy (tv), x,t), ift#0
(x,9,0) — (x,0,0), if t =0.

Note that ExpV is injective in a neighbourhood of TM x {0}. The
map ExpV is used to define the smooth structure of TM in such a
neighborhood. Away from t = 0 the subset M x M x R* is an open
subset of TM with the evident manifold structure.

4. FILTERED MANIFOLDS

A filtered manifold is a manifold for which the Lie algebra of
vector fields is equipped with a filtration. ! More precisely:

Definition 3. ([Mel82]]) A filtered manifold is a smooth manifold M
equipped with a filtration of the tangent bundle TM by vector bun-
dles M x {0} = H* C H' C ... C HN = TM such that I'(H®) is a
Lie algebra filtration, i.e.

[C(H"), T(H))] € T(H™)

Here we are using the convention that H'=TM fori > N.
Sections of I'(H') may be referred to as vector fields of order (less
than or equal to) i.

Of course, any manifold M can be equipped with the trivial fil-
tration of depth one, i.e. HY = TM. In this trivial case the con-
struction of the tangent groupoid that we describe below simplifies
significantly, and reduces to the well-known construction outlined
in section 3.

Any manifold equipped with a non-trivial subbundle H C TM
is a filtered manifold of depth 2, with H' = H and H? = TM. Ex-
amples include foliations, contact manifolds, CR manifolds. More
generally, such manifolds are called Heisenberg manifolds
BG88])

Parabolic manifolds are an example of filtered manifolds of depth

greater than 2 (see CS09]).

IFiltered manifolds are called Carnot manifolds by Choi and Ponge [CP15].
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5. THE OSCULATING GROUPOID OF A FILTERED MANIFOLD

If M is a filtered manifold, we let

n
tyM =@ H'/H!
i=1

be the associated graded vector bundle. We write ¢; : H' — H'/H'~!
for the quotient maps.

If X € T(H'), Y € T(H/) are vector fields of order i and j, respec-
tively, then for any f,g € C®(M),

[fX,8Y] = fe[X, Y]+ f(p(X)g)Y — g(p(Y)f)X
= f¢[X,Y] (mod T(H™~1)).

Thus, although the Lie bracket on vector fields is not C®(M)-linear,
it induces a C®(M)-linear bracket on sections of the associated
graded bundle tyM. Thus, tgM becomes a smooth bundle of graded
nilpotent Lie algebras over M. Equipped with the zero anchor, tyM
is thus a Lie algebroid.

Definition 4. The osculating groupoid TyM is the smooth bundle of
connected, simply connected nilpotent Lie groups obtained by ex-
ponentiating the Lie algebroid ty M.

Explicitly, TyM equals tyM as a smooth fibre bundle, and each
tibre is equipped with the group law given by the Baker-Campbell-
Hausdorff formula.

6. DILATIONS

Any graded vector bundle admits a canonical one-parameter fam-
ily (6¢)ier of bundle endomorphisms (automorphisms for t # 0)
called the dilations. These generalize the homotheties of a trivially

graded bundle.
For the osculating groupoid tyM the dilations are defined by

6 &— HE  forall¢ e H/H .

For t # 0, the dilations J; are Lie algebroid homomorphisms.

7. THE H-TANGENT GROUPOID

Algebraically, the H-tangent groupoid is the disjoint union of the
osculating groupoid TyM with a family of pair groupoids

TyM = (TyM x {0}) U (M x M x R*) )
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This is to be understood as a family of Lie groupoids over R, in that
the allowable compositions are

(z,y,t)(y,x,t) = (z,x,1), x, ¥,z €M, t € R*,
(x,8,0)(x,1,0) = (x,81,0),  xeM, &y e TaM,.
To glue the t = 0 fiber TyM x {0} to M x M x R* we blow up the

diagonal in M x M by means of the dilations 5, !, as we shall now
make precise.

Definition 5. A degrading of tyM is an isomorphism of vector bun-

dles ¢ : tyM — TM such that for each i, the restriction of ¥ to

Hi/H1is right inverse to the grading map o; : H' — Hi/H -1,
Fixing a choice of degrading allows us to transport the dilations

o) of tgM to endomorphisms of TM, 5f ;= ody ol Let V be
a connection on TM that is compatible with the degrading, in the

sense that V commutes with 5%:
Vx(¥Y) =6'Vx(Y) X, Y e T(TM).
For such a choice of connection, use the exponential maps
expy : TeM — M
to define
Exp¥V : tgM xR — TyM x {0} U M x M x R*; (3)

(expY (¥(6r0)), x,t) if t # 0,

,0,t) —>
(0 t) {(x,v,O) ift=0,

Via this map Exp¥"V, the smooth structure of tyM x R induces a
smooth structure in an open neigborhood of the t = 0 fiber of Ty M.
Away from t = 0 the open subset M x M x R* of TyM has the
evident smooth manifold structure.

