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Abstract The relative skill of 21 regional and global biogeochemical models was assessed in
terms of how well the models reproduced observed net primary productivity (NPP) and
environmental variables such as nitrate concentration (NO3), mixed layer depth (MLD), euphotic layer
depth (Zeu), and sea ice concentration, by comparing results against a newly updated,
quality-controlled in situ NPP database for the Arctic Ocean (1959–2011). The models broadly captured
the spatial features of integrated NPP (iNPP) on a pan-Arctic scale. Most models underestimated iNPP
by varying degrees in spite of overestimating surface NO3, MLD, and Zeu throughout the regions.
Among the models, iNPP exhibited little difference over sea ice condition (ice-free versus
ice-influenced) and bottom depth (shelf versus deep ocean). The models performed relatively well for
the most recent decade and toward the end of Arctic summer. In the Barents and Greenland Seas,
regional model skill of surface NO3 was best associated with how well MLD was reproduced. Regionally,
iNPP was relatively well simulated in the Beaufort Sea and the central Arctic Basin, where in situ NPP is
low and nutrients are mostly depleted. Models performed less well at simulating iNPP in the
Greenland and Chukchi Seas, despite the higher model skill in MLD and sea ice concentration,
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respectively. iNPP model skill was constrained by different factors in different Arctic Ocean regions. Our
study suggests that better parameterization of biological and ecological microbial rates (phytoplankton
growth and zooplankton grazing) are needed for improved Arctic Ocean biogeochemical modeling.

1. Introduction

Primary production provides the energy that fuels the Arctic Ocean ecosystem. However, given the regional
heterogeneity, the dramatic seasonal changes, and the limited access due to harsh environments, it is diffi-
cult to obtain a comprehensive picture of the Arctic Ocean’s in situ primary production regime. Models of
biogeochemical carbon cycling at various spatial/temporal scales also rely on quantification of the first level
of the marine food chain—phytoplankton, their biomass, and production. Current projected changes in
future climate and responses of the Arctic Ocean may indicate either (i) an increase in net primary produc-
tion (NPP) due to enhanced light availability as a direct result of sea ice and snow cover loss as well as
increased nutrient fluxes from sub-Arctic waters, bottom water by vertical mixing and greater upwelling as
sea ice extent decreases, as well as nutrient input by Arctic rivers and terrestrial ecosystems as temperature
rises [Slagstad et al., 2015], or (ii) a decrease of NPP due to nutrient limited conditions with enhanced stratifi-
cation (due to ice melt, freshwater inflow, and thermal warming), increased denitrification, and decreased
light availability (due to more clouds and higher water turbidity from permafrost melt, beach erosion, river-
ine input, and wind-driven resuspension) [Wassmann and Reigstad, 2011]. But, not all drivers listed above
are commonly incorporated in numerical models that are widely used for evaluating future changes in NPP
over the entire Arctic region today and under a changing climate.

There are two main types of numerical models that have been applied to estimate NPP in the Arctic Ocean:
satellite-based diagnostic models (reviewed in Babin et al. [2015] and International Ocean Colour Coordinat-
ing Group (IOCCG) [2015], and assessed in Lee et al. [2015]) and process-based coupled dynamic physical-
biological models run in either retrospective or predictive modes. This latter class of models has been
applied to improve our understanding of the Arctic Ocean carbon sinks and sources using regional [e.g.,
Deal et al., 2011; Manizza et al., 2013; Slagstad et al., 2015; Zhang et al., 2010c,2015] to global [e.g., Popova
et al., 2010; Vancoppenolle et al., 2013] ice-ocean-atmosphere carbon cycle simulations. In general, the mag-
nitude, vertical extent, and seasonal evolution of NPP are simulated largely as a function of temperature,
light, nutrient availability, and physical forcing (advection, mixing, and stratification) as well as associated
planktonic and sea ice food web processes. The complexity of the models differs not only in the number of
processes/drivers included in model simulations but also in their degree of interactive coupling among oce-
anic, sea ice, atmospheric, and/or hydrologic processes as well as in their biogeochemical component and
spatial resolution; on one end, this allows for year-round simulations in ice-free and ice-covered waters and
for detailed comparisons with satellite-derived observations at certain times and places. At the other end,
certain models will lack ecosystem, biogeochemical and physical (i.e., freshwater inputs, sea ice concentra-
tion/extent/thickness, and stratification) parameterizations and feedbacks important to the Arctic Ocean,
which in turn impact controls on NPP. For instance, regional models may have more flexibility to include
processes that are specific to the Arctic Ocean, but are limited by the boundary conditions. Global models,
on the other hand, are independent of the boundary conditions, but are often lacking in regional complexi-
ty in representation of Arctic processes.

Previous primary production intercomparison exercises matched in situ carbon uptake rates with NPP esti-
mated mostly from ocean color models (OCMs) [e.g., Balch et al., 1992; Campbell et al., 2002; Saba et al.,
2011] and, more recently, from some coupled biogeochemical ocean general circulation models (BOGCMs)
[Carr et al., 2006; Friedrichs et al., 2009; Saba et al., 2010] in various regions of the ocean except the Arctic
Ocean. Popova et al. [2012] and Vancoppenolle et al. [2013] reported the results from various BOGCMs and
Earth System Models (ESMs) that were compared for the Arctic domain against satellite-derived NPP albeit
with known issues. These latter two studies found reasonable agreement on the main features of pan-Arctic
annual NPP and highlighted the disagreement among the models with respect to nutrient availability and
source, as well as which factor, light or nutrients, controls the present-day and future Arctic Ocean NPP. Fur-
thermore, recent individual model studies emphasized the need to accurately parameterize specific
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processes to adequately represent NPP within the Arctic Ocean system, such as sea ice physics and biogeo-
chemistry [e.g., Jin et al., 2012, 2016; Tedesco and Vichi, 2014], circulation patterns [e.g., Popova et al., 2013],
and secondary production [Slagstad et al., 2015].

Models that estimate Arctic Ocean NPP have previously been assessed using annual mean and seasonal var-
iations in surface nutrients from the World Ocean Atlas and, as indicated above, ocean color-derived NPP.
Babin et al. [2015] and IOCCG [2015] extensively review the strengths (pan-Arctic, weekly, or monthly regular
coverage) and limitations (time and space composite imagery; sea ice, cloud/fog; seasonal darkness; bio-
optical and physiological considerations; mostly surface observations) of remotely sensed data in this sea-
sonally dark and ice-covered region. More recently, Lee et al. [2015] assessed the skill of 32 OCMs to repro-
duce the observed NPP across the Arctic Ocean. Overall, OCMs were most sensitive to uncertainties in
surface chlorophyll-a concentration (hereafter, chlorophyll), generally performing better with in situ chloro-
phyll than with ocean color-derived values. Regardless of type or complexity, most OCMs were not able to
fully reproduce the variability of in situ NPP, whereas some of them exhibited almost no bias. As a group,
OCMs overestimated mean NPP, however, this was partly offset by some models underestimating NPP
when a subsurface chlorophyll maximum was present. OCMs performed better reproducing NPP values
when using Arctic-relevant parameter values.

Sampling difficulties and the resulting biogeochemical data scarcity in the Arctic Ocean affect vertical, hori-
zontal, and temporal interpolations frequently used for BOGCM and ESM validation and skill assessment,
such that only basin-wide, temporally averaged (i.e., annual) data are often used to evaluate their NPP esti-
mates. While sampling irregularity in the Arctic Ocean, even in summer, has a strong effect on the spatio-
temporal distribution of in situ biogeochemical data, it is the increasing availability of such data in recent
years that currently makes the assessment of BOGCM and ESM simulated NPP at smaller and shorter scales
in the Arctic Ocean possible. We have assembled a pan-Arctic, multidecadal data set of in situ NPP and
nitrate (NO3) vertical profiles as well as associated biophysical parameters that allow model skill to be
assessed, especially at regional scales.

NPP observations are herein compared against an available ensemble of physical-biological simulations
presently being applied for a range of global and Arctic-specific carbon and ecosystem questions (Table 1).
While model performance of multiple models should ideally be assessed using simulations generated with
identical forcing, initialization, and boundary conditions, such restrictions would severely limit the number
of models considered and fail to sample the variety of present modeling systems. Thus in this study, in an
opportunistic approach, 21 model simulations were analyzed within the Arctic domain, without forcing the
participants to use the same setup, with the aim of elucidating large-scale similarities and contrasts in NPP
and associated drivers. Model skill of existing simulations was quantified by assessing modeled integrated
NPP (hereafter, iNPP), vertical profiles of NPP and NO3, euphotic layer depth (Zeu; defined here as the depth
at which photosynthetically available radiation (PAR) is 1% of the surface value), mixed layer depth (MLD),
and sea ice concentration against in situ or climatological (only MLD) data. The participating BOGCMs and
ESMs include biogeochemical and ecosystem modules of varying complexity that may or may not have
been optimized for the Arctic Ocean. Only Models 9 and 14 include an ice algae component, but ice algal
production was not included in NPP for this study. Spatial resolution also varies among the participating
models. Despite these caveats, BOGCMs and ESMs are the only tools that account for complex processes of
land-ocean-atmosphere-sea ice responses to future climate change in the Arctic Ocean. Their steady
improvement requires a regular assessment of their skill to reproduce observations. Here, we report the first
intercomparison study of NPP in the Arctic Ocean, based on 21 simulations from various BOGCMs and
ESMs, against in situ measurements. It is a companion study to our earlier assessment of NPP estimates
derived from OCMs [Lee et al., 2015].

2. Participating Models

A total of 21 models (Table 1) participated in this exercise: 18 of these were coupled ocean-ice-ecosystem
models (4 Arctic regional and 14 global) and 3 were ESMs. The participating models have a horizontal reso-
lution between 0.1 and 200 km with 25–75 vertical levels; they used various vertical mixing schemes, atmo-
spheric forcing, and sea ice physics (Table 1). Only Model 9 assimilated sea ice concentration and sea
surface temperature. In terms of biogeochemistry, each model has between one and six phytoplankton and
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zooplankton groups. Models use nitro-
gen (N) or carbon (C) as currency in
their simulations, while phosphorus (P),
silica (Si), and/or iron (Fe) are included
as state variables in some cases as well.
Some models additionally include sea
ice biology, riverine nutrients, and/or
benthic-pelagic coupling. A brief descrip-
tion of the models can be found in
Appendix A.

3. Data and Methods

3.1. In Situ Net Primary Productivity
(NPP; 1959–2011)
We built a quality-controlled in situ
NPP (mgC m23 d21) database over
five decades (1959–2011) that were
sampled mostly in the Chukchi, Beau-
fort, and Barents Seas as well as the
Canadian Archipelago (Figure 1). This
database consisted of the ARCSS-PP
data set [Matrai et al., 2013], available
at NOAA/National Oceanographic Data
Center (NODC) (http://www.nodc.noaa.
gov/cgi-bin/OAS/prd/accession/details/
63065), and more recent international
polar research activities such as CASES
(2004) [Brugel et al., 2009; Tremblay
et al., 2011], ArcticNet (2005–2008 and
2010–2011) (M. Gosselin, personal
communication, 2014), K-PORT (2007,
2008, and 2010) (S. H. Lee, personal
communication, 2014), CFL (2008)
[Mundy et al., 2009; Sallon et al., 2011],
ICE-CHASER (2008) [Charalampopoulou
et al., 2011], JOIS (2009) [Yun et al.,
2012], RUSALCA (2009) (S. H. Lee,
personal communication, 2014), JAM-
STEC (2009–2010; http://www.godac.
jamstec.go.jp/darwin/e), Malina (2009;
http://malina.obs-vlfr.fr/), and ICESCAPE
(2010–2011; http://seabass.gsfc.nasa.gov/)
[Arrigo et al., 2014]. These recent data
were primarily collected in the Pacific-
sector of the Arctic Ocean (Figure 1c).
The in situ sampling stations were select-
ed such that discrete NPP measurements,
using 13C or 14C-labeled compounds,
were available for at least four discrete
depths at each station where the mini-
mum depth of in situ NPP was between
0 and 5 m in the surface layer. Most
of the in situ NPP using a 14C-labeled
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(c) 2000−2011
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Figure 1. The sampling stations where in situ NPP (open circle, N 5 928, 1959–2011)
and nitrate (1, N 5 663, 1979–2011) were measured during the periods of (a) 1959–1989,
(b) 1990–1999, and (c) 2000–2011. In each plot, the stations were also grouped by sea-
sons: March–June (green), July (blue), August (black), and September–November (red).
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compound were measured after 24 6 2 h in situ or simulated in situ incubations (N 5 480) and the rest of
the 14C samples were measured after less than a 12 h incubation or an unknown time period (N 5 397). In
situ carbon uptake rates were also measured using 13C-labeled compounds (N 5 90) after 3–6 h on-deck
incubations [Lee and Whitledge, 2005; Lee et al., 2010]. A good agreement between estimates of 13C and
14C productivity was previously described [Cota et al., 1996]. Most of the NPP data were reported as daily
values, but, if hourly in situ production rates were reported, they were converted to daily production rates
by multiplying with a calculated day length [Forsythe et al., 1995], based on the date and location of the
sampling stations. Note that we did not assess ice algal production in this study due to the scarcity of in
situ measurements, although sea ice algae may contribute significantly to NPP early in the growth season
and in certain localities [Fern�andez-M�endez et al., 2015; Leu et al., 2015].

