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The Log Minimal Model Program for horospherical varieties via

moment polytopes

Boris Pasquier∗

December 12, 2016

Abstract

In [Pas15], we described the Minimal Model Program in the family of Q-Gorenstein pro-
jective horospherical varieties, by studying a family of polytopes defined from the moment
polytope of an ample Q-Cartier Q-divisor of the variety we begin with. Here, we summarize
the results of [Pas15] and we explain how to generalize them in order to describe the Log
Minimal Model Program for pairs (X,∆) where X is a projective horospherical G-variety and
∆ is a B-stable Q-divisor (where G is a connected reductive algebraic group and B a Borel
subgroup of G).

Mathematics Subject Classification. 14E30 14M25 52B20 14M17
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1 Introduction

In this paper, we work over the complex numbers.
Let G be a connected reductive algebraic group. Let X be a normal G-variety. We say that

X is horospherical if there exists x ∈ X such that G · x is open in X and x is fixed by a maximal
unipotent radical of G.

Note that if X is horospherical then there exists a Borel subgroup B of G such that B · x
is open in X, ie X is a spherical variety. Moreover, if X is projective and horospherical, then
X is the closure of the G-orbit of a sum of highest weight vectors in the projectivization of a
multiplicity free G-module (see [Pas15, Proposition 2.11]). This point of view motivates the clas-
sification of projective horospherical varieties in terms of polytopes (called moment polytopes).
In this paper, we propose to describe different variations of the Minimal Model Program (MMP)
for projective horospherical varieties (including projective toric varieties) via moment polytopes.

We first recall what are the MMP and its log version: the Log MMP.

Definition 1. Let X be a normal projective variety. Let ∆ be a Q-divisor (not necessarily Q-
Cartier). Let KX be a canonical divisor of X. We say that (X,∆) is a log pair if KX + ∆ is
Q-Cartier.
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Note that the divisor ∆ is sometimes supposed to be effective in the Log MMP theory. Here,
we do not necessarily make this assumption.

We denote by NE(X) the cone of numerical classes of effective curves on X, by NE(X)
its closure and by NE(X)KX+∆<0 (respectively NE(X)KX+∆>0) the open half-space of NE(X)
defined by curves that are negative (respectively positive) along the divisor KX +∆.

Then we summarized, in Figure 1, the principle of the Log MMP (without Q-factorial as-
sumption).

The different versions of MMP and Log MMP depend on the choice of the family H:

• Q-factorial MMP (or generally just called MMP), when H is the set of log pairs (X, 0) such
that X is Q-factorial.

• non-Q-factorial MMP (or Q-Gorenstein MMP), when H is the set of log pairs (X, 0) such
that X is Q-Gorenstein.

• Q-factorial Log MMP (or generally just called Log MMP), when H is the set of log pairs
(X,∆) such that X is Q-factorial.

• non-Q-factorial Log MMP, when H is the set of all log pairs (X,∆).

In [Pas15], the first two families was considered for horospherical varieties by reducing to
the description of one-parameter families of polytopes. Moreover, in [Pas14], the non-Q-factorial
MMP and Log MMP were also detailed in general before to discuss on the case of spherical
varieties.

In this paper, we consider the last two families when X is horospherical.
Note that, in these two families, we can distinguish several subfamilies according to types of

singularities: terminal, canonical, Kawamata log terminal (klt), purely log terminal, divisorial
log terminal, weakly log-terminal and log canonical (lc). For more details about these different
types of singularities see for example [Fuj07]. Here, we will only deals with klt and log canonical
singularities, whose definitions (see Definition 7) do not depend on the log resolution (by assuming
that the coefficient of ∆ are at most one in the definition of lc singularities).

The results that we obtain in this paper can be summarized in the following theorem.

Definition 2. A horospherical pair is a log pair (X,∆) such that X is a horospherical G-variety
and ∆ is B-stable, where G is a connected reductive algebraic group and B is a Borel subgroup
of G.

In this paper, we state and discuss the following result.

Theorem 1. Let (X,∆) be projective horospherical pair. Suppose that (KX +∆) is non-zero.
Then, for any choice of an ample Q-Cartier Q-divisor of X, we can construct a family of poly-

topes, depending of one non-negative rational parameter, such that: each polytope is either empty
or the moment polytope of a projective horospherical variety; there are finitely many horospherical
varieties that correspond to a polytope of the family; and all these horospherical varieties are the
ones that appear in the log MMP.

In particular the Log MMP described by Figure 1 works and ends as soon as −(KX + ∆) is
non-zero, if H is the family of klt horospherical pairs, if H is the family of lc horospherical pairs,
or if H is the family of horospherical pairs (X,∆) such that (KX +∆) is effective. We can also
restrict these families to log pairs with ∆ effective.

Moreover, we can explicitly describe each step of the Log MMP until it ends.
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Figure 1: Log MMP in a family H of log pairs

(X,∆) ∈ H

Is KX +∆ nef? (X,∆) is a minimal model

There exists a variety Y
attached to the contraction φ : X −→ Y

of a face of NE(X)KX+∆<0

Is dim(Y )
less than
dim(X)?

φ is of fiber type

Is (Y, φ∗(∆)) in H? φ contracts a Cartier divisor

There exists X+ in H attached to
the small contraction φ+ : X+ −→ Y

of a face of NE(X+)K
X++∆+>0,

such that (X+,∆+) is in H,
where ∆+ = (φ+)−1

∗ φ∗(∆)

replace
(X,∆) by (Y, φ∗(∆))

replace
(X,∆) by (X+,∆+)

yes END

no

yes END

no

yes

no
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The strategy is the same as in [Pas15] and the proof of Theorem 1 is very similar to the proof
of [Pas15, Theorem 1.1]. Hence, in Section 2, we follow the notation of [Pas15] and we recall
briefly the definitions and properties that we need here. Then, in Section 3, we explain why the
proofs of [Pas15] can be easily adapted to the log case. And we conclude and give examples in
Section 4.