Theorem 6. With the above charts Ty M is a smooth groupoid.

We call TyM the H-tangent groupoid. We shall prove Theorem 6
in the remaining sections.

8. THE H-TANGENT LIE ALGEBROID

As in Section 3, we shall construct the Lie algebroid tyM indi-
rectly, starting with its module of sections.

Let Xy be the C*(M x R) module of sections of the vector bundle
TM xR — M x R whose degree of vanishing at t = 0 is controlled
by the filtration as follows

Xy = {XeT(TM x R) | 3¥X|;—g € T(H*) for allk >0}  (4)
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where 0; = %. Note that the k = 0 equation implies X|;—g = 0. The
bundle TM x R — M x R is a Lie algebroid with constant bracket
and anchor

X, Y], = [X,, Y] X,Y € [(TM x R)
p(X)r =X
The bracket and anchor of T'(TM x R) restrict to Xy,
[-,-]: Xg x Xy = Xy (5)
p: Xy — I(TM x R) C T(T(M x R)). 6)

We will show that the Lie algebra Xy is the module of sections of
a Lie algebroid tgM — M x R. Thus, tgM will be constructed
indirectly. We first need to show that Xy is indeed the module
of sections of a vector bundle on M x R. This vector bundle is
isomorphic to tgyM x R.

Lemma 7. Fix a degrading . The associated map
AV :T(tgM xR) — X (AYX)(x,t) = (6:(X(x,1)))
is an isomorphism of C® (M x R)-modules.

Proof. Let H; := ¢(H'/H™*'). Then TM = @Y H. For X €
T(tgM x R) write p(X) = YN X; with X; € T(H; x R). We com-
pute

N .
A (AYX)[1=0 = Y OF (%) |10 = k!Xl1=0 € T(Hy) € T(H"),
i=1
so A¥X € Xp.

Clearly, AY is C*(M x R)-linear. Since ¢ o & is invertible for t # 0,
AY is injective. We need to show it is surjective.

Let Y € Xy and write Y = YN, Y; with Y; € T(H; x R). Since
oY |- € F.(Hk), we have 9FY;|;—g = 0 for all k < i, and therefore
Yi(x,t) = t'X;(x,t) for some X; € I'(H; x R). Thus Y = A¥X for
X =Y 9 (X)) O

We claim that Xp is the module of sections of a Lie algebroid

tgM.
Let us introduce the restriction maps
evi : Xg CI(TM xR) — T(TM); X = X
For t # 0, ev; induces a canonical identification of Lie algebroids
tyM|; = TM. Att = 0, evg is zero on Xgy. On the other hand,
Lemma 7 gives a vector space isomorphism tyM|yp = tyM that

turns out to be canonical as well, i.e. it does not to depend on
the choice of degrading 1.
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Lemma 8. The map evl! : Xy — T(tyM) defined by
evhl = evgo (A¥)71

is independent of . Moreover, ev(! is a Lie algebra homomorphism, where

Xy has the bracket restricted from T(TM x R) as in equation (5).
Proof. We could define ev{i independently of ¢ as the map
N . N ) .
evhl = @evg) : Xpg— @F(Hl/Hl_l) =T'(tgM), (7)
i=1 i=1

with components
ev(()i) . Xy — T(H'/H™Y); X = 0 (11, §X|t:0> :

To see that ev{){ o A¥ = evy is a direct calculation, similar to the
calculation in the proof of Lemma 7.
To verify that evl is a Lie algebra homomorphism, we compute:

ev{){[X,Y] = é\é(n (% ai[X, Y]|t:0> = GNBUi (Zl—' i <;) [a{X,ai_jY]>
i=1 ’

i=1 j=0
= DX [oy (holx) iy ()] = el et
i=1j=

O]

The family of restrictions evé{ and ev; (t # 0) therefore gives a
canonical identification of Lie algebroids

Xy =T(EgM);  tgM = (tgM x {0}) U (TM xR*)  (8)

This defines the algebraic structure of tyM.