Prior to any integration, minimum NPP was set to 0.25 mgC m23 d21 due to reported methodological preci-
sion [Richardson, 1991]. If the NPP value at the surface (0 m, Z0) was not measured, it was assumed to be
the same as the closest measurement taken from the uppermost 5 m (Zmin) of the water column. In addi-
tion, if the maximum sampling depth (Zmax) was shallower than 100 m (or bottom depth, Zbot), NPP was
extrapolated from Zmax to 100 m (or Zbot) by assuming NPP decreased exponentially. Using the multiple
segment trapezoidal rule, NPP was integrated from Z0 to 100 m depth as well as, alternatively, over the
euphotic layer that was determined during the incubation or calculated from available light penetration
data; but, in situ Zeu was reported at approximately half of the NPP sampling stations (N 5 519): ice-
influenced or ice-free. In order to maximize the number of stations available for skill assessment, iNPP down
to 100 m (or Zbot) was used for analysis since it exhibited only a small difference when compared to iNPP
down to Zeu (r 5 0.99, p< 0.01).

Although all the available in situ iNPP ranged between 5.45 and 18,200 mgC m22 d21 at 967 stations, out-
liers (N 5 39; 4%) at a confidence level of 95% were removed prior to any analysis due to accuracy issues
with in situ NPP measurements. The remaining in situ iNPP data (N 5 928; Figure 2) were between 15.7 and
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Figure 2. (a) The log-transformed distribution of in situ iNPP (mgC m22 d21) down to 100 m (N 5 927). (b), (c), and (d) show when and
where those in situ NPP were measured in terms of years, latitude, and month, respectively.
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5,260 mgC m22 d21 (Table 2) with a median value of 246 mgC m22 d21. These iNPP data were log-
transformed (base 10) throughout the analysis, with a mean of 2.42 and a standard deviation of 0.60 (Table
2); they exhibited a log-normal distribution (Figure 2a) that was confirmed with the Kolmogorov-Smirnov
(K-S) test. The majority of available NPP data in the Arctic Ocean was measured after 1975 (Figure 2b) and
collected in the region between 70 and 80�N (Figure 2c), mainly from June to September (Figure 2d).

3.2. In Situ Nitrate (1979–2011)
Vertical profiles (0–100 m) of in situ NO3 were extracted from the NOAA/NODC ArcNut database [Codispoti
et al., 2013] (http://www.nodc.noaa.gov/archive/arc0034/0072133/) as well as additional polar research
cruises at the stations where NPP was measured. However, in situ NO3 profiles were available only at 663
stations (Figure 1). Note that, if only combined values of in situ NO3 and nitrite concentration (hereafter,
NO2) were available, those were assumed to be the same as NO3 because NO2 in the Arctic Ocean is
extremely low [Codispoti et al., 2013]. Vertical profiles were sorted by layers (0–10, 10–20, 20–30, 30–50, and
50–100 m); the deepest layer varied depending on station bottom depth, and in most cases (approximately
70%) was measured between 50 and 100 m.

3.3. Sea Ice Concentration (1979–2011)
Monthly sea ice concentrations (%) at the corresponding location and date of each NPP station were deter-
mined at the nearest grid cell (25 km 3 25 km polar stereographic projection), using NOAA/National Snow
and Ice Data Center (NSIDC) Climate Data Record of Passive Microwave Sea Ice Concentration, Version 2
(ftp://sidads.colorado.edu/pub/DATASETS/NOAA/G02202_v2/north/monthly/) [Meier et al., 2013, updated
2015; Peng et al., 2013]. These data files include not only monthly sea ice concentration from July 1987 to
the present, but also the merged Goddard Space Flight Center NASA Team [Cavalieri et al., 1984] and Boot-
strap [Comiso, 1986] sea ice concentrations from late 1978 to mid-1987, as an ancillary data set. Sea ice con-
centration was used to distinguish ice-free (sea ice concentration <10% which is the NSIDC threshold cut-
off for sea ice edge detection in Meier et al. [2013, updated 2015]) and ice-influenced (sea ice concentration
�10%) regions. Roughly 46% of the NPP stations were located in ice-free waters (N 5 349, Table 2). Among
the ice-influenced stations (N 5 413), 75% were in marginal ice zones (N 5 175 where sea ice concentration
was 10–50%; N 5 136 where sea ice concentration was 50–80%) and the rest (N 5 102) were in ice-covered
regions (sea ice concentration �80%).

3.4. Mixed Layer Depth (MLD)
Because temperature and salinity profile data were often missing or unavailable at the in situ NPP stations
(i.e., separate files archived at different locations), monthly climatological salinity, and temperature from the
Polar Science Center Hydrographic Climatology (http://psc.apl.washington.edu/nonwp_projects/PHC/Clima-
tology.html) [Steele et al., 2001] were used to estimate MLD. After linearly interpolating the climatological
temperature and salinity data in the vertical, the monthly climatological MLD was determined at the nearest
grid cell (1� 3 1� resolution) for each NPP station by using a threshold criterion of Drh 5 0.1 kg m23

Table 2. Mean (l) and Standard Deviation (r) of In Situ Log-Transformed iNPP (1959–2011; N 5 928) and Depth-Averaged NO3

(1979–2011; N 5 663) in Different Regions (Except for Sea Ice Condition During the Period of 1979–2011), Periods (Except for NO3 Dur-
ing the Period of 1979–2011), and Months (Except for March and November)

log(iNPP)
iNPP

(mgC m22 d21)
Depth-Averaged NO3

(mmol m23)

N l 6 r 10l Range N l 6 r

Regions Sea ice-free 349 2.42 6 0.58 263 18.1–5260 273 3.90 6 3.05
Sea ice-influenced 413 2.47 6 0.63 295 15.7–5210 390 3.76 6 2.77
Shelf 432 2.51 6 0.60 321 18.1–5080 244 3.47 6 2.91
Deep 496 2.34 6 0.58 217 15.7–5260 419 4.03 6 2.86

Periods Year 1959–1989 344 2.50 6 0.58 316 19.4–5260 284 5.09 6 3.10
Year 1990–1999 193 2.61 6 0.55 404 17.4–5080
Year 2000–2011 391 2.25 6 0.59 177 15.7–4460 379 2.87 6 2.30

Months April–June 201 2.64 6 0.59 436 24.0–5260 176 5.89 6 3.32
July 203 2.61 6 0.52 408 24.9–4420 160 3.27 6 2.23
August 332 2.39 6 0.60 244 16.0–5080 182 2.86 6 2.28
September–October 186 2.03 6 0.45 108 15.7–1570 139 2.86 6 1.96
All 928 2.42 6 0.60 260 15.7–5260 663 3.82 6 2.89
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[Peralta-Ferriz and Woodgate, 2015], where Drh 5 rh(z) 2 rh (5 m); rh(z) and rh(5 m) are the potential density
anomaly (rh 5 qh – 1000 kg m23, with qh being potential density) at a given depth (z) and 5 m, respectively.

3.5. Model Output
Location (latitude and longitude) and date of the in situ NPP station data were provided to all modeling
teams. Each modeling team was then asked to generate monthly mean estimates for vertical profiles
(0–100 m) of NPP and NO3, iNPP, MLD, Zeu, and sea ice concentration. Note that a minimum value for model
NPP was set to 0.25 mgC m23 d21, similar to the minimum in situ NPP. Five models (two global and three
regional) provided daily mean iNPP as well (Models 1, 2, 3, 7, and 9). Unlike iNPP, other output variables
were provided by fewer models due to their model setup and configuration (Table 1). For instance, Zeu was
only available in nine participating models. Moreover, because the simulation period differed among the
participating models, the number of stations used for model-data comparisons varied between N 5 853
and N 5 353 (Figure 3). Regardless of the number of in situ stations represented by each model, the corre-
sponding in situ iNPP were log-normally distributed whereas model estimates were not, based on a single
sample K-S test, except for Models 2, 6, 10, and 17 (not shown). Note that the minimum value for model
iNPP was set similar to the minimum in situ value of 5.45 mgC m22 d21, instead of removing extremely low
or negative values. Then, analogous to the in situ iNPP approach, statistical outliers at a confidence level of
95% were discarded in each set of model iNPP output (i.e., 0–10% of model results).
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3.6. Model Skill Assessment
A model-data intercomparison of NPP (log-transformed) and NO3 was carried out by assessing the root-
mean-square difference (RMSD) from 21 participating models using Target [Jolliff et al., 2009] and Taylor
[Taylor, 2001] diagrams, where N is the number of observations in each variable:

RMSD25

PN
i51 Xi
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� �2
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in situ2Xin situ

� �� �2
r

Bias represents the difference between the means of in situ measurement and model output, and uRMSD
represents the difference in the variability between in situ data and model results. Hence, bias and uRMSD
provide measures of how well mean and variability are reproduced, respectively.

To visualize bias and uRMSD on a single plot, a Target diagram [Jolliff et al., 2009] is used after normalizing
by the standard deviation (r) of in situ data, i.e., normalized bias (bias*) is defined as:

bias�5bias=rin situ

Although uRMSD is a positive quantity mathematically, normalized uRMSD (uRMSD*) is also defined in Tar-
get diagram as:

uRMSD�5 uRMSD=rin situ when rmodel > rin situð Þ

52uRMSD=rin situ when rmodel < rin situð Þ

where rmodel is the standard deviation of Xmodel . If uRMSD* is positive (negative), the model overestimates
(underestimates) the variability of the in situ data. In this diagram, the closer to the observational reference
(the origin), the higher the skill of the model.

The Taylor diagram [Taylor, 2001] illustrates a different set of statistics in terms of uRMSD* that is comprised
of standard deviation (r) of the model output and in situ data as well as the Pearson’s correlation coefficient
(r) between model estimates and in situ measurements:
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Note that, unlike the Target diagram, bias is not illustrated in the Taylor diagram.

In addition, the Willmott skill (WS) scores [Willmott, 1981] were used to quantify an overall regional agree-
ment between multimodel mean (i.e., iNPP, NO3, Zeu, sea ice concentration, and MLD) and observations,
and computed as:

WS512
N � RMSD2PN

i51 Xi
model2Xin situ

� �
2 Xi

in situ2Xin situ
� �� �2

The highest value, WS 51, means perfect agreement between model and observation, while the lowest
value, WS 50, indicates disagreement. In this study, WS is used to quantify model performance in simulat-
ing different parameters from various model runs at regional scales. However, WS may not be useful
when in situ data have extremely low variability and zero mean, i.e., when nutrients are depleted, becausePN

i51 Xi
model2Xin situ

� �
2 Xi

in situ2Xin situ
� �� �2

becomes close to N � RMSD2. Moreover, since WS is often criti-
cized for producing high skill values for entirely uncorrelated signals [Ralston et al., 2010], we provide the
modeling efficiency (ME) as an alternative validation metric which determines the relative magnitude of
the residual variance compared to the measured data variance [Nash and Sutcliffe, 1970]. ME indicates
how well the plot of observed versus simulated regionally averaged data fits the 1:1 line [Moriasi et al.,
2007], but it can be sensitive to a number of factors such as sample size, outliers, and magnitude bias
[McCuen et al., 2006].
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ME512
RMSD2

r2
in situ

The range of ME lies between 1.0 (perfect fit) and 21 [Stow et al., 2009]. If ME is zero, the model estimates
are as accurate as the mean of the observed data, whereas an efficiency less than zero (21<ME< 0) indi-
cates that the observed mean is a better predictor than the model. ME can also be illustrated by drawing a
circle with a radius equal to one, i.e., ME 5 0, from the origin on the Target diagram. For example, ME is neg-
ative (positive) when a model symbol appears outside (inside) the circle with a radius of one.