2 Projective horospherical varieties and polytopes

2.1 Notation

We will not recall here the long Luna-Vust theory of horospherical embeddings (classification in
terms of colored fans). For more details on horospherical varieties, we refer the reader to [Pas08],
and for basic results on Luna-Vust theory of spherical embeddings, we refer to [Kno91].

In this paper, we will only describe and use another a classification of projective horospherical
varieties in terms of moment polytope, which was first introduced in [Pas15, Section 2.3].

We fix a connected reductive algebraic group G, a Borel subgroup B of G and a maximal
torus T in B.

Then G/H always denotes a horospherical homogeneous space such that H contains the
unipotent radical B. And if X is a horospherical variety, we denote by G/H the horospherical
homogeneous space as above that is isomorphic to the open G-orbit of X, and we say that X is
a G/H-embedding. (Note that Borel subgroups are all conjugated in G, so that the assumption
on H can be done without loss a generality.)

Here, in order to simplify, we say here that a G/H-embedding is a normal algebraic G-variety
with an open G-orbit isomorphic to G/H. (See [Pas15, section 2.1] for the precise definition and
the notion of isomorphism of G/H-embeddings.)

The normalizer of H in G is a parabolic subgroup of G, we denote it by P .
Let S be the set of simple roots of (G,B, T ). Then, we denote by R the subset of S of simple

roots of P . Let X(T ) (respectively X(T )+) be the lattice of characters of T (respectively the set
of dominant characters). Similarly, we define X(P ) and X(P )+ = X(P )∩X(T )+. Note that the
lattice X(P ) and the cone X(P )+ are generated by the fundamental weights ̟α with α ∈ S\R
and the weights of the center of G.

We denote by M the sublattice of X(P ) consisting of characters of P vanishing on H. (The
rank of M is called the rank of G/H.) Let N := HomZ(M,Z) be the dual of M .

For any free lattice L, we denote by LQ the Q-vector space L⊗Z Q.

For any α ∈ S\R, we define

Wα,P := {m ∈ X(P )Q | 〈m,α∨〉 = 0}.

Note that these hyperplanes correspond to the walls of the dominant chamber X(P )+.

2.2 Divisors of horospherical varieties and moment polytopes

In this section, we explain how to construct a polytope from an ample Q-Cartier Q-divisor of a
projective horospherical variety.
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First, let us justify why we only consider B-stable divisors.

Proposition 2. ([Bri89, Section 2.2]) Any divisor of any G/H-embedding is linearly equivalent
to a B-stable divisor.

Now, we describe theB-stable prime divisors of aG/H-embeddingX. We denote byX1, . . . ,Xr

the G-stable prime divisors of X. The other B-stable prime divisors (ie those that are not G-
stable) are the closures in X of B-stable prime divisors of G/H (which are called colors of G/H).
They are indexed by the simple roots α in S\R and we denote them by Dα (see [Pas08, Section 2]
for an explicit description of these divisors).

Hence, any B-stable divisor (respectively Q-divisor) of X can be written as follows:
∑r

i=1 diXi +
∑

α∈S\R dαDα with the di’s and the dα’s in Z (respectively Q).

All these B-stable prime divisors have an image in the lattice N as follows. Note that the lat-
ticeM is in bijection with the set of B-semi-invariant rational functions of G/H up to a scalar.Any
B-stable divisor induces a B-stable valuation and then, by restriction to B-semi-invariant rational
functions, it induces a point in N . We denote by xi the corresponding point of N associated to
Xi, it is a non-zero primitive element of the lattice N . For any simple root α ∈ S\R, the point
associated to Dα is the restriction (may be zero) of the coroot α∨ to M , which we denote by α∨

M

(see [Pas08, Section 2]).

In [Bri89], there are characterizations of Cartier, Q-Cartier and ample B-stable divisors of
spherical varieties and also a description of the global sections of such divisors in terms of poly-
topes, that permits to give the following definition and result.

In the rest of the section, we fix a projective G/H-embedding X and a Q-divisor D =
∑r

i=1 diXi +
∑

α∈S\R dαDα of X. And we suppose that D is Q-Cartier and ample.

Definition 3. The pseudo-moment polytope of (X,D) is

Q̃D := {m ∈MQ | 〈m,xi〉 ≥ −di, ∀i ∈ {1, . . . , r} and 〈m,α∨
M 〉 ≥ −dα, ∀α ∈ FX}.

Let v0 :=
∑

α∈S\R dα̟α. The moment polytope of (X,D) is QD := v0 + Q̃D.

Note that v0 is not necessarily in MQ, but only in X(P )Q.

Proposition 3. [Pas15, Corollary 2.8]

1. The pseudo-moment polytope Q̃D of (X,D) is of maximal dimension in MQ.

2. The moment polytope QD is contained in the dominant chamber X(P )+ and it is not con-
tained in any wall Wα,P for α ∈ S\R.

3. There is a bijection between faces of QD (or Q̃D) and G-orbits of X (preserving the respective
orders). In particular, the G-stable primes divisors Xi are in bijection with the facets of QD

that are not contained in any wall Wα,P for α ∈ S\R (the bijection maps Xi to the facet of
Q̃D defined by 〈m,xi〉 = −di).