The smooth structure of tgM is implicit in the identification Xy =
['(EyM) and the isomorphism A¥. We can make this smooth struc-
ture explicit as follows. There is a non-canonical isomorphism of
vector bundles that depends on 1, and we use this to determine the
smooth structure of the disjoint union in Equation 8. To be explicit,
we declare that the following map be a diffeomorphism:

O tgM xR — tgM = tyM x {0} U TM xR, (9)
(X 0 t) — (x’ll)(éfv)/ t) if ¢ 7§ O’
- (x,0,0) ift =0,

where x € M, v € tgM,, t € R. It is straightforward to verify
that the smooth structure on tyM is independent of the choice of
degrading 1.
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9. INTEGRATION OF THE H-TANGENT LIE ALGEBROID

In this section and the next we confirm that the groupoid TyM of
Equation 2 admits a unique smooth structure such that tyM is its
Lie algebroid. Specifically, the map of Equation 3 is the composition
of the map of equation 9 with an exponential map tyM — TyM
from the Lie algebroid to the Lie groupoid.

According to Lie’s Third Theorem, every Lie algebra integrates
to a unique simply connected Lie group. Similarly, under mild hy-
potheses, every Lie algebroid determines a unique s-simply con-
nected Lie groupoid, i.e. a Lie groupoid whose source fibers are

simply connected [CF03] [Nis00].

The two components of the Lie algebroid
tgM = tgM X {O} UTM x R*

each determine an s-simply connected Lie groupoid. Att = 0, the
Lie groupoid TyM is s-simply connected, since each of the nilpotent
groups TyMy is, by construction, simpy connected. The s-simply
connected groupoid that integrates TM is not the pair groupoid
M x M, but the fundamental groupoid I1y;. Elements in II; are ho-
motopy classes of paths in M with fixed end points. Source and
range of an arrow 7y = [c] represented by a path c: [0,1] — M are
the end points of the path: s(y) = ¢(0), r(y) = c(1). Composition
of paths gives the groupoid multiplication. The covering map

[y = MxM e (r(y),s(7))

is a groupoid homomorphism, and a local diffeomorphism. In a
neighborhood of the unit space the groupoids IIy; and M x M are
naturally isomorphic and diffeomorphic.

By Theorem 2 and 3 in [Nis00], the disjoint union

G = TyM x {0} LTIy x R*

has a unique smooth manifold structure that makes it a Lie group-
oid with Lie algebroid tyM. Following [Nis00], the smooth struc-
ture of G is induced by an exponential map from the Lie algebroid
tgM to G as follows.

Let V be a connection on TM that is compatible with a degrading
Y : tyM — TM in the sense that V commutes with the dilations 5?) .
The connection V + % on TM x R induces a connection on tyM via
the degrading and the non-canonical isomorphism AY.

A connection on a Lie algebroid induces an exponential map to
an associated Lie groupoid. See [NisO0] for details of the general
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construction. We describe here the exponential map
exp(j D tgM — é
When restricted to t = 0 the exponential map tgM — TyM does

not depend on V, and is simply the identification tyM = Ty M.

Because V commutes with the dilation automorphisms (5;/], the
restriction of the connection on tyM to TM x {t} is again V, inde-
pendent of ¢ # 0. Therefore for t € R* the exponential map

exptg : TM — Iy
is fixed, and is the lift of the exponential map
ExpV:TM — M x M (x,0) — (expY (v),x) (10)
We obtain a commutative diagram

g -
&HMLQ

T EXp [/AY l/

tHM X R—>THM

with the left vertical arrow as in Equation 9, and the bottom arrow
as in Equation 3.

The condition for integrability? of the Lie algebroid tyM is that
the exponential map exp¥: tyM — G be injective in a neighborhood
of the zero section of tyM.

Let U C TM be an open neighbourhood of the zero section such
that the exponential map Exp" |i; is injective. Then Exp¥"V is injec-
tive on the open set

{(x,0,t) e tyM xR | (x,¥(6;v)) € U}, (11)
with image
U:= (TyM x {0}) U (Exp" (U) x R*) € TyM. (12)
Such a set U is an open neighbourhood of both the unit space
TyM© = M x R and the osculating groupoid TyM|;—¢g = TyM x
0}.
{ %y the results in [Nis00], G is a smooth groupoid with the smooth

structure in a neighborhood of t = 0 induced by expY. Theorem 6
is an immediate corollary: just observe that U C Ty M contains the
entire t = 0 fiber Ty M, and that in this neighborhood the groupoid

operations of Ty;M agree with those of G.

’This necessary hypothesis is not explicitly mentioned in , but the cor-
rection was published in [BNO3].
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