4. Results

The models broadly captured the spatial features of iNPP on a pan-Arctic scale. A majority of the models
underestimated iNPP by varying degrees in spite of overestimating surface NO3, MLD, and Zeu throughout
the regions. Model skill of iNPP exhibited little difference over sea ice condition and bottom depth. The
models performed equally well on daily versus monthly scales and relatively well for the most recent
decade and toward the end of Arctic summer. Much complexity can be seen from the high and sometimes
opposing interaction between iNPP and selected physical variables, as shown by the variable degree of skill
provided by the different participating models.

4.1. Comparison Between Simulated Daily and Monthly Mean iNPP
Most of the models in this intercomparison were only able to provide monthly mean rather than daily
mean iNPP. In order to determine how the results of this analysis would be affected by using monthly mean
model output instead of simulated daily iNPP, those five models that provided both daily and monthly esti-
mates (Models 1, 2, 3, 7, and 9) were compared to each other. The distributions of simulated daily and
monthly mean iNPP were very similar in each model (Figures 3a–3c, 3f, and 3h) and they were strongly cor-
related (r 5 0.83 to 0.91, p< 0.01). On average, the maximum simulated iNPP was up to 6% higher when
computed from daily mean values compared to the monthly mean estimates (log-transformed). The stan-
dard deviation was higher (4–23%) when computed from the daily mean iNPP estimates, except Model 1.
However, the simulated mean iNPP from those five models computed from the monthly averaged output
was almost equal or slightly higher (up to 7%) than that computed from the daily mean estimates. This
demonstrates that, as expected, the monthly averaging smoothed the daily variability while the mean value
exhibited little change. Hence, results based on the simulated monthly mean iNPP are representative of
higher temporal resolution data. Although the simulated daily mean iNPP exhibited little difference over
monthly averaging, the simulated monthly mean iNPP could miss details of the dynamics of NPP on daily
time scales. For example, no highest estimate from the bloom peak should be shown in model monthly
mean output, relative to in situ data.

4.2. Model Skill Assessment of iNPP and Depth-Averaged NO3

iNPP was underestimated by most models on a station-by-station basis though not consistently. Log-mean
values of simulated iNPP were mostly negatively biased (Table 3) because the log-distribution of iNPP from
many models was negatively skewed with a longer tail on the left, toward low values. While the bias was
small for some models, it was very large, i.e., a factor of 10 for others. Thirteen out of 21 models reproduced
iNPP up to 1500 mgC m22 d21 and five others estimated iNPP up to 3000 mgC m22 d21; the remaining
three models simulated iNPP up to 4300 mgC m22 d21 (see Figure 3) while the maximum in situ value was
5255 mgC m22 d21 (Table 2). Generally, models with large uRMSD, i.e., overestimated variability of iNPP or
depth-averaged NO3, exhibited high standard deviation due to underestimating iNPP (Figure 3) or overesti-
mating depth-averaged NO3 (not shown), respectively. Unlike iNPP, depth-averaged NO3 was positively
biased in most of the models, indicating those models overestimated the mean NO3 in the top 100 m, and
their correlation coefficients were relatively high compared to those of iNPP (Table 3). However, no evident
relationship was found that better model skill in estimating NO3 effected better reproduction of iNPP, or
vice versa, in terms of RMSD (i.e., combining mean and variability).

4.3. Model Skill Assessment of iNPP as a Function of Ice Cover, Depth, Decade, and Season
Based on Table 3, model skill of estimating iNPP was not a function of model domain, type, or complexity in
terms of RMSD on a pan-Arctic scale. Hence, the model skill was examined spatially as a function of sea ice
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presence, defined from satellite measurements (see section 3.3), and bottom depth as well as temporally by
seasons and simulation periods (Figure 4). While more individual models overestimated mean iNPP (Figure
4a) and exhibited a higher correlation coefficient (Figure 4b) in ice-free regions than in ice-influenced
regions, most models performed nearly equally well in terms of standard deviation between ice-influenced
and ice-free regions. Indeed, as a group, model performance was similar regardless of sea ice presence or
absence in terms of both bias and variability, i.e., RMSD. Similarly, in the case of bottom depth (Zbot) (shelf,
Zbot< 200 m versus deep ocean, Zbot> 200 m), little difference in model skill was exhibited in terms of bias
(Figure 4c) and variability (Figure 4d). Therefore, based on the K-S test at a 5% level of significance, model
performance was not significantly different between spatially defined regions (i.e., ice-free versus ice-
influenced and shelf versus deep ocean) in terms of RMSD (not shown).

With respect to temporal scales, the performance of models was significantly different between two simula-
tion periods: 1959–1989 and 2000–2011. Overall, the models performed better in the most recent decade
(2000–2011) in terms of RMSD whereas most of them significantly underperformed in terms of correlation
coefficient during the earliest decade (r 5 20.24 to 0.24) compared to the latter period (r 5 20.19 to 0.53)
(Figure 4f). However, no significant difference was found between the two periods in terms of bias only (Fig-
ure 4e) based on the K-S test for 5% significance. This may be partly due to the fact that more in situ meas-
urements have become available in recent years when ice-free conditions have become more pronounced.
On the other hand, seasonally estimated iNPP was more negatively biased in the growth period (mean bias
of 21.12 in April–June) compared to other seasons (mean bias of 20.72 in July, 20.24 in August, and 20.23
in September–October), but the models performance was not significantly different between seasons in
terms of variability (Figures 4g and 4h). This is probably because the models have a seasonal cycle that,
although slightly shifted early in phase for the Arctic Ocean, is still within a reasonable range. In addition,
the models include a range of approaches to estimating the vertical distribution of irradiance (i.e., light
transmission through sea ice). Some models simply scale down shortwave radiation by sea ice concentra-
tion, whereas others include radiation transmission as a fully coupled and bidirectional formulation (e.g.,
CICE-based models). Still other models compute light transmission through sea ice as a function of sea ice
physics and biogeochemistry. For example, the Pelagic Interaction Scheme for Carbon and Ecosystem Stud-
ies (PISCES)-based models have a complex formulation of the vertical penetration of PAR through the water
column, which takes into account incoming radiation, wavelength, chlorophyll-dependent attenuation

Table 3. Mean (l) and Standard Deviation (r) of Estimated iNPP (Log-Transformed) and Depth-Averaged NO3 (mmol m23)a

Model

log(iNPP) Depth-Averaged NO3

N

l r

RMSD Bias uRMSD r N

l r

RMSD Bias uRMSD rIn Situ Modeled In Situ Modeled In Situ Modeled In Situ Modeled

1 444 2.27 1.30 0.59 0.76 1.32 20.98 0.89 0.16 439 3.21 4.05 2.63 1.71 2.64 0.86 2.50 0.39
2 440 2.31 2.02 0.60 0.44 0.67 20.29 0.60 0.37 445 3.22 5.23 2.65 2.28 3.26 2.02 2.56 0.46
3 849 2.40 2.43 0.58 0.42 0.59 0.03 0.59 0.34 663 3.82 5.43 2.89 2.29 4.03 1.61 3.70 20.01
4 853 2.40 2.32 0.58 0.36 0.63 20.08 0.62 0.20 663 3.82 6.04 2.89 3.96 4.75 2.23 4.19 0.28
5 684 2.53 2.51 0.54 0.29 0.59 20.01 0.59 0.10 461 4.22 3.67 3.09 3.47 2.70 20.54 2.65 0.68
6 689 2.52 2.71 0.54 0.27 0.59 0.19 0.56 0.16 461 4.22 0.41 3.09 0.41 4.73 23.80 2.82 0.66
7 665 2.47 2.31 0.60 0.34 0.59 20.16 0.57 0.37 621 3.89 5.60 2.90 2.76 3.27 1.72 2.78 0.52
8 584 2.42 2.31 0.59 0.83 0.92 20.11 0.92 0.20 436 3.92 9.79 3.03 3.20 7.37 5.87 4.46 20.02
9 717 2.44 2.57 0.60 0.51 0.68 0.13 0.67 0.27 663 3.82 5.01 2.89 4.88 5.67 1.20 5.54 0.05
10 407 2.58 2.50 0.53 0.22 0.55 20.08 0.55 0.12 392 4.11 3.78 3.09 2.97 3.06 20.33 3.04 0.49
11 647 2.50 1.81 0.54 1.08 1.43 20.69 1.25 20.09 448 4.26 6.53 3.07 2.09 3.93 2.27 3.21 0.27
12 678 2.51 1.82 0.55 1.07 1.42 20.69 1.24 20.06 461 4.22 9.33 3.09 3.18 6.36 5.12 3.77 0.28
13 483 2.45 2.13 0.60 0.47 0.71 20.32 0.63 0.32 493 3.69 1.93 2.93 1.74 2.96 21.74 2.39 0.57
14 740 2.36 2.18 0.58 0.78 0.88 20.18 0.86 0.22 578 3.92 6.86 2.96 3.05 4.61 2.95 3.54 0.30
15 466 2.44 2.13 0.61 0.36 0.68 20.31 0.61 0.28 - - - - - - - - -
16 353 2.26 2.39 0.59 0.50 0.60 0.14 0.59 0.44 - - - - - - - - -
17 742 2.39 2.43 0.58 0.31 0.60 0.03 0.60 0.23 550 3.82 7.29 3.00 2.86 4.62 3.48 3.04 0.46
18 581 2.37 1.42 0.60 0.83 1.45 20.94 1.10 20.17 548 3.21 5.82 2.45 2.77 4.06 2.62 3.10 0.30
19 489 2.47 1.98 0.58 0.72 0.99 20.49 0.86 0.13 436 3.92 12.51 3.03 2.45 9.38 8.59 3.78 0.06
20 730 2.39 1.23 0.60 0.39 1.37 21.16 0.72 20.03 585 3.81 0.66 2.78 0.83 3.97 23.15 2.42 0.56
21 862 2.40 1.96 0.59 0.76 0.98 20.44 0.87 0.18 - - - - - - - - -

aRMSD, bias, uRMSD, and Pearson’s correlation coefficient (r) are computed between each model estimate and in situ measurement (see Appendix A for details). The number of
stations (N) varies mainly due to different model simulation periods and in situ data availability. Note that Models 15, 16, and 21 did not provide model estimates of NO3, which is indi-
cated by a dash (-).
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Figure 4. (a, c, e, and g) Target and (b, d, f, and h) Taylor diagrams illustrating relative model performance in reproducing iNPP as a func-
tion of (Figures 4a and 4b) sea ice condition: ice-free region (sea ice concentration �15%) versus ice-influenced region (sea ice concentra-
tion >15%), (Figures 4c and 4d) depth: shelf (�200 m) versus deep (>200 m), (e and f) simulation period (1959–1989, 1990–1999, and
2000–2011), and (g and h) month (April–June, July, August, and September–October).
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coefficients assigned to distinct phytoplankton groups represented in the model [e.g., Aumont et al., 2015]
and thus result in differing Zeu for the same incoming PAR. These differences may account for the early neg-
ative bias in the participating model runs, but do not (yet) point to either phytoplankton bloom physiology
or phenology processes being preferentially affected.

4.4. Model Skill Assessment of Vertical Profiles of NPP and NO3

On a pan-Arctic scale, the models had a strong tendency to underestimate the observed mean NPP at vari-
ous depths; eight out of 19 models had negative bias at all depth layers (Figure 5a). Note that not all the
models provided vertical profiles of NPP and NO3 (see Table 1). When the model standard deviation was
smaller than the observed one (2uRMSD*), mean NPP was mostly underestimated (Figure 5a). But, when
the model standard deviation was larger than the observed one (1uRMSD*), mean NPP was mostly under-
estimated only between 0 and 20 m and overestimated between 30 and 100 m (Figure 5a). Deep NPP (50–
100 m; mean RMSD of 1.27) was better estimated than surface NPP (0–10 m; mean RMSD of 1.48) in terms
of RMSD since both bias and uRMSD became less at depth.

Unlike NPP, nine of 19 models overestimated mean NO3 at all depth layers while four models (Models 5, 10, 13,
and 20) underestimated mean NO3, except at the deepest layer (50–100 m) (Figure 5c). Model bias was lowest
at depth such that mean NO3 concentration in the deep layer was better reproduced than in the surface layer
(mean bias of 0.29 and 1.31, respectively), while the correlation coefficient was slightly higher at the surface (Fig-
ure 5d). Furthermore, the range of model bias for NO3 became wider (i.e., more scattered both in negative and
positive y axis) when the model standard deviations were smaller than the observed one (2uRMSD*). However,
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Figure 5. (a and c) Target and (b and d) Taylor diagrams of vertical profiles in (Figures 5a and 5b) NPP (mgC m23 d21) and (Figures 5c and
5d) (NO3) (mmol m23), which were grouped at given depth layers: 0–10 m, 10–20 m, 20–30 m, 30–50 m, and 50–100 m.
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no significant difference in terms of uRMSD was exhibited between the depth layers (K-S test at a 5% level of sig-
nificance). Overall performance of the models for NPP and NO3 was not significantly different within each depth
layer, although correlation coefficients were higher for NO3 (Figures 5b and 5d). In general, the models per-
formed better in reproducing NO3 and NPP in the deepest layer (50–100 m) than at the surface (0–10 m).