4. The divisor D can be computed from the pair (Q, Q̃) as follows: the coefficients dα with
α ∈ S\R are given by the translation vector in X(P )+ that maps Q̃ to Q; and for any
i ∈ {1, . . . , r}, the coefficient di is given by −〈vi, xi〉 for any element vi ∈ MQ in the facet
of Q̃ associated to Xi.

5



2.3 Classification of projective horospherical varieties in terms of polytopes

In this section, we write the classification of projective G/H-embeddings in terms of G/H-
polytopes (defined below in Definition 4) and we also give a similar classification of polarized
projective horospherical varieties.

Definition 4. Let Q be a polytope in X(P )+Q (not necessarily a lattice polytope). We say that
Q is a G/H-polytope, if its direction is MQ and if it is contained in no wall Wα,P with α ∈ S\R.

Let Q and Q′ be two G/H-polytopes in X(P )+Q . Consider any polytopes Q̃ and Q̃′ in MQ

obtained by translations from Q and Q′ respectively. We say that Q and Q′ are equivalent
G/H-polytopes if the following conditions are satisfied.

1. There exist an integer j and 2j affine half-spaces H+
1 , . . . ,H

+
j and H′+

1 , . . . ,H
′+
j of MQ

(respectively delimited by the affine hyperplanes H1, . . . ,Hj and H′
1, . . . ,H

′
j) such that Q̃

is the intersection of the H+
i , Q̃

′ is the intersection of the H′+
i , and for all i ∈ {1, . . . , j},

H+
i is the image of H′+

i by a translation.

2. With notation of the previous item, for all subset J of {1, . . . , j}, the intersections ∩i∈JHi∩Q
and ∩i∈JH

′
i ∩Q

′ have the same dimension.

3. Q and Q′ intersect exactly the same walls Wα,P of X(P )+ (with α ∈ S\R).

Proposition 4. [Pas15, Proposition 2.10] The map from (isomorphism classes of) projective
G/H-embeddings to the set of equivalence classes of G/H-polytopes that maps X to the class
of the moment polytope of (X,D), where D is any ample Q-Cartier B-stable Q-divisor, is a
well-defined bijection.

Since isomorphism classes of horospherical homogeneous spaces are in bijection with pairs
(P,M) where P is a parabolic subgroup of G containing B and M is a sublattice of X(P ) (see
[Pas15, Proposition 2.4]), we can give the following alternative classification.

Definition 5. A moment quadruple is a quadruple (P,M,Q, Q̃) where P is a parabolic subgroup
of G containing B, M is a sublattice of X(P ), Q is a polytope in X(P )+Q and Q̃ is a polytope in
MQ that satisfy the three following conditions.

1. There exists (a unique) ̟ ∈ X(P )Q such that Q = ̟ + Q̃.

2. The polytope Q̃ is of maximal dimension in MQ (ie its interior in MQ is not empty).

3. The polytope Q is not contained in any wall Wα,P for α ∈ S\R.

Definition 6. A polarized horospherical variety (respectively G/H-embedding) is a pair (X,D)
such that X is a projective horospherical variety (respectively G/H-embedding) and D is an
ample Q-Cartier B-stable Q-divisor. We say that (X,D) is isomorphic to (X ′,D′) if there is an
isomorphism from X to X ′ of embeddings of the same homogeneous space such that D identifies
with to D′ under this isomorphism.

Corollary 5. The map from the set of isomorphic classes of polarized projective horospherical
varieties to the set of classes of moment triples, that maps (X,D) to (P,M,QD, Q̃D) is a bijection.
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2.4 G-equivariant morphisms between projective horospherical varieties and

polytopes

The existence of dominant G-equivariant morphisms between projective horospherical varieties
can be characterized in terms of colored fans [Kno91] but also in terms of moment polytopes.

Consider two horospherical homogeneous spaces G/H and G/H ′. Let (X,D) be a polarized
G/H-embedding, let (X ′,D′) be a polarized G/H ′-embedding. By Corollary 5, (X,D) corre-
sponds to a moment quadruple (P,M,Q, Q̃) and (X ′,D′) corresponds to a moment quadruple
(P ′,M ′, Q′, Q̃′). (We also denote by R′ the set of simple roots of P ′ and by N ′ the dual lattice of
M ′.)

A first necessary condition for the existence of a dominant G-equivariant morphism from X
to X ′, is the existence of a projection π from G/H to G/H ′. In particular H ′ ⊃ H, P ′ ⊃ P
and R′ ⊃ R. The projection π induces an injective morphism π∗ from M ′ to M . We suppose
that this necessary condition is satisfied in the rest of the section and we identifyM ′ with π∗(M ′).

We first need to define a map ψ from the set of facets of Q̃ to the set of faces of Q̃′ (including
Q̃′ itself).

First, note a general fact on polytopes: if P is a polytope in Qr, then for any affine half-space
H+ delimited by an affine hyperplane H in Qr, there exists a unique face F of P and a point
x ∈ Qr such that F is defined by x + H (i.e. F = P ∩ (x + H) and P ⊂ v + H+). Then, for
any facet F of Q̃, let H+ be the affine half-space in MQ, delimited by an affine hyperplane H,
such that F = H ∩ Q̃ and Q̃ ⊂ H+. If H+ ∩M ′

Q 6= M ′
Q, it is an affine half-space in M ′

Q and,

applying the above fact to P = Q̃′, it gives a unique face F ′ of Q̃′. We set ψ(F ) = F ′. And if
H+ ∩M ′

Q =M ′
Q, we set ψ(F ) = Q̃′.

See [Pas15, Example 2.15] to illustrate this definition.

We can now characterize the existence of dominant G-equivariant morphisms.

