Supplementary material

Detection of superoxide production in stimulated and non stimulated living cells using new

cyclic nitrone spin traps

Kahina Abbas, Micael Hardy, Florent Poulhès, Hakim Karoui, Paul Tordo, Olivier Ouari, and Fabienne Peyrot

Table of content

Table S1	page 1
Figure S1	page 2
Figure S2	page 3
Figure S3	page 4

Table S1: Parameters used for the simulation of the spectra in Fig. S1.

Spin trap	Spin adduct	Conformer	Exchange	A _P	A _N	A _{Hβ}	$A_{H\gamma}$
			time	(mT)	(mT)	(mT)	(mT)
ВМРО	ВМРО-ОН (100%)	-	-	-	1.41	1.27	-
DEPMPO	DEPMPO-OOH trans (20%)	T1 (53%)	32 ns	5.19	1.31	1.19	0.08
		T2 (47%)		4.85	1.32	1.01	0.09
	DEPMPO-OH (80%)	-	-	4.71	1.40	1.32	-
DIPPMPO	DIPPMPO-OH (100%)	-	-	4.68	1.40	1.33	-
Mito-DIPPMPO	Mito-DIPPMPO-OOH trans (75%)	T1 (52%)	41 ns	5.33	1.28	1.48	-
		T2 (48%)		5.29	1.29	0.87	-
	Mito-DIPPMPO-OH (25%)	-	-	5.29	1.36	1.05	-
CD-DIPPMPO	CD-DIPPMPO-OOH trans (100%)	T1 (54%)	64 µs	5.34	1.26	1.25	-
		T2 (46%)		5.26	1.30	1.12	-

Figure S1: Superimposition of the representative ESR spectra obtained with various cyclic nitrone spin traps in the presence of PMA-stimulated RAW macrophages (black lines) and their computer simulations (red lines). See legend of Fig. 2 for experimental conditions and Table S1 for simulation parameters.

Figure S2: Comparison of the representative ESR spectra obtained with DEPMPO or CD-DIPPMPO in the presence of unstimulated macrophages. DEPMPO (10 mM) or CD-DIPPMPO (5 mM) was incubated with unstimulated RAW macrophages ($3.6\pm0.3\times10^6$ cells/100 µL) in PBS (pH 7.1-7.4) and 1 mM DTPA. ESR settings are described under the Experimental procedures. The data are the same as those presented in Figures 2 and 5 but the sum of 30 scans without application of the SVD noise filtration is shown here.

Figure S3: Use of TEMPOL and Ni(en)₃²⁺ to distinguish between intra- and extracellular compartments in RAW macrophage suspensions. (a) The ESR spectrum of a suspension of RAW macrophages $(3.6\pm0.3\times10^6$ cells in 100 µL PBS containing 1 mM DTPA) was recorded immediately after addition of the aminoxyl radical TEMPOL (500 µM), which passively equilibrates across the cell membrane, and of the membrane-impermeable spin probe Ni(en)₃²⁺ (100 mM), which broadens the extracellular radical signal; (b) simulation of the broad component in (a); (c) simulation of the intracellular TEMPOL signal in (a), using a coupling constant A_N of 1.7 mT.