4.5. Regional iNPP and NO3 Climatologies
To illustrate climatological spatial patterns and compare with regional iNPP estimated from each model,
available in situ iNPP was projected onto the Equal-Area Scalable Earth Grid (EASE-Grid) map (100 km spatial
resolution) by averaging data within each grid cell (Figure 6a). EASE-Gridded model iNPP was then averaged
across all models in each grid cell and compared to in situ climatological iNPP in six different regions of the
Arctic Ocean where NPP was frequently measured between 1959 and 2011 (Figures 6b–6g). In situ and
model iNPP exhibited no significant linear relationship on 10,000 km2 basis (Figures 6c and 6f) and, region-
ally, the lowest WS (Table 4) in the Chukchi and Greenland Seas; both are influenced by inflow from subpo-
lar latitudes. In addition, mean iNPP was most underestimated in the Canadian Archipelago and the
Greenland Sea (Figures 6d and 6f) where ME was lowest (Table 4). Hence, iNPP was least reproduced region-
ally in the Greenland Sea in terms of intermodel mean (i.e., bias) as well as variability (i.e., WS and ME). As a
group, the models performed best in the interior regions of the Arctic Ocean, such as the Beaufort Sea and
the central Arctic Basin (Figures 6b and 6e) where NPP is relatively low (Figure 6a) and surface nutrients are

Figure 6. (a) In situ iNPP (mgC m22 d21) projected on the EASE-Grid map is shown. (b–g) Average model estimates with an error bar (61 standard deviation from the multimodel mean)
in each grid cell were regionally compared to in situ values in Figure 6b the Beaufort Sea, 6c the Chukchi Sea, 6d Canadian Archipelago, 6e the central Arctic Basin, 6f the Greenland Sea,
and 6g the Barents Sea; all inserts have the same axis units as in Figure 6f. In each plot, the solid-line shows a slope of 1.0 and the dashed line is a linear regression fit if significant
(p< 0.05). The correlation coefficient (r) with degrees of freedom (df 5 number of grid cells22) are shown in the upper left. A red circle with error bars indicates the regional average of
in situ (x axis) and modeled (y axis) iNPP.
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depleted toward the end of the growing season [Codispoti et al., 2013]. At the larger pan-Arctic scale, model
skill for iNPP was higher than for most individual regions, except where iNPP was best estimated, i.e., the
Beaufort Sea (WS and ME) and the Central Arctic Basin (WS, Table 4).

Analogously, in situ and modeled NO3 were also processed onto the EASE-Grid map in the deep layer (50–
100 m; Figure 7a) as well as at the surface (0–10 m; Figure 8a). Again, the models better reproduced the
regional mean NO3 at the deepest layer overall (Figures 7b–7g). However, models notably underestimated
deep NO3 variability in the inflow Chukchi (Figure 7c) and Barents (Figure 7g) Seas (r5 20.08 and r 5 0.23,
respectively) (see Table 4). On the contrary, at the surface, the models exhibited a tendency to overestimate
mean NO3 (Figures 8b–8g). This bias was smaller in the Greenland and Barents Seas (Figures 8f and 8g,
respectively) and highest in the interior regions of the Arctic Ocean (Figures 8b and 8e) where in situ surface
NO3 is depleted at the end of summer and NPP is relatively low compared to that in other regions (Figures
8a and 6a, respectively) [Codispoti et al., 2013]. Model skill scores (Table 4) indicate that the regions where
the models have the best skill in reproducing iNPP are also the ones where they exhibited the least skill in
reproducing mean surface NO3, i.e., the Beaufort Sea and central Arctic Basin.

4.6. Regional MLD, Zeu, and Sea Ice Concentration Climatologies
Using the same approach as in section 4.5, the regional, mean MLD was relatively better estimated in the
Barents and Greenland Seas (i.e., highest WS and ME in Table 4) and least reproduced in the Chukchi Sea
where MLD was consistently overestimated (Figure 9a). Moreover, the highest regional model skills in sur-
face NO3 were also calculated in the Barents and Greenland Seas. But they do not necessarily appear to
influence iNPP estimates, i.e., poorly simulated iNPP, especially in those regions. Compared to the variables
previously analyzed, Zeu had the least amount of field data, especially in the Barents and Greenland Seas,
and its mean was largely overestimated (Figure 9b); indeed, incoming PAR onto the surface ocean will be
very different in open waters versus snow and ice-covered waters in the same latitude and season. In the
absence of additional biological light-relevant parameters, the assessment of model estimates of Zeu pro-
vides a limited understanding of phytoplankton light utilization, as it does not take into account that model
phytoplankton will differ in their response to the same light field. Sea ice concentration is a logical next fac-
tor to consider; its model skill response is different from region to region, and is mostly underestimated in
the Greenland Sea and overestimated in the Barents Sea (Figure 9c). In the Chukchi Sea, mean sea ice con-
centration was best estimated, but iNPP was still rather poorly estimated when compared to other regions
(Table 4), as indicated earlier. While more high WS and ME model skill scores were shown for MLD and sea
ice concentration among the different regions, no single environmental factor showed consistently high
model skill for all regions; indeed, correlation analysis (not shown) between iNPP and any one environmen-
tal factor ME skill suggests a possible robust relationship with Zeu instead, despite individual lower skill
scores. Hence, iNPP model skill was constrained by different factors in different Arctic Ocean regions. Pan-
Arctic averaging did not necessarily improve model skill for iNPP and associated variables over regional
(Table 4) and subregional (Figure 6) scales.

Table 4. Willmott Skill (WS) Score Ranging Between 0 and 1 for a Perfect Model, and Modeling Efficiency (ME) Between -1 and 1 for a
Perfect Model of Multimodel Mean iNPP, Surface, and Deep NO3, Zeu, Sea Ice Concentration, and MLD in Six Regions of the Arctic Ocean

Regions Model Skill

Variables

iNPP Surface NO3 Deep NO3 Zeu Sea ice MLD

Chukchi WS 0.49 0.46 0.33 0.67 0.90 0.08
ME 20.06 23.65 20.27 20.55 0.72 2264

Canadian Archipelago WS 0.61 0.49 0.59 0.31 0.54 0.46
ME 20.32 22.31 0.30 212.8 20.04 24.49

Beaufort WS 0.77 0.09 0.51 0.65 0.85 0.25
ME 0.36 2135 0.15 0.01 0.64 27.64

Central
Arctic Basin

WS 0.75 0.13 0.46 0.45 0.67 0.34
ME 0.09 238.3 0.15 0.01 0.39 22.25

Barents WS 0.63 0.80 0.25 0.63 0.72 0.93
ME 20.10 0.42 20.14 20.38 0.15 0.79

Greenland WS 0.33 0.74 0.74 0.27 0.40 0.90
ME 22.84 0.09 0.41 224.7 20.19 0.62

Pan2Arctic WS 0.67 0.63 0.47 0.67 0.80 0.92
ME 0.12 20.84 0.07 20.25 0.50 0.74
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5. Discussion

It has long been known that marine primary production is controlled by the interplay of the bottom-up fac-
tors of light and nutrients, whose availability is a function of physical and/or biological processes. Earlier
intercomparison studies for the Arctic Ocean emphasized the importance of a realistic representation of
ocean physics [Popova et al. 2012], in particular vertical mixing and nutrient concentration, for accurate Arc-
tic Ocean ecosystem modeling. Five BOGCMs manifested similar levels of light limitation owing to a general
agreement on the simulated sea ice distribution [Popova et al. 2012]. On the other hand, the ESMs partici-
pating in the Vancoppenolle et al. [2013] study showed that Arctic phytoplankton growth was more limited
by light related to sea ice than by nutrient availability for the period of 1980–1999. Furthermore, with the
large uncertainties on present-day nitrate in the sea ice zone, ESMs used in the framework of the CMIP5
exercise were inconsistent in their future projections of primary production and oligotrophic condition in
the Arctic Ocean [Vancoppenolle et al., 2013]. The need to quantify the relative role of environmental and
ecological controls on NPP in the heterogeneous, seasonally ice-covered Arctic Ocean remains.

In our study, iNPP model skill was linked to different environmental variables in the various Arctic Ocean
regions. The models exhibited relatively lower skill in reproducing iNPP in high to very high production Arc-
tic Ocean regions [in the sense of Codispoti et al., 2013] (i.e., the Chukchi and Greenland Seas in Table 4 and
Figure 6), despite higher model skill in physical parameters such as sea ice concentration or MLD, respec-
tively. Model performance in estimating iNPP was also more related to the model skill of sea ice conditions
(and Zeu) than NO3 (and MLD) in the extremely low production regions [in the sense of Codispoti et al.,
2013] (i.e., the Beaufort Sea and central Arctic Basin in Table 4 and Figure 8), where in situ NO3 is virtually

Figure 7. Same as Fig. 6, but for NO3 (mmol m23) in the deep layer (50–100 m).
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depleted (i.e., almost no variability in the in situ data). Field studies in the Arctic Ocean have failed to dem-
onstrate any statistical relationship between phytoplankton biomass or productivity and ambient nutrient
concentrations or nutrient utilization rates in eastern Arctic waters [Harrison and Platt, 1986; Harrison and
Cota, 1991], while phytoplankton biomass and productivity were significantly related to incident radiation
[Harrison and Cota, 1991; but see Tremblay et al., 2015]. Hence, simulated iNPP was close to in situ values in
such low production regions because light fields were likely better reproduced, even though surface NO3

was systematically biased (Figures 8b and 8e).

Our study also showed that simulations of surface NO3 (nutrient) and Zeu (light) associated with MLD (con-
trolling the depth horizon where phytoplankton cells are) exhibited low model skill in most of the regions
(Table 4), being lowest in the interior of the Arctic Ocean. This observation is not necessarily new [Popova
et al., 2012; Vancoppenolle et al., 2013], but one should be cautious when interpreting this result because
these three simulated parameters were positively biased (i.e., means usually overestimated) (Figures 8 and
9). For example, the simulated, mean surface NO3 was vastly overestimated, especially in the low-
productivity, nutrient-depleted interior regions of the Arctic Ocean, i.e., the Beaufort Sea and the central
Arctic Basin where model and in situ iNPP agreed best (Figures 6b and 6e; Table 4). At least on a regional
scale, the overestimation of surface NO3 possibly stems from spurious vertical mixing between the upper
mixed layer and deeper water in the model simulations, resulting in excessive nutrient supply into the sur-
face layer. For example, except in the Greenland and Barents Seas, MLD mean and variability were poorly
estimated (Table 4) and mostly overestimated (Figure 9a) by as much as twofold, possibly resulting in
higher nutrients at the surface. Alternatively, a physiological perspective may be examined, based on the

Figure 8. Same as Fig. 6, but for NO3 (mmol m23) in the surface layer (0–10 m).
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most common model parameterization of
phytoplankton growth (i.e., a combination
of a nutrient term, a light term, a
temperature-dependent growth term, and
a maximum growth rate over a daily peri-
od). Then, the overestimated NO3 may be
caused by insufficient phytoplankton nutri-
ent uptake (i.e., too low a rate for Arctic
waters) since NPP was overall underesti-
mated by most of the models. Phytoplank-
ton nitrate uptake is strongly dependent
on both temperature (i.e., less at colder
temperatures) [Lomas and Glibert, 1999]
and irradiance (i.e., photoinhibited at
higher levels) [Hu and Smith, 1998] and
becomes more dependent on their com-
bined effect in the simultaneously cold
and dark Arctic waters during the transi-
tion to spring conditions [Tremblay et al.,
2006]. It is likely that several of the models
have globally relevant phytoplankton
physiological parameter values that are
too high and may thus not correspond to
the lower and narrower ranges required
by Arctic (or polar) phytoplankton. Some
Arctic phytoplankton species are shade-
acclimated, especially in spring, though
most available data are for summer, light-
adjusted phytoplankton [Sakshaug, 2004;
Harrison et al., 1982]. Arctic phytoplankton
community structure appears to change
toward smaller cells in response to warm-
ing both in the field and in experiments [Li
et al., 2009; Tremblay et al., 2009; Coello-
Camba et al., 2014, 2015] that may have
different nutrient uptake kinetics [Lovejoy
et al., 2007], while individual phytoplank-
ton species may have narrower tempera-
ture ranges for optimal growth, usually in
combination with light requirements [Har-
rison and Platt, 1986; Vernet et al., 2012].
These phenological changes will require
the inclusion of multiple phytoplankton
size classes in models and/or different
physiological rates.