Proposition 6. [Pas15, Proposition 2.16 and Corollary 2.17] Under the above necessary condi-
tion, there exists a dominant G-equivariant morphism from X to X ′, if and only if

1. for any set G of facets of Q̃, ∩F∈GF 6= ∅ implies ∩F∈Gψ(F ) 6= ∅, and

2. for any α ∈ S\R such that Q ∩Wα,P 6= ∅ , we have Q′ ∩Wα,P 6= ∅.

Suppose there exists a dominant G-equivariant morphism φ from X to X ′. Let O be the G-
orbit in X associated to a face ∩F∈GF (where G is a set of facets). Then φ(O) is the G-orbit in
X ′ associated to the face ∩F∈Gψ(F ) of Q′.

Remark that, in Proposition 6 (1), we could replace the pseudo-moment polytope by the
moment polytope (by extension of the definition of ψ).

2.5 Curves in horospherical varieties

Here we describe effective curves of a projective horospherical variety X and their intersections
with ample Q-Cartier Q-divisors.

We denote by N1(X) the group of numerical classes of 1-cycles of the variety X. Recall that
NE(X) is the convex cone in N1(X) generated by effective 1-cycles.
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Proposition 7. [Pas15, Section 2.5] Let X be a projective horospherical variety. Let Q be any
moment polytope of X (with any choice of an ample Q-Cartier Q-divisor D of X).

There exist B-stable rational curves Cµ and Cα,v in X (which do not depend on the choice of
Q), indexed by edges µ of Q and by pairs (α, v) with α ∈ S\R and v a vertex of Q that is not in
the wall Wα,P , such that:

1. the classes [Cµ] and [Cα,v] of these curves generate NE(X), which is then closed and poly-
hedral;

2. for any edge µ of the moment polytope QD, the intersection number D.Cµ is the integral
length of µ, ie the length of µ divided by the length of the primitive element in the direction
of µ;

3. for any pair (α, v) as above, we have D.Cα,v = 〈v, α∨〉.

3 Log MMP via a one-parameter family of polytopes

We begin with any horospherical pair (X,∆) (see Definition 2).

3.1 The one-parameter family of polytopes

We construct the one-parameter family of polytopes that permits to run the Log MMP from
(X,∆) as follows. We use the notation of Section 2.

We write ∆ =
∑r

i=0 δiXi +
∑

α∈S\R δαDα. Moreover, an anticanonical divisor of X is

−KX =
∑r

i=1Xi +
∑

α∈S\R aαDα where aα = 〈2ρP , α∨〉 such that ρP is the sum of positive
roots of G that are not roots of P [Bri89].

For any rational number ǫ > 0 small enough, the divisor D + ǫ(KX + ∆) is still ample (and
Q-Cartier by hypothesis), so that (X,D + ǫ(KX + ∆)) defines a moment polytope Qǫ and a
pseudo-moment polytope Q̃ǫ. Then we extend naturally the definition for any rational number
ǫ > 0. More precisely, for any ǫ > 0, we define Q̃ǫ := {x ∈MQ | Ax ≥ B̃+ ǫC̃} and Qǫ := vǫ+ Q̃ǫ

where the matrices A, B̃, C̃ and the vector vǫ are defined below.

Recall that x1, . . . , xr denote the primitive elements of N associated to the G-stable prime
divisors Xi of X. We choose an order in S\R and we then denote by α1, . . . , αs its elements. We
fix a basis B of M and we denote by B∨ the dual basis in N .

Now define A ∈ Mr+s,n(Q) whose first r lines are the coordinates of the vectors xi in the
basis B∨ with i ∈ {1, . . . , r} and whose last s lines are the coordinates of the vectors α∨

jM in B∨

with j ∈ {1, . . . , s}.
Let B̃ be the column matrix such that the pseudo-moment polytope of D is defined by {x ∈

MQ | Ax ≥ B̃}. In fact, if D =
∑r

i=1 biXi +
∑

α∈S\R bαDα, then B̃ is the column matrix
associated to the vector (−b1, . . . ,−br,−bα1

, . . . ,−bαs).
Similarly, the column matrix C̃ corresponds to the vector (1−δ1, . . . , 1−δr, aα1

−δα1
, . . . , aαs−

δαs).
Finally, define vǫ :=

∑

α∈S\R(bα + ǫ(δα − aα))̟α (which is not necessarily in MQ).

Note that, if MQ = X(P )Q, we can also write the moment polytopes as follows Qǫ := {x ∈
MQ | Ax ≥ B+ǫC} where B and C are respectively the column matrices associated to the vectors
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(−b1+〈x1,
∑

α∈S\R bα̟α〉, . . . ,−br+〈xr,
∑

α∈S\R bα̟α〉, 0, . . . , 0) and (1−δ1+〈x1,
∑

α∈S\R(δα−
aα)̟α〉, . . . , 1 − δr + 〈xr,

∑

α∈S\R(δα − aα)̟α〉, 0, . . . , 0). Moreover, even if MQ 6= X(P )Q, it is

easy to see that the s last inequalities defining Q̃ǫ are equivalent to the fact that Qǫ is in X+(P ).

Remark 1. In [Pas15], the definition of the family of polytopes seams to be more complicated.
Indeed we extended step by step the family of pseudo-moment polytopes to any rational number
ǫ > 0, by erasing a line i of A, B̃ and C̃ with i ∈ {1, · · · , r} as soon as this line does not correspond
to a facet of Q̃ǫ. It gives the same family of polytopes because of the convexity of the set of ǫ’s
such that the line i corresponds to a facet of Q̃ǫ. But we had to give this complicated construction
to define the good equivalence relation in this family of polytopes so that the equivalence classes
of G/H-polytopes (Definition 4) in the family (Qǫ)ǫ∈[0,ǫmax[ and the equivalence classes ([Pas15,

Definition 3.14]) in the family (Q̃ǫ)ǫ∈[0,ǫmax[ are the same ([Pas15, Proposition 4.1]), where ǫmax is
the minimum (may be +∞) non-negative rational number ǫ such that Qǫ is not a G/H-polytope.
If ǫmax is finite, it is a positive rational number by [Pas15, Corollary 3.16].

Remark 2. Note also that, if C̃ ≥ 0 and non-zero, ǫmax is finite (and rational). Indeed, since
C̃ ≥ 0, we get easily that for any ǫ > 0, Q̃ǫ ⊂ Q̃0. But C̃ 6= 0 and Q̃0 is bounded, then there exists
an index i in {1, . . . ,m+ r} such that C̃i > 0, so that the set Q̃0 ∩ {X ∈MQ | AiX ≥ B̃i + ǫC̃i}
is empty for ǫ big enough (even if Ai = 0). Hence, Q̃ǫ is empty for ǫ big enough, in particular Qǫ

cannot be a G/H-polytope for any ǫ > 0.
Moreover, if ǫmax is finite, Qǫmax is neither empty nor a G/H-polytope and for any ǫ > ǫmax,

Qǫmax is empty [Pas15, Remark 3.18].

Remark 3. The construction above of the families (Qǫ) and (Q̃ǫ) can be made for any B-stable
Q-divisor D′ instead of KX +∆. And then, D′ is Q-Cartier if and only if for ǫ small enough the
polytopes Qǫ are G/H-polytopes equivalent to Q0. Indeed, if D′ is Q-Cartier, then for ǫ small
enough, D + ǫD′ is Q-Cartier and ample, and Qǫ is the moment polytope of (X,D + ǫD′), in
particular it is equivalent to the moment polytope Q0 of (X,D). Inversely, let ǫ small enough
such that Qǫ is a G/H-polytope equivalent to Q0. Then the pair (Qǫ, Q̃ǫ) corresponds to a
unique polarized variety (X,D′′) where D′′ is an ample Q-Cartier B-stable Q-divisor. Using 4. of
Proposition 3, we can compute that D′′ = D + ǫD′, in particular D′ is Q-Cartier.

3.2 Construction of pairs, contractions and flips

We apply [Pas15, Corollary 3.16] to the family (Q̃ǫ)ǫ∈Q≥0
. Then there exist non-negative integers

k, j0, . . . , jk, rational numbers αi,j for i ∈ {0, . . . , k} and j ∈ {0, . . . , ji} and αk,jk+1 = ǫmax ∈
Q>0∪{+∞} ordered as follows with the convention that αi,ji+1 = αi+1,0 for any i ∈ {0, . . . , k−1},

1. α0,0 = 0;

2. for any i ∈ {0, . . . , k}, and for any j < j′ in {0, . . . , ji + 1} we have αi,j < αi,j′ ;

such that the equivalent classes of G/H-embeddings of pseudo-moment polytopes of the family
(Qǫ)ǫ∈[0,ǫmax[ are:

1. Xi,j for any i ∈ {0, . . . , k} and j ∈ {0, . . . , ji}, respectively associated to moment polytopes
Qǫ with ǫ ∈]αi,j, αi,j+1[;

2. Yi,j for any i ∈ {0, . . . , k} and j ∈ {1, . . . , ji}, respectively associated to the moment poly-
tope Qαi,j ;
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All these varieties have the same B-stable and not G-stable prime divisors as X because they
have the same open G-orbit G/H. Moreover, any of their G-stable prime divisors corresponds to
a G-stable prime divisor of X (but the inverse is not necessarily true). Indeed a G-stable prime
divisor of one of these G/H-embeddings corresponds to a facet F , of the corresponding moment
polytope, that is not in any wall of the dominant chamber. In particular, if F̃ denotes the facet
of Q̃ obtained by translation of F , F̃ is defined by a hyperplane associated to one of the r first
lines of A, B̃ and C̃. We still denote by Xk, with k ∈ {1, . . . , r}, the G-stable prime divisor of
Xi,j or Yi,j when it is still a divisor of Xi,j or Yi,j.

Then, we define

∆Xi,j
:=

∑

k,Xk is a divisor of Xi,j

δkXk +
∑

α∈S\R

δαDα

and ∆Yi,j
similarly.

Note that for ∆ = KX we would have ∆Xi,j
= KXi,j

and ∆Yi,j
= KYi,j

.

Remark 4. For any i and j, for any ǫ ∈]αi,j, αi,j+1[ the pair (Q
ǫ, Q̃ǫ) corresponds to the polarized

variety (Xi,j ,D+ ǫ(KXi,j
+∆Xi,j

)) by the bijection of Corollary 5, and (Qαi,j , Q̃αi,j ) corresponds
to the polarized variety (Xi,j ,D + ǫ(KYi,j

+∆Yi,j
)).

If ǫmax is finite, the polytope Qαmax also defines a projective horospherical G-variety Z.
Indeed, we can apply Corollary 5 to a quadruple (P 1,M1, Qαmax , Q̃αmax) to get a polarized horo-
spherical variety. We define P 1 andM1 such that (P 1,M1, Qαmax , Q̃αmax) is a moment quadruple
as follows: M1

Q is the minimal vector subspace containing Q̃αmax and then M1 := M1
Q ∩M ; P 1

is the parabolic subgroup containing B with simple roots R1 that is the union of R with the
set of α ∈ S\R such that Qαmax is contained in the wall Wα,P . Then the moment quadruple
(P 1,M1, Qαmax , Q̃αmax) corresponds to a polarized horospherical variety (Z,DZ). In particular,
Z is a G/H1-embedding where H1 is the subgroup of P 1 defined as the intersection of kernels of
the characters of P 1 in M1.