The distribution of NO3—hence, its poten-
tial availability for NPP—differed by depth
(Figure 5c) as well as region (Table 4). A
less ecological and more pragmatic expla-
nation for the overestimation of surface
NO3 may be that the models are incapable
of reproducing the vertical mixing dynam-
ics required (as shown by the ubiquitous
MLD overestimation; Figure 9a); no evident

Figure 9. Modeled MLD, Zeu, and sea ice concentration bias: (a) MLD bias
between 15 model mean and monthly climatological MLD (m), (b) Zeu bias
between 9 model mean and in situ Zeu (m), and (c) sea ice concentration bias
between 19 model mean and satellite-derived values (%).
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relationship was found between vertical resolution and skill in surface NO3 among the participating models
(not shown). Indeed, the future Arctic Ocean may produce less NPP per unit area due to less surface NO3 [e.g.,
Vancoppenolle et al., 2013] resulting from enhanced freshening [Coupel et al., 2015], as also hypothesized by
McLaughlin and Carmack [2010]. Unlike surface NO3, deep NO3 was more realistically reproduced pan-Arctic
wide in terms of the multimodel ensemble mean values at 100 km grid scales (average symbols in Figure 7).
Indeed, deep NO3 and sea ice concentration (i.e., measured as ME) were relatively well explained by the multi-
model ensemble in at least four regions (Table 4). Still, deep NO3 (50–100 m) was relatively poorly estimated
in the inflow Barents and Chukchi Seas in terms of correlation coefficients (Figures 7c and 7g) and regional
means (WS in Table 4). Those two regions are strongly influenced by horizontal advection of sub-Arctic inflow
waters which contribute to the nutrient supply into the Arctic Ocean via the Bering Strait and Fram Strait/
Barents Sea openings [e.g., Carmack and Wassmann, 2006; Wassmann et al., 2015]. Torres-Vald�e et al. [2013]
estimated the volume and NO3 transports into the Arctic Ocean based on a combination of modeled and in
situ velocity fields and nutrient sections: total volume and NO3 transport into the Arctic Ocean at depth corre-
sponded to 20% and 80% through the Bering Strait and the Barents Sea opening, respectively (i.e., a signifi-
cant contribution). Smith et al. [2011] also showed the greater relative importance of this advective nutrient
input compared to vertical mixing in the Arctic Ocean.

Involvement of a light-driven component of the simulation of NPP is provided by the fact that Zeu was gen-
erally overestimated in all Arctic regions by most of the nine models that provided this field (Figure 9b). The
simulated Zeu (9 model mean of 56 m), compared to the mean in situ Zeu (37 m), was deeper than MLD (18
model mean of 23 m and climatological mean of 16 m). Possible explanations for the Zeu overestimation
may include the prescription of lower turbidity levels than the typical values in the Arctic Ocean. In addition
(or instead), the parametrization of light extinction in the water column may be associated with sea ice con-
ditions, i.e., the Zeu overestimation, coupled with underestimation of sea ice concentration, may result in
light being able to penetrate deeper into the water column during a simulation. From a biophysical per-
spective, the self-shading effect caused by the presence of phytoplankton is considered in many of the par-
ticipating models already. Although we focused on model skill in estimating NPP, not phytoplankton
biomass, the self-shading effect has been reported as negligible for high latitudes in sensitivity analyses
[Manizza et al., 2005]. Yet, other biogeochemical species like colored dissolved organic matter that could
reduce the light penetration into the water column are not represented in the models used in this study
[Granskog et al., 2012; Dutkiewicz et al., 2015; Kim et al., 2015]. Nonetheless, NPP was still underestimated
despite apparent light availability, emphasizing a physiological coupling between light availability and light
requirements by phytoplankton; alternatively, it suggests that low NPP would generate low phytoplankton
biomass which would result in a deeper Zeu simply due to lack of light absorption.

Given that the models overestimated surface NO3 and Zeu, the simulated phytoplankton populations would
experience more nutrient and light availability, which should have led to higher iNPP. However, the simulat-
ed NPP was mostly underestimated in all regions of the Arctic Ocean, clearly indicating that surface
nutrients were not the primary limiting factor for the underestimated iNPP in these model simulations.
Because the regions with higher model skill at estimating iNPP coincided with better model skill in Zeu and
sea ice concentration, especially in low production regions, the amount of shortwave radiation or PAR trans-
mitted through sea ice could account partly for underestimating iNPP [Babin et al., 2015]. Our findings fur-
ther suggest that biological processes (i.e., phytoplankton growth and photosynthesis) were possibly
misrepresented by the model configurations run for this Arctic Ocean exercise. A previous model intercom-
parison study for lower latitudes pointed out that an improved understanding of the temperature effect on
photosynthesis and a better parameterization of the maximum photosynthetic rate are required [Carr et al.,
2006]. Hence, one might argue that phytoplankton growth functions were not adequately parameterized
especially for colder high latitudes in many models, resulting in lesser utilization of surface nutrients. This is
debatable in the Beaufort Sea where the effect of temperature on photosynthetic parameters over the in
situ range observed (22 to 88C) was found not significant [Huot et al., 2013]. Furthermore, a large variability
in photosynthetic parameters and half-saturation constants exists in Arctic ecosystem models, as recently
reviewed by Babin et al. [2015]; during a model sensitivity exercise, they showed that temperature was not
as strong a limiting factor for phytoplankton growth as others (i.e., light and nitrate). Although it could be
that nutrients, light and temperature relationships need to be adjusted to improve model skill in the Arctic
Ocean, such a regional tuning is, however, not possible for global BOGCMs and ESMs.
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Simulated NPP may be low due to not only limiting factors, but also because of too little biomass, e.g.,
through excessive loss of carbon from or in the upper water column. Vertical export of organic matter is
parameterized in all models. The organic carbon to organic nitrogen stoichiometric ratio in sinking particu-
late matter has been shown not to be constant in Arctic waters [Tamelander et al., 2013; Michel et al., 2006],
as assumed in most models. Arctic phytoplankton are also known to have large exudation levels during cer-
tain phases of their growth cycle [Vernet et al., 1998; Laroche et al., 1999] which promotes the formation of
sinking aggregates, resulting in significant carbon export from the surface layer when large phytoplankton
cells dominate [Reigstad et al., 2011; Wassmann et al., 2006]. Changes in phytoplankton species composition
and bloom phenology in Arctic waters are also being reported. These changes include shifts toward smaller
cells, possibly with different physiology, especially in the freshening Beaufort Sea and Canadian Arctic Archi-
pelago [Li et al., 2009; Tremblay et al., 2009], which will again affect vertical export fluxes. Changes in bloom
phenology have been described as lengthening bloom periods or even the presence of fall blooms
(reviewed by Babin et al. [2015]; Michel et al. [2006, 2015]). However, these changes are fairly recent and like-
ly not yet simulated by models nor captured by the in situ data used for our exercise, despite covering five
decades back (i.e., diminishing the likelihood of an effect in our field data set).

If bottom-up factors were not the main or sole controls on phytoplankton productivity, grazing could be:
not only may grazers reduce NPP but they also regulate vertical flux. If simulated grazing rates were too
high, then the resulting nutrient concentrations would be much higher than the values of the high satura-
tion constants used. This scenario was ruled out for high latitudes by a PISCES-based model simulation in
which bottom-up controls did dominate [Aumont et al., 2015]. On the other hand, the northward advective
inflow of sub-Arctic water has been reported to also carry significant zooplankton biomass [Wassmann
et al., 2015]. Hence, it is possible that the Arctic Ocean primary production in model simulations might be
reduced under increased grazing pressure from such sub-Arctic (expatriate) zooplankton. Such a hypotheti-
cal extension of sub-Arctic grazing influence to the interior regions of the Arctic Ocean is not currently sup-
ported by observations [Kosobokova and Hopcroft, 2010]. Much is changing with respect to trophic
structure in the Arctic Ocean, including grazer community composition and biodiversity [Bluhm et al., 2015],
all of which may or may not be simulated by the models, with consequences for estimating iNPP. However,
we currently lack a comprehensive review and climatology for in situ micro, meso, and macrozooplankton
growth and grazing rates in the Arctic Ocean to broadly assess model relative skill.

Our use of an in situ NPP database allowed the assessment of model skill in ice-influenced as well as in ice-
free waters, overcoming a limitation encountered by previous model intercomparison exercises for the Arc-
tic Ocean [e.g., Popova et al., 2012; Vancopenolle et al., 2013] that depended on satellite-derived NPP, which
is not available for ice-covered regions. Regardless of whether sea ice was present or not, the mean and var-
iance of in situ iNPP were almost identical, confirming that the ice-influenced regions could be as produc-
tive as the ice-free regions (Table 2). It should be noted that the similarity could be due to biased seasonal
coverage by field studies in ice-free waters, introducing more measurements collected in late summer and
fall (i.e., September), thus lowering the ice-free iNPP average (not shown). Alternatively, the similarity in sim-
ulated iNPP values in ice-free and ice-influenced areas could result from the averaging of regional differ-
ences previously observed in field and satellite-derived NPP data [e.g., Arrigo et al., 2012; Hill et al., 2013;
Ardyna et al., 2013] as well as in model simulations [e.g., Zhang et al., 2015]. Recently, Jin et al. [2016]
showed that simulated under-ice production is also regionally different (i.e., higher in the Arctic shelves,
possibly due to enhanced nutrient supply) [Zhang et al., 2015], but not necessarily related to the recent
decrease in sea ice concentration, especially in marginal ice zones. Regardless of whether NPP was mea-
sured in deep versus shallow areas or ice-influenced versus open water regions, model skill for iNPP differed
little on such spatial scales.

Time did make a difference, however. Model skill varied from decade to decade, and higher model skill was
found for the most recent decade (Figures 4e and 4f) when in situ iNPP and NO3 were lower (Table 2), since
the models performed better with low iNPP. For example, on a pan-Arctic scale, in situ carbon uptake rates
decreased to 177 mg C m22 d21 (N 5 344; 2000–2011) compared to 316 mg C m22 d21 in the earlier deca-
des (N 5 391; 1959–1989). Similarly, in situ depth-averaged NO3 decreased from 5.1 mmol m23 (N 5 284;
1979–1999) to 2.9 mmol m23 (N 5 379; 2000–2011). These decreases likely resulted from differences in geo-
graphical sampling distribution between decades (Figure 1). For example, during 2000–2011, more data
were available from the large Canadian and International Polar Year programs in low production regions,
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such as the Beaufort Sea and the central Arctic Basin (Figure 1c). Not all of the participating models cap-
tured these decreasing changes in simulated iNPP and NO3 (not shown). However, regardless of whether
model iNPP estimates increased or decreased over the most recent decade, simulated iNPP values became
more comparable to in situ values on a pan-Arctic scale, such that model skill was seen to be improved in
more recent years (Figures 4e and 4f). On a seasonal time-scale, the models generally performed poorly in
the beginning of the growing season (April–June) compared to later months (Figures 4g and 4h). For some
models, this could be due to insufficient penetration of winter mixing, as the main mechanism controlling
basin-scale patterns of nutrient supply [e.g., Popova et al., 2012]; though, as stated earlier, MLD was overesti-
mated overall (Figure 9a). Also occurring at this time is the critical balance between the onset and phenolo-
gy of sea ice melting, ice algal bloom, and/or phytoplankton bloom; small mismatches in timing among
them resulted in a large variability of simulated phytoplankton availability, especially at the Arctic marginal
seas [Ji et al., 2013].