Remark that, by definition, M1 ⊂ M and R ⊂ R1 so that we have a projection π :
G/H −→ G/H1. Note also that the above choice of P 1 and H1 is the unique such that
(P 1,M1, Qαmax , Q̃αmax) is a moment quadruple and π has connected fibers.

Now, by Proposition 6, we get dominant G-equivariant morphisms:

1. φi,j : Xi,j−1 −→ Yi,j for any i ∈ {0, . . . , k} and j ∈ {1, . . . , ji};

2. φ+i,j : Xi,j −→ Yi,j for any i ∈ {0, . . . , k} and j ∈ {1, . . . , ji};

3. φi : Xi,ji −→ Xi+1,0 for any i ∈ {0, . . . , k − 1};

4. and, if ǫmax is finite, φ : Xk,jk −→ Z.

With the same proofs as in [Pas15, Sections 4.3 and 4.4] (in particular by replacing the
condition on X to be Q-Gorenstein by the condition on KX + ∆ to be Q-Cartier), we get the
following results.

Proposition 8. 1. For any i ∈ {0, . . . , k} and j ∈ {1, . . . , ji}, the curves C that are contracted
by the morphism φi,j satisfy (KXi,j−1

+∆Xi,j−1
)·C < 0; for any i ∈ {0, . . . , k−1}, the curves

C that are contracted by the morphism φi satisfy (KXi,ji
+ ∆Xi,ji

) · C < 0; and, if ǫmax is
finite, the curves C that are contracted by the morphism φ satisfy (KXk,jk

+∆Xk,kj
) ·C < 0.
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2. For any i ∈ {0, . . . , k} and j ∈ {1, . . . , ji}, the curves C that are contracted by the morphism
φ+i,j satisfy (KXi,j

+∆Xi,j
) · C > 0.

3. For any i ∈ {0, . . . , k − 1}, the morphism φi contracts at least a G-stable divisor of Xi,ji.

Proposition 9. The pairs (Xi,j ,∆Xi,j
) with i ∈ {0, . . . , k} and j ∈ {0, . . . , ji} are horospherical

pairs (ie KXi,j
+ ∆Xi,j

is Q-Cartier). (And the pairs (Yi,j,∆Yi,j
) with i ∈ {0, . . . , k} and j ∈

{0, . . . , ji} are not horospherical pairs (ie KYi,j
+∆Yi,j

is not Q-Cartier).)

Note that, for any i ∈ {0, . . . , k − 1}, the Q-Cartier divisor φ∗i (KXi+1,0
+∆Xi+1,0

)− (KXi,ji
+

∆Xi,ji
) is supported in the exceptional locus of φi, then φi contracts a Cartier divisor.

3.3 Q-factorial Log MMP

For D general, the log MMP works also for the family of Q-factorial horospherical pairs. And for
D general, from a Q-factorial horospherical pair, all the contractions that appears above in the
log MMP are contractions of extremal rays.

Proposition 10. Let (X,∆) be a horospherical pair such that X is Q-factorial. Choose D such
that the vector B̃ is in the open set

⋃

I⊂{1,...,r+s}, |I|>n

π−1
I (Q|I|\ Im(AI)),

where πI is the canonical projection of Qr+s to its vector subspace corresponding to the coordinates
in I.

Then, for any i ∈ {0, . . . , k} and any j ∈ {0, . . . , ji}, the variety Xi,j is Q-factorial.

The proof is exactly the same as the proof of [Pas15, Proposition 4.6].

Remark 5. The open set where B̃ is chosen, is clearly not empty and dense in Qr+s, because for
any I of cardinality greater than n, the image of AI is of codimension at least one. And, since X
is Q-factorial, any vector B̃ ∈ Qr+s gives a Q-Cartier divisor.

Proposition 11. Let (X,∆) be a horospherical pair such that X is Q-factorial If D is general in
the set of ample Q-Cartier Q-divisors, all morphisms φi,j, φ

+
i,j , φi and φ (if ǫmax is finite) defined

in Section 3.2 are contractions of rays of the corresponding effective cones NE(Xi,j).

The proof is the same as the proof [Pas15, Proposition 4.8] by replacing KY by KY +∆Y and
allKXi,j

by KXi,j
+∆Xi,j

.

Remark 6. Proposition 11 is not true without the hypothesis of Q-factoriality (at least for flips):
see [Pas15, Example 5.6] (such an example also exists for toric varieties of dimension 3).

3.4 General fibers of contractions of fiber type

We assume here that ǫmax is finite.
then, we can also describe the general fibers of the morphism φ : Xk,jk −→ Z defined in

Section 3.2. We may assume that k = 0 and j0 = 0, in particular Xk,jk = X.
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Theorem 12. Let (X,∆) be a horospherical pair, with X a G/H-embedding. Let D be an ample
Q-Cartier B-stable Q-divisor on X. suppose that there exists a positive rational ǫ1 such that for
any ǫ ∈ [0, ǫ1[ the G/H-polytope Qǫ is equivalent to Q = Q0 and Qǫ1 is not a G/H-polytope.

Let H1, P 1, R1 and M1 defined as in Section 3.2. In particular Qǫ1 is a G/H1-polytope.
Denote by Z the associated G/H1-embedding and by φ the G-equivariant morphism from X to Z.

Then the general fibers of φ are either the flag variety P 1/P or a projective horospherical
variety Fφ. Moreover in the second case, Fφ is a L1/H2-embedding, where L1 := H1/Ru(H

1) and
H2 := H/Ru(H

1) (Ru(H
1) denoting the unipotent radical of H1 in G). And a moment polytope

of Fφ is the projection of Q in X(P )Q/M
1
Q.