Model quantification of biogeochemical processes is highly dependent on how accurately physical fields
are simulated [Friedrichs et al., 2006; Popova et al., 2012]. Submesoscale physical features are especially
important to biogeochemical processes affecting the horizontal and vertical distribution of nutrients and
phytoplankton biomass [Watanabe et al., 2014]. Most of the participating models are developed on global
scales and only four of them are regional models of the order of 10 km resolution (Table 1). The Rossby radi-
us of deformation is dramatically reduced with increasing latitude and it becomes less than 10 km in the
Arctic Ocean. Hence, those models with resolution of the order of 10–100 km may not adequately resolve
submesoscale physical features at the surface layer that are likely critical for Arctic biogeochemical process-
es—in particular—regionally [Timmermans et al., 2012], rather than larger-scale physical processes deter-
mining the response of the pan-Arctic marine ecosystem. High spatial resolution models or more Arctic-
appropriate parameterizations and closures are necessary to capture small-scale physical processes, such as
eddies, tides, fronts, internal waves as well as interactions between shelf and open ocean or sea and ice pro-
cesses, that can influence phytoplankton growth, especially in high-productivity, coastal shelf regions adja-
cent to sub-Arctic waters. Indeed, regionally, model skill patterns are contradictory, such that the Greenland
Sea has a very closely simulated surface and deep NO3 and MLD (Table 4) but the least skill in simulated sea
ice concentration (Figure 9c); yet it has the lowest skill in iNPP, underestimating it (Figure 6f). Conversely,
the Beaufort Sea shows medium skill in deep NO3, least skill in surface NO3 (overestimating concentrations)
and yet the best skill in iNPP (Table 4)—still underestimating iNPP and its variability (Figure 6b), though less
than other Arctic Ocean subregions. Assuming improved parameterization of nutrient, light, and tempera-
ture relationships of phytoplankton growth, a higher spatial resolution model could potentially produce sig-
nificant subregional features [e.g., Yool et al., 2015], as mesoscale and submesoscale processes have been
shown to stimulate biological productivity in lower latitudes [McGillicuddy et al., 1998; Oschlies and Garcon,
1998; L�evy et al., 2001]. Finally, coastal regions, characterized by elevated primary productivity are also not
properly resolved by a coarse model grid, in general [Aumont et al., 2015]. Higher resolution in ecosystem
complexity has already been shown to lead to improved realism of BOGCM high latitude simulations, with
the addition of slow growing macrozooplankton leading to the successful representation of the different
bloom dynamics in the Southern Ocean [Le Qu�er�e et al., 2016]. Much effort is now being applied in the
modeling community to introduce high-resolution strategies into BOGCMs, especially those regionally
focused on the Arctic Ocean [Interagency Arctic Research Policy Committee, 2013], with the hope that repro-
ducing meso and submesoscale processes and features will improve their predictive skill for iNPP and other
biogeochemical properties in the Arctic Ocean.

6. Summary and Recommendation

Using in situ, satellite-derived, and climatological data, we have analyzed model estimates of iNPP and NO3

associated with physical variables such as MLD, Zeu, and sea ice concentration from 21 BOGCMs and ESMs
during the period of 1959–2011, although the time span of simulation as well as the initialization and forc-
ing were different among the participating models. No models fully reproduced the variability of in situ
measurements, whereas some of them exhibited almost no bias. Generally, the models captured the spatial
features of the iNPP distribution: lower iNPP in the interior regions and higher iNPP in the inflow regions.
The models exhibited different regional characteristics in estimating iNPP since each model’s skill was a
function of environmental factors with distinctive sensitivity in one region versus another. For example,
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MLD and NO3 were reproduced well in the Atlantic-side inflow and outflow regions, Zeu had greater skill in
the interior regions, and sea ice concentration was reasonably well estimated everywhere, except in the
Greenland Sea. Most of the models generally underestimated mean iNPP, in spite of overestimating Zeu and
surface NO3, especially in the Chukchi and Greenland Seas where mean in situ iNPP is high. Regionally,
model iNPP was best estimated in the regions where simulated surface NO3 was most overestimated rela-
tive to in situ values and where both sea ice concentration and Zeu were reproduced well, such as the Beau-
fort Sea and the central Arctic Basin. By contrast, iNPP exhibited the largest model-data disagreement in the
Greenland Sea where the simulated surface NO3 and MLD had greater model skill, but sea ice concentration
had lower model skill.

The Arctic Ocean appears to be experiencing a fundamental shift from a polar to a temperate mode, which
is likely to alter its marine ecosystem [Yool et al., 2015; Wassmann et al., 2015]. Under a changing climate,
sea ice loss, shifts in composition and distribution of phytoplankton functional types, and bloom phenology
changes already play a role in the Arctic Ocean marine ecosystem [e.g., Li et al., 2009; Ardyna et al., 2014].
Globally, changes in nutrient and light availability have emerged as the most important determinants in
models for alterations in simulated growth rates, with light generally playing a lesser role, except for the
very high latitudes, particularly the Arctic Ocean [Laufk€otter et al., 2015]. At these high latitudes, tempera-
ture does not appear to play a physiological role but could well play an ecological role of controlling phyto-
plankton bloom composition and phenology [Babin et al., 2015]. Thus, ecosystem processes and algal
physiology in models need to be carefully parameterized for the Arctic Ocean in order to better quantify
uncertainties in estimating primary production, including under-ice primary production and ice algae pro-
duction [Leu et al., 2015; Jin et al., 2016]; enhanced functional types for all levels of the marine food web
[Babin et al., 2015]; and, the role of horizontal advection of planktonic organisms versus their vertical export
[Wassmann et al., 2015]. Furthermore, it is necessary to resolve submesoscale physical processes to decide
the apparently contradictory bottom-up controls of NPP and the resulting biogeochemical cycles in the var-
ious subregions of the Arctic Ocean, with the hope that BOGCMs and ESMs perform within the uncertainty
due to natural variability. Last but not least, models will continue to improve their skill when additional vali-
dating data sets and climatologies are gathered and openly shared for relevant biogeochemical, physiologi-
cal, and ecological variables in the Arctic Ocean.

Appendix A: Brief Description of Participating Models

A1. Model 1
HYCOM-NORWECOM [Samuelsen et al., 2015] is a regional coupled physical-biogeochemical model with 11
compartments in the biogeochemical model. The physical model is the Hybrid Coordinate Ocean Model
(HYCOM) [Bleck, 2002] adapted to the North Atlantic and Arctic Ocean [Bertino and Lisaeter, 2008]. The mod-
el encompasses the entire North Atlantic and has open lateral boundaries at the Bering Strait in the Pacific
Ocean and near the equator between 38S and 168S in the Atlantic Ocean; the model is relaxed toward clima-
tological values at the lateral boundaries. The model is forced by ERA-Interim [Dee et al., 2011], hydrological
forcing from TRIP [Oki and Sud, 1998], but does not include tidal forcing. The sea ice model uses an elastic-
viscous-plastic (EVP) rheology [Hunke and Dukowicz, 1997] while thermodynamics are described in Drange
and Simonsen [1996]. NORWEgian ECOlogical Model (NORWECOM) [Aksnes et al., 1995; Skogen and Søiland,
1998] is coupled online to HYCOM and uses HYCOM facility for advection of tracers and has the same time-
step as the physical model. The current model version includes two classes of phytoplankton (diatom and
flagellates), two classes of zooplankton (meso and microzooplankton) derived with the same formulation
from the model ECOHAM4 [P€atsch et al., 2009], three types of nutrients (N, P, and Si) and detritus (N and P),
biogenic Si, and oxygen (O2). Additionally, riverine nutrient loads are based on the results from the Global-
NEWS model [Seitzinger et al., 2005]. The model assumes a constant element ratio (i.e., Redfield) as well as
constant chlorophyll:N ratio in phytoplankton. In the model, light does not propagate through sea ice;
therefore, the model is not expected to yield realistic primary production and nutrients in areas with thin
ice cover where light actually is available for primary production.

A2. Model 2
This global biogeochemical model (1998–2014) uses the PISCES formulation on the horizontal curvilinear
grid ORCA025 and 75 vertical levels. It is forced offline by daily fields of an ocean circulation simulation:
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Nucleus for European Modelling of the Ocean (NEMO)-Oc�ean PArall�elis�e (OPA) (version 3.1) [Madec, 2008].
Atmospheric forcings are 3 hourly ERA-Interim reanalysis product with the CORE bulk formulation. There is
no assimilation of physical data. The sea ice model is the Louvain la Neuve sea Ice Model version 2 (LIM2)
with EVP rheology [Fichefet and Morales Maqueda, 1997]. PISCES (volume 2) [Aumont et al., 2015] is a model
of intermediate complexity designed for global ocean applications and is a component of the NEMO model-
ing system. It has 24 prognostic variables and simulates biogeochemical cycles of O2, C, and the main
nutrients controlling phytoplankton growth (NO3, ammonium (NH4), phosphate (PO4), silicate (SiO4), and
Fe). The model distinguishes four plankton functional types based on size: two phytoplankton groups
(nanophytoplankton and diatoms) and two zooplankton groups (micro and mesozooplankton). PISCES
traces three nonliving pools for small and big particulate organic carbon (POC), and semilabile dissolved
organic carbon (DOC). Version 3.5 of NEMO-PISCES with default parameter set is used here. The configura-
tion is described and assessed in the Product User Manual and Quality Information Document (http://
marine.copernicus.eu/documents/PUM/CMEMS-GLO-PUM-001-018.pdf and http://marine.copernicus.eu/
documents/QUID/CMEMS-GLO-QUID-001-018.pdf). Daily and monthly mean outputs are available on Coper-
nicus Marine Service website (http://marine.copernicus.eu).

A3. Model 3
This model is the Plankton Types Ocean Model 5.3 (PlankTOM5.3) biogeochemical model coupled to the
NEMO (version 2.3) global ocean circulation model and sea ice model (LIM2). The biological model is a 26
component marine pelagic ecosystem model, including three phytoplankton components (diatoms, cocco-
lithophores, and mixed phytoplankton), two zooplankton components (micro and mesozooplankton), DOC,
small and large detrital POC and particulate organic Fe, detrital particulate Si and calcite, and dissolved NO3,
SiO4, and Fe [Buitenhuis et al., 2013]. Each phytoplankton functional type has C, chlorophyll, and Fe compo-
nents, linked with a dynamic photosynthesis model [Buitenhuis and Geider, 2010]. The standard simulation
was spun up from 1920 to 1955, and for the purpose of this paper the optimized simulation was run from
1956 to 2013 [Buitenhuis et al., 2013].

A4. Model 4
This model is the Plankton Types Ocean Model 10 (PlankTOM10) biogeochemical model coupled to the
NEMO (version 3.1)-LIM2 ocean circulation and sea ice model. The biological model is a 37 component
marine pelagic ecosystem model, including six phytoplankton components (diatoms, coccolithophores,
picophytoplankton, N2-fixers, phaeocystis, and mixed phytoplankton), three zooplankton components
(micro, meso, and macrozooplankton), bacteria, DOC, small and large detrital POC and particulate organic
Fe, detrital particulate Si and calcite, and dissolved NO3, SiO4, and Fe [Le Qu�er�e et al., 2016]. PlankTOM10 has
the same dynamic photosynthesis model as PlankTOM5.3 (Model 3). In addition, it has an improved repre-
sentation of the difference between the high latitude Northern and Southern Hemisphere phytoplankton
blooms through the representation of slow growing macrozooplankton. The different physical settings
result in different overwintering macrozooplankton populations, in turn leading to different trophic cas-
cades and more realistic phytoplankton blooms [Le Qu�er�e et al., 2016].

A5. Model 5
The Carbon, Ocean Biogeochemistry, and Lower Trophics (COBALT) version 1.0 marine ecosystem model
uses 33 state variables to resolve global-scale cycles of C, N, P, Si, Fe, calcium carbonate (CaCO3), O2, and
lithogenic material [Stock et al., 2014a]. COBALT derives many elements of its biogeochemical formulation
from the TOPAZ model (see Model 6). However, COBALT enhances the resolution of planktonic food web
dynamics to better understand the climate impacts on the flow of energy from phytoplankton to fish [Stock
et al., 2014b]. The model includes three phytoplankton groups (small, large, and diazotrophs) and uses the
variable chlorophyll:C formulation of Geider et al., [1997] to estimate NPP. Results contributed to this study
were conducted with the Modular Ocean Model (MOM) version 4p1 [Griffies, 2012] with sea ice dynamics as
described in Winton [2000]. The model was run on a global domain with a nominal spatial resolution of 18

and a tripolar Arctic grid. The model uses 50 vertical layers with a nominal resolution of 10 m over the top
200 m. Simulations are forced with the Coordinated Ocean-ice Reference Experiment version 2 (CORE2)
data set [Large and Yeager, 2009]. The 60 year forcing period was looped twice and results from the second
loop provided for this study. Surface salinity is relaxed to observations with 2 month relaxation time-scale in
order to avoid salinity drifts characteristic of long integrations of ocean-ice simulations without fully
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coupled atmosphere dynamics [Griffies et al., 2009]. Complete details of the simulation and model validation
can be found in Stock et al. [2014a].