Assume now that X is Q-factorial. Then, for general D, the general fibers P 1/P or Fφ have
Picard number one.

The proof and the description of Fφ are the same as in [Pas15, Section 4.6], where we only
used the matrices A, B̃, C̃ and the vector v0, and then never used that C̃ is defined from KX , so
that we can replace KX by any other Q-Cartier divisor (under the assumptions of the beginning
of the section).

4 Conclusion and examples

Let (X,∆) be a horospherical pair. Suppose that −(KX +∆) is non-zero and effective. Pick an
ample Q-Cartier B-stable Q-divisor of X. Then the family (Qǫ) of polytopes defined in Section 3.1
describes the Log MMP from (X,∆). Moreover, it preserves some singularities of X and (X,∆).

First give the definition of klt and lc singularities that we use here. It is equivalent to [KM98,
Definition 2.34].

Definition 7. Let (X,∆) be a log pair such that ⌈∆⌉ ≤ 1 (ie the coefficients of ∆ are at most 1).
A log resolution of (X,∆) is a proper birational map φ : V −→ X where V is smooth and such
that Exc(φ) + φ−1

∗ (∆) is a divisor whose support has simple normal crossings.
The pair (X,∆) has klt (respectively lc) singularities if there exists a log resolution φ : V −→

X such that every coefficient of the divisor KV −φ∗(KX+∆) of V is greater than −1 (respectively
at least −1).

In the case of horospherical varieties, we can construct log resolutions by using Bott-Samelson
resolutions and then we get the following characterization.

Theorem 13. [Pas16] A horospherical pair (X,∆) has klt singularities if and only if ⌊∆⌋ ≤ 0
(ie the coefficient of ∆ are less than 1). A horospherical pair (X,∆) has lc singularities if and
only if ⌈∆⌉ ≤ 1.

In [Pas16], we proved the first statement with the assumption that ∆ is effective. But it is
easy to see that this assumption is not necessary. And it is also not difficult to use the same proof
with “≥” instead of “>” to get the second statement.

Hence, we deduce easily that the family (Qǫ) gives the different types of MMP as follows.

1. if X is Q-factorial, we get the Q-factorial Log MMP;

2. if (X,∆) has klt singularities, we get the Log MMP for klt pairs (ie any log pair (Xi,j,∆i,j)
has klt singularities);
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3. if (X,∆) has log canonical singularities, we get the Log MMP for lc pairs (ie any log pair
(Xi,j ,∆i,j) has lc singularities).

Note also that the results above are still true if we assume in the definition of pairs that ∆ is
effective.

Remark 7. The assumption on −(KX + ∆) to be effective is too restrictive: it could happen,
without this assumption, that the family (Qǫ) describes the Log MMP until its end (see the end
of Example 2). Indeed, the optimal assumption to do is that ǫmax (defined in Remark 1) is finite.
We have “−(KX +∆) is non-zero and effective” implies “ǫmax is finite” (see Remark 2), but the
inverse is not true.

Moreover, if ǫmax = +∞, the family (Qǫ) describes a beginning (may be “empty”) of the Log
MMP that never ends.

Remark also that −(KX +∆) is effective as soon as (X,∆) has lc singularities.

Example 1. Let G = SL2(C)×C∗, let P = B be the product of the subgroup of upper triangular
matrices of SL2(C) by C∗ and let M = X(B). We denote by ̟α the fundamental weight of G
associated to the unique simple root of (G,B). And we denote by ̟0 the weight of B defined by
the projection on C∗. Then M = Z̟α ⊕ Z̟0 and X(B)+ = N̟α ⊕ Z̟0.

The pair (P,M) defines (up to isomorphism) a horospherical homogeneous space G/H of
dimension 3. We define

A =









1 −1
2 1
−1 0
1 0









and B =









−b1
b1
−b3
0









,

where b1 and b3 are rational numbers such that b3 > 0.
We can check that the polytope Q0 := {X ∈ MQ | AX ≥ B} is a triangle that intersects

the line Q̟0 in exactly one vertex. Then the moment triple (P,M,Q0, Q0) corresponds to the
polarized G/H-embedding (X,D) where the ample Q-Cartier B-stable Q-divisor D is of the form
b1X1−b1X2+b3X3+0Dα. Note that the three G-stable divisors of X correspond to x1 = (1,−1),
x2 = (2, 1) and x3 = (−1, 0) respectively, and that α∨

M is (1, 0), in the dual basis of the basis
(̟α,̟0) of M .

Now define Qǫ := {X ∈MQ | AX ≥ B + ǫC}, where C ∈M4,1(Q). We can check that, Qǫ is
a triangle that intersects the line Q̟0 in exactly one vertex for any ǫ small enough, if and only if
C1 +C2 = 0. Here, an anticanonical divisor of X is −KX = X1 +X2 +X3 + 2Dα. In particular,
we can compute with Remark 3 that KX is not Q-Cartier.

More generally, if ∆ = δ1X1+ δ2X2+ δ2X3+ δαDα is a B-stable Q-divisor of X, then KX +∆
is Q-Cartier if and only if 4 + δ1 + δ2 − 3δα = 0. In particular, if ∆ is effective, (X,∆) does never
have klt or even lc singularities.

We now consider three cases. Note that the matrix C that defines the moment polytopes Qǫ

as in Section 3 is C =









−1− δ1 + δα
−3− δ2 + 2δα
3− δ3 − δα

0









.