A6. Model 6
Tracers of Ocean Phytoplankton with Allometric Zooplankton version 2.0 (TOPAZ2) is an ocean biogeo-
chemical and ecological model developed at NOAA’s Geophysical Fluid Dynamics Laboratory for global
Earth System Model simulations contributed to the 5th assessment report of the Intergovernmental Panel
on Climate Change [Dunne et al., 2012b,2013]. TOPAZ2 includes 30 tracers to describe the cycles of C, N,
P, Si, Fe, O2, alkalinity, and lithogenic material as well as surface sediment calcite dynamics [Dunne et al.,
2012a]. TOPAZ2 considers three explicit phytoplankton groups (small, large, and diazotrophs) that utilize
a modified growth physiology after Geider et al. [1997] with Eppley [1972] temperature functionality and
iron colimitation with luxury uptake after Sunda and Huntsman [1997]. CO2:NO3:O2 stoichiometry is
106:16:150 after Anderson [1995]. N:P is based on optimal allocation after Klausmeier et al. [2004]. Com-
plete technical details are available in the supplementary information of Dunne et al. [2013]. Results con-
tributed to this study were conducted with the MOM (version 4p1) [Griffies, 2012] with sea ice dynamics
as described in Winton [2000]. The model was run on a global domain with a nominal spatial resolution of
18 and a tripolar Arctic grid. The model uses 50 vertical layers with a nominal resolution of 10 m over the
top 200 m. Simulations are forced with the CORE2 data set [Large and Yeager, 2009]. The 60 year forcing
period was looped twice and results from the second loop provided for this study. Surface salinity is
relaxed to observations with 2 month relaxation time-scale in order to avoid salinity drifts characteristic
of long integrations of ocean-ice simulations without fully coupled atmosphere dynamics [Griffies et al.,
2009].

A7. Model 7
SINMOD is a model system that has been continuously developed over 30 years and includes a hydrody-
namic and a sea ice module [Slagstad and McClimans, 2005], an ecosystem module [Wassmann et al., 2006],
and stage resolved zooplankton models [Slagstad and Tande, 2007]. The hydrodynamic model is based on
the primitive Navier-Stokes equations and is established on a Z-grid [Slagstad and McClimans, 2005]. The ice
model is similar to that of Hibler [1979] and has two state variables: ice thickness and ice concentration. The
ice momentum equation is solved together with an equation for the ice internal stress, using the EVP
dynamical model of Hunke and Dukowicz [1997]. The ecosystem model includes nutrients (NO3, NH4, and
SiO4), phytoplankton (diatoms and flagellates), bacteria, heterotrophic nanoflagellates, microzooplankton,
and two mesozooplankters: the Atlantic Calanus finmarchicus and the arctic C. glacialis, two compartments
for fast and slow sinking detritus, DOC, and sediments. The model uses constant stoichiometry with a C:N
ratio equal 7.6, based upon average data from the Barents Sea [Reigstad et al., 2002]. In the present study,
SINMOD data are from a pan-Arctic configuration with 20 km horizontal grid resolution and with 25 vertical
layers. Forcing fields includes atmospheric forcing from the ERA-Interim reanalysis (http://www.ecmwf.int)
[Dee et al., 2011], tides from TPXO 6.2 model prescribed at open boundaries, and freshwater run-off from
R-ArcticNet (http://www.r-arcticnet.sr.unh.edu/). More details of the recent updates of SINMOD and the
model setup may be found in Slagstad et al. [2015].

A8. Model 8
The NorESM-OC is the ocean component of the Norwegian Earth System Model (NorESM). It is a coupled
BOGCM, which comprises the Miami Isopycnic Coordinate Ocean Model (MICOM) coupled with the Ham-
burg Oceanic Carbon Cycle (HAMOCC)25 model [Schwinger et al., 2016]. HAMOCC consist of a Nutrient-
Phytoplankton-Detritus-Zooplankton (NPDZ)-type ecosystem model, where the primary production is
formulated as a function of phytoplankton growth and nutrient concentration within the euphotic layer
(fixed at 100 m). In addition to multinutrients (i.e., NO3, PO4, and dissolved Fe) colimitation, the phyto-
plankton growth is regulated by light availability and temperature. The model adopts a generic single
class phytoplankton and zooplankton compartment. The particulate materials (i.e., POC, biogenic opal,
and CaCO3) produced at the surface sink with constant velocities and are remineralized at depth. The pro-
duction of surface opal and CaCO3 is determined by the SiO4 availability at the surface. Nonremineralized
particles reaching the seafloor undergo chemical reactions with sediment pore waters, bioturbation, and
vertical advection within the sediment module. For the simulation produced in this study, the NorESM-OC
was forced by the CORE2 atmospheric reanalysis data.
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A9. Model 9
This model is the Biology/Ice/Ocean Modeling and Assimilation System (BIOMAS), a coupled biophysical
model [Zhang et al., 2010a] with four model elements: an ocean circulation model, a sea ice model, a pelag-
ic biological model, and a sea ice algae model. The ocean circulation model is based on the Parallel Ocean
Program (POP), developed at Los Alamos National Laboratory [Smith et al., 1992] and modified by Zhang
and Steele [2007] so that open boundary conditions can be specified. The POP ocean model is further modi-
fied by Zhang et al. [2010b] to incorporate tidal forcing from eight primary constituents [Gill, 1982]. The sea
ice model is a thickness and enthalpy distribution (TED) sea ice model [Zhang and Rothrock, 2003; Hibler,
1980], with eight categories each for ice thickness, ice enthalpy, and snow depth. It is adopted from the
Pan-arctic Ice/Ocean Modeling and Assimilation System (PIOMAS) [Zhang and Rothrock, 2003] and capable
of assimilating satellite observations of sea ice concentration [Lindsay and Zhang, 2006] and sea surface
temperature [Manda et al., 2005; Schweiger et al., 2011]. The pelagic biological model is an 11 component
marine pelagic ecosystem model, including two phytoplankton components (diatoms and flagellates), three
zooplankton components (microzooplankton, copepods, and predatory zooplankton), dissolved organic
nitrogen (DON), detrital particulate organic nitrogen (PON), particulate organic Si, NO3, NH4, and SiO4 (see
Figure 3 in Zhang et al. [2014]; also see Kishi et al. [2007]). Values for key biological parameters used in the
model are listed in Zhang et al. [2010a]. The sea ice algal component of BIOMAS represents colonies in a
2 cm layer at the bottom of each of eight sea ice thickness categories, coupled to the pelagic model
through nutrient and biotic fluxes. The sea ice algae model has two ice algae components (diatoms and
flagellates), with NO3, NH4, and SiO4 as limiting nutrients for ice algal growth. Nutrient and biotic exchange
at the sea ice and water interface is based on Jin et al. [2006].

A10. Model 10
This model is NEMO (version 3.2)-MEDUSA, a coupled biophysics model comprised of an ocean general cir-
culation model (OGCM), a sea ice model, and a representation of marine biogeochemistry [Popova et al.,
2010, 2012]. Ocean circulation is modeled using OPA version 9 (OPA9) [Madec, 2008], a primitive equation
model configured at global-scale, with a horizontal resolution of approximately 0.258 and 64 grid levels in
the vertical [Popova et al., 2010]. The model grid is tripolar with cell sizes ranging approximately 6.8–
15.4 km horizontally, and increasing in thickness from 6 m at the surface to approximately 250 m at abyssal
depths. OPA9 includes partial level thicknesses at the seafloor to improve bottom circulation, and a parame-
terized turbulent kinetic energy scheme for vertical mixing [Gaspar et al., 1990; Madec, 2008]. The model is
forced at the surface using bulk formulae [Large and Yeager, 2004] fed using DFS4.1 climatology fields of
atmospheric properties and downward heat and freshwater fluxes [DRAKKAR Group, 2007]. Sea ice is repre-
sented with LIM2 [Timmermann et al., 2005], based on a viscous-plastic ice rheology [Hibler, 1979] with three
layer (two ice and one snow) thermodynamics [Semtner, 1976]. LIM2 is coupled to OPA9 every five ocean
time steps through a nonlinear quadratic drag law of ocean-ice shear [Timmermann et al., 2005], and repre-
sents detailed heat and freshwater fluxes [Fichefet and Morales Maqueda, 1997]. OPA9 and LIM2 are com-
bined as the NEMO physical model [Madec, 2008]. Marine biogeochemistry is represented using the Model
of Ecosystem Dynamics, nutrient Utilization, Sequestration, and Acidification (MEDUSA) [Yool et al., 2011].
This includes the N, Si, and Fe cycles in a model of the pelagic ecosystem that resolves nanophytoplankton,
diatoms, and micro and mesozooplankton, as well as size-resolved (small and large) detrital material, includ-
ing biomineral ballasting [Armstrong et al., 2002]. MEDUSA has simplified seafloor remineralization of organ-
ic material and does not explicitly include sea ice algae.

A11. Model 11 and 12
NEMO (version 3.2)-European Regional Seas Ecosystem Model (ERSEM) is a global ocean model that
includes the NEMO ocean circulation model, the ERSEM marine biogeochemistry model, and the Los Ala-
mos sea ice model (CICE). NEMO (version 3.2) is a framework of ocean related engines, ocean dynamics,
thermodynamics, sinks and sources, and transport [Madec, 2008]. The CICE model [Hunke et al., 2013] has
several interacting components: a thermodynamic submodel, an ice dynamics submodel, a vertical and a
horizontal transport submodel. ERSEM is a lower trophic level biogeochemical cycling, carbon-based pro-
cess model that uses the functional-group approach [Blackford et al., 2004; Butensch€on et al., 2016]. The C, N,
P, Si, and Fe cycles are explicitly resolved with variable stoichiometry. The pelagic ERSEM model simulates
four phytoplankton functional types, three zooplankton functional types, one bacterial functional type, and
six detritus size classes. The benthic ERSEM is a simple parameterization of remineralization where
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sedimented organic matter is recycled to the water column in inorganic form. The simulations were run as
part of the iMarNet project: an intercomparison project of six UK biogeochemical models [Kwiatkowski et al.,
2014]. The simulation of Model 12 (xhonc) uses an updated configuration of the ERSEM model, with a new
iron model, updated food web, and reduced detrital sinking rate relative to the simulation of Model 11
(xhonp).

A12. Model 13
PELAgic biogeochemistry for Global Ocean Simulations (PELAGOS) [Vichi et al., 2007a,2007b] is a global
ocean biogeochemical model that consists of the coupling between the NEMO (version 3.4) [Madec, 2008]
and the Biogeochemical Flux Model (BFM, version 5.1, http://bfm-community.eu) [Vichi et al., 2015a]. The
ocean model is computed on the ORCA2 grid that has a nominal resolution of 28 with a refinement of the
latitudinal grid size toward the equator down to 0.58, with 30 vertical levels and partial step parameteriza-
tion to increase the resolution of bottom gradients. The physical parameterizations are as in Vichi et al.
[2007b]. The sea ice model is LIM2 and the BFM model can directly be coupled with NEMO [Vichi et al.,
2015b]. The BFM is based on a biomass continuum description of the lower trophic levels of the marine sys-
tem [Vichi et al., 2015b]. The model implements a set of biomass-based differential equations that solve the
fluxes of C, N, P, Si, and Fe among selected biological functional groups representing the major components
of the lower trophic levels. The functional groups in the pelagic environment are represented by unicellular
planktonic autotrophs (pico and nanophytoplankton and diatoms), zooplankton (nano, micro, and meso-
zooplankton) and heterotrophic oxic and anoxic bacterioplankton. The model also simulates the dynamics
of NO3, NH4, PO4, biogenic Si, Fe, O2, and it has an explicit parameterization of the biochemical cycling of
dissolved/particulate nonliving organic matter. Another peculiarity of the model is that the nutrient stoichi-
ometry is not fixed and therefore the ratios of C to N, P, and Si can vary within the living functional groups
as well as the chlorophyll:C ratio in phytoplankton. This simulation includes nutrient river inputs from Cotrim
da Cunha et al. [2007] but no benthic remineralization.