• For ∆ = −X1 + Dα, the pair (X,∆) has lc singularities. For any ǫ ∈ [0, b32 [, the G/H-

polytope Qǫ is equivalent to Q0, and Q
b3
2 is the point (0, b1 −

b3
2 ) then the Log MMP gives

a contraction of fiber type from X to a point. Note that here C̃ ≥ 0.
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• For ∆ = X1 +X2 + 2Dα, the pair (X,∆) does not have lc singularities. For any ǫ ∈ [0, b3[,
the G/H-polytope Qǫ is equivalent to Q0, and Qb3 is the point (0, b1) then the Log MMP
also gives a contraction of fiber type from X to a point. Note that here C̃ ≥ 0.

• For ∆ = 5
3X3 +

4
3Dα, the pair (X,∆) does not have lc singularities. For any ǫ ∈ [0,+∞[,

the G/H-polytope Qǫ is equivalent to Q0 then the Log MMP does not ends. Note that here
C̃ � 0.

We now consider another example with the same horospherical homogenous space G/H but
from another G/H-embedding.

Example 2. Let G, P , M , and A as in Example 1. Let B =









−b1
−b2
−b3
0









, where b1, b2 and b3 are

rational numbers such that −b1 − b2 > 0 and b1 + b2 + 3b3 > 0.
We can check that the polytope Q0 := {X ∈ MQ | AX ≥ B} is a triangle that is contained

in the interior of X(B)+.
Then the moment triple (P,M,Q0, Q0) corresponds to the polarized G/H-embedding (X,D)

where the ample Q-Cartier B-stable Q-divisor D is of the form b1X1 + b2X2 + b3X3 + 0Dα.
(The three G-stable divisors of X still correspond to x1 = (1,−1), x2 = (2, 1) and x3 = (−1, 0)
respectively.)

Now define Qǫ := {X ∈ MQ | AX ≥ B + ǫC}, where C ∈ M4,1(Q). We can check that, for
any C and for any ǫ small enough, Qǫ is a triangle that is contained in the interior of X(B)+.
Hence, X is Q-factorial by remark 3. In particular, for any B-stable Q-divisor ∆ of X, (X,∆) is
a horospherical pair and (X, 0) has klt singularities.

One can consider the same three cases as in Example 1 and obtain similar descriptions of Log
MMP (except that the contraction of fiber type goes to G/B ≃ P1 instead of a point).

We now consider another family of cases including the case of the pair (X, 0). Let ∆ = δ3X3,
with δ3 ∈ Q, then we distinguish four cases (here C̃ ≥ 0 if and only if δ3 ≤ 1). Let ǫ1 :=

b1+b2+3b3
5−3δ3

,

ǫ2 :=
−b1−b2

4 and ǫ3 =
b3

3−δ3
.

• If δ3 <
5
3 and ǫ1 < ǫ2, then for any ǫ ∈ [0, ǫ1[, the G/H-polytope Qǫ is equivalent to Q0,

and Qǫ1 is a point in the interior of the dominant chamber. Hence the Log MMP gives a
contraction of fiber type to G/B ≃ P1.

• If δ3 <
5
3 and ǫ1 = ǫ2, then for any ǫ ∈ [0, ǫ1[, the G/H-polytope Qǫ is equivalent to Q0,

and Qǫ1 is a point in the line Q̟0. Hence the Log MMP gives a contraction of fiber type
to a point.

• If δ3 <
5
3 and ǫ1 > ǫ2 or if 5

3 ≤ δ3 < 3, then for any ǫ ∈ [0, ǫ2[ (with ǫ2 defined above),
the G/H-polytope Qǫ is equivalent to Q0, Qǫ2 is a triangle that intersects the line Q̟0

in exactly one vertex, and for any ǫ ∈]ǫ2, ǫ3[, the G/H-polytope Qǫ is a quadrilateral that
intersects the line Q̟0 along an edge, and Qǫ3 is a segment in the line Q̟0. Hence the Log
MMP begins here with a flip and ends with a contraction of fiber type to the C∗-embedding
P1.

In particular, the family (Qǫ) describes the Log MMP until its end, even if C̃ is not non-
negative ie even if −(KX +∆) is not effective.
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• If δ3 ≥ 3, for any ǫ ∈ [0, ǫ2[, the G/H-polytope Qǫ is equivalent to Q0, Qǫ2 is a triangle that
intersects the line Q̟0 in exactly one vertex, and for any ǫ ∈]ǫ2,+∞[, the G/H-polytope Qǫ

is a quadrilateral that intersects the line Q̟0 along an edge. Hence the Log MMP begins
here with a flip and but does not end.

Remark 8. We can imagine a Log MMP avoiding flips. For example, consider the pair (X, 0) of
Example 2, and the case where ǫ1 > ǫ2. Instead of considering the flip (ie G/H-polytopes Qǫ with
ǫ ∈]ǫ2,

b3
3 [), we can apply the program from the beginning to the G/H-embedding corresponding

to the G/H-polytope Qǫ2 , which is the G/H-embedding of Example 1.
Remark that (X, 0) is a pair with klt singularities with an effective Q-divisor, but the G/H-

embedding of Example 1 admits no pair (X,∆) with klt singularities such that ∆ is effective.
But for any horospherical projective variety X, there exists a horospherical pair (X,∆) with
klt singularities. Indeed, pick any ample Q-Cartier divisor D′ of X. Up to linear equivalence,
we can suppose that D′ is B-stable and strictly effective (ie effective and the support of D′ is
the union of all prime B-stable divisors of X). Then there exists a positive integer k such that
⌊−KX −mD′⌋ ≤ 0, and ∆ := −KX −mD′ suits. Note that the constructed pair is quite special
because here −(KX +∆) = mD′ is ample.
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