A13. Model 14
A marine biogeochemical (mBGC) module [Moore et al., 2004; Jin et al., 2012, 2016] is incorporated in a glob-
al version of the POP-CICE model developed at Los Alamos National Laboratory. A subgrid-scale ocean mix-
ing scheme [Jin et al., 2012] was added to reduce model errors in simulated mixed layer depth, salinity, and
nutrients in the Arctic Ocean. The pelagic component of mBGC includes 26 state variables of multiple
nutrients, phytoplankton, zooplankton, and detritus. The ice algal component of mBGC represents colonies
in a 3 cm layer at the bottom of each sea ice thickness category, coupled to the pelagic model through
nutrient and biotic fluxes. This submodel was based on biophysical ice core data collected in land-fast ice
offshore from Barrow, Alaska [Jin et al., 2006] and coupled with a pelagic ecosystem model in vertically 1-D
models [Jin et al., 2007] and global POP-CICE model settings [Deal et al., 2011; Jin et al., 2012, 2016].

A14. Model 15
This model is based on the ocean circulation model OPA, the dynamical component of NEMO (version 3.5).
It solves the primitive equations on the Arakawa C-grid, with a second-order centered finite difference
scheme [Madec, 2008]. It assumes the Boussinesq and hydrostatic approximations, the incompressibility
hypothesis, and uses a free-surface formulation [Roullet and Madec, 2000]. The density is computed from
potential temperature, salinity, and pressure using the Jacket and Mcdougall [1995] equation of state. Verti-
cal mixing is computed from a turbulence closure scheme based on a prognostic vertical turbulent kinetic
equation, which performs well in the tropics [Blanke and Delecluse, 1993]. Partial step formulation of bottom
topography is used instead of a full step one [Bernard et al., 2006]. LIM2 is a two-level thermodynamic-
dynamic sea ice model in which sensible heat storage and vertical heat conduction within snow and ice are
determined by a three-layer model (one layer for snow and two layers for ice) [Fichefet and Morales
Maqueda, 1997; Bouillon et al., 2009]. PISCES is the biogeochemical component of NEMO and it simulates
the lower trophic levels of marine ecosystem and the biogeochemical cycles of carbon and of the main
nutrients (P, N, Fe, and Si) [Aumont and Bopp, 2006]. There are 24 prognostic variables including two phyto-
plankton compartments (diatoms and nanophytoplankton), two zooplankton size-classes (micro and meso-
zooplankton) and a description of the carbonate chemistry. Formulations in PISCES are based on a mixed
Monod-Quota formalism: on one hand, stoichiometry of C, N, and P is fixed and growth rate of phytoplank-
ton is limited by the external availability in N, P, and Si. On the other hand, the Fe and Si quotas are variable
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and growth rate of phytoplankton is limited by the internal availability in Fe. There are three nonliving com-
partments: semilabile-dissolved organic matter, small and big sinking particles.

A15. Model 16
This simulation is based on the global ocean biogeochemical model NEMO-PISCES. NEMO (version 3.4) was
run with horizontal resolution of up to 18 by 18 (globally 362 longitude 3 292 latitude grid points) and with
46 vertical levels. The model results are available for 2002–2011. For those years, external ocean-surface
forcing was specified from the CORE2 (2002–2007) and NCEP/DOE AMIP-II Reanalysis (Reanalysis-2) data
(2008–2011). The ocean circulation model is based on the hydrostatic, primitive equation model OPA
[Madec et al., 1998], and is a finite difference OGCM with a free sea surface. OPA uses a global tripolar
orthogonal curvilinear grid to avoid singularity points inside the computational domain and attain the ratio
of anisotropy of nearly one [Madec and Imbard, 1996]. The variables are distributed on a 3-D Arakawa-C
type grid. The sea ice model (LIM3) is a C-grid dynamic-thermodynamic model, including the representation
of the subgrid-scale distributions of five-category sea ice thickness, enthalpy, salinity, and age distributions.
The representation of sea ice is done through a velocity vector and a series of ice state variables described
in Vancoppenolle et al. [2009a]. Brine entrapment and drainage as well as brine impact on ice thermodynam-
ics and a snow ice formation scheme are explicitly included [Vancoppenolle et al., 2009a, 2009b]. The bio-
geochemical model used is PISCES (volume 2) [Aumont et al., 2015]. It has 24 prognostic variables and
simulates the lower trophic levels of marine ecosystems and the biogeochemical cycles of O2, C, and the
main nutrients (P, N, Fe, and Si). The model distinguishes four plankton functional types based on size: two
phytoplankton groups (nanophytoplankton and diatoms) and two zooplankton groups (micro and meso-
zooplankton). Prognostic phytoplankton variables are total biomass in C, Fe, Si (for diatoms) and chlorophyll
and hence the Fe:C, Si:C, chlorophyll:C ratios are fully predicted by the model. For zooplankton, all O, C, N,
and P ratios are kept constant and total biomass in C is the only prognostic variable. The bacterial pool is
not modeled explicitly.

A16. Model 17
This simulation is based on the NEMO-PISCES model. The ocean component uses NEMO (version 3.2)
[Madec, 2008] in the ORCA1 configuration with horizontal resolution from 18 in polar regions to 1/38 near
the equator and 42 vertical levels. This configuration includes an improved Turbulent Kinetic Energy (TKE)
closure scheme based on Blanke and Delecluse [1993]. The ocean radiative scheme is represented by three-
wave-band scheme of Lengaigne et al. [2007], which accounts for influence of phytoplankton chlorophyll.
The sea ice model is GELATO5 [Salas M�elia, 2002], which considers four ice thickness categories (0–0.3 m,
0.3–0.8 m, 0.8–3 m, and over 3 m). Each category has 10 vertical layers with enhanced resolution near the
top of the slab. The sea ice dynamics is represented by the EVP rheology [Hunke and Dukowicz, 1997]. The
biogeochemical model PISCES [Aumont and Bopp, 2006] simulates the biogeochemical cycles of O2, C, and
the main nutrients: NO3, NH4, PO4, SiO4, Fe, two sizes of phytoplankton, two sizes of zooplankton,
semilabile-dissolved organic matter, and small and big sinking particles. Three different sources supply
nutrients: atmospheric dust deposition [Tegen and Fung, 1995; Jickells and Spokes, 2001; Moore et al., 2004],
rivers [Ludwig et al., 1996], and sediment mobilization [Johnson et al., 1999; de Baar and de Jong, 2001]. The
model input of riverine-dissolved inorganic carbon (DIC) and DOC is taken from the annual estimates of the
Global Erosion Model [Ludwig et al., 1996]. The DOC from rivers is assumed to be labile and is directly con-
verted to DIC upon its delivery to the ocean. Inputs of dissolved Fe, NO3, PO4, and SiO4 are computed from
the sum of DIC and DOC river input using a constant set of ratios for C:N:P:Si:Fe as computed from Meybeck
[1982] for C:N, from Takahashi et al. [1985] for N:P, from de Baar and de Jong [2001] for Fe:C, and from
Tr�eguer et al. [1995] for Si:C. More complete descriptions of the whole ocean-sea ice and marine biogeo-
chemistry component are provided by Voldoire et al. [2013] and S�ef�erian et al. [2013], respectively.

A17. Model 18
This model is the MIT general circulation model (MITgcm) [Marshall et al., 1997] coupled with a sea ice mod-
el and with a pelagic biogeochemical model. The coupled model is configured on a ‘‘cubed-sphere’’ grid
encompassing the Arctic domain with open boundaries at around 558N in the Atlantic and Pacific sectors.
Prescribed boundary conditions for potential temperature, salinity, flow, and sea surface elevation are pro-
vided from previous integrations of a global configuration of the same model [Menemenlis et al., 2005]. The
sea ice component follows the viscous-plastic rheology formulation of Hibler [1979] with momentum
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equations solved implicitly on a C-grid [Arakawa and Lamb, 1977] using a procedure based on Zhang and
Hibler [1997]. The biogeochemical component, improved from previous applications in Arctic waters [Le
Fouest et al., 2011, 2013], has 10 state variables [see Le Fouest et al., 2015, Figure 1]. Equations and biological
parameters are listed in Le Fouest et al. [2005]. It includes NO3, NH4, 2 size-fractionated phytoplankton and
zooplankton, DON, PON, bacteria, and riverine DON (RDON) that couples the marine and terrestrial cycling
of N. The RDON flux is based on the approach developed by Manizza et al. [2009] using seasonally explicit
regression relationships quantifying the covariation between freshwater discharge and measured RDON.

A18. Model 19
The NorESM is a fully coupled climate-biogeochemical model [Tjiputra et al., 2013]. It is the fully coupled ver-
sion of Model 8 described above. In this configuration, the NorESM-OC is coupled with atmospheric general
circulation (modified from Community Atmospheric Model, CAM4), land (Community Land Model, CLM4),
and sea ice (CICE version 4). For the simulation performed in this study, we apply the standard Coupled
Model Intercomparison Project phase 5 (CMIP5) protocol for the historical and future high CO2 (RCP8.5)
scenario.

A19. Model 20
The GISS-E2-R-CC is a coupled atmosphere-land-ocean-ice model with ocean biogeochemistry explicitly
simulated [Romanou et al., 2013, 2014]. GISS-E2 is the GISS atmospheric model within the coupled climate
model, which was submitted in the CMIP5 [Schmidt et al., 2014], and which employs a very accurate and
nondiffusive quadratic upstream differencing scheme for the advection of tracers such as CO2. The GISS-E2-
R ocean model [Russell et al., 1995; Hansen et al., 2007] is a non-Boussinesq mass-conserving ocean model
with a free surface and natural surface boundary fluxes of freshwater and heat. It uses the Gent and Mcwil-
liams [1990] scheme for isopycnal eddy fluxes and isopycnal thickness diffusion and the K-Profile Parameter-
ization (KPP) [Large et al., 1994] for vertical mixing, with nonlocal mixing effects included. The GISS-E2 sea
ice model includes improvements from earlier model versions mostly in the formulation of temperature
profiles in the sea ice, which greatly improved Arctic sea ice distributions. Salinity is treated as thermody-
namically passive in the sea ice, though it does impact basal ice formation/melt and heat diffusion through
a new glacial-melt and melt-pond fraction [Schmidt et al., 2004]. The interactive ocean carbon cycle model
consists of the NASA Ocean Biogeochemistry Model (NOBM) [Gregg and Casey, 2007], a gas exchange
parameterization for the computation of the CO2 flux between the ocean and the atmosphere and radiative
coupling between the atmosphere and the ocean biology. NOBM utilizes ocean temperature and salinity,
MLD, ocean circulation fields and the horizontal advection and vertical mixing schemes from the host ocean
model as well as shortwave radiation (direct and diffuse) and surface wind speed obtained from the atmo-
spheric model to produce horizontal and vertical distributions of several biogeochemical constituents.
There are four phytoplankton groups (diatoms, chlorophytes, cyanobacteria, and coccolithophores), with
distinct maximum growth rates, sinking rates, nutrient requirements, and optical properties, and four
nutrients (NO3, NH, SiO4, and Fe), three detrital pools (for NO3:C, SiO4, and Fe) and a single herbivore
component.

A20: Model 21
The HAMOCC [Ilyina et al., 2013] is the global ocean biogeochemical model, which is part of the Max Planck
Institute’s Earth System Model (MPI-ESM) [Giorgetta et al., 2013]. The model HAMOCC is coupled to the MPI-
ESM’s ocean general circulation model MPI-OM [Junglcaus et al., 2013] with an embedded sea ice submodel
[Notz et al., 2013]. The ocean physics, biogeochemistry, and sea ice are thus resolved on the same spatial
grid. In this study, the low-resolution configuration of MPI-ESM from the CMIP5 was used with a nominal
resolution of 1.58. The grid has a bipolar structure with one pole located over Greenland and another one
over Antarctica. In the Arctic Ocean, the model resolution varies between 15 and 65 km depending on the
proximity to the pole. The model has 40 levels with varying thicknesses increasing toward the bottom.
HAMOCC represents the biogeochemical cycles of carbon and nutrients in the water column and in the
upper sediments (represented by an interactive sediment module) [Heinze et al., 1999]. The biological part
of HAMOCC is based on the NPZD approach (extended by dissolved organic matter) [Six and Maier-Reimer,
1996] so that the concentrations of phytoplankton and zooplankton (both represented by 1 tracer) are func-
tions of, solar radiation, temperature, and colimiting nutrients (NO3, PO4, SiO4, and Fe). The model separates
detrital material into POC, CaCO3, and opal, each exported from the euphotic layer with individually distinct
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sinking speeds. Phytoplankton growth and air-sea exchange of CO2 are modulated by the presence of sea
ice; no air-sea exchange takes place through sea ice. In this model configuration biogeochemistry in sea ice
has not been considered. Zero concentrations of nutrients, DIC, and total alkalinity in riverine fluxes are
assumed. The model considers globally uniform weathering fluxes of CaCO3 and SiO4.
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