A Ammar 
  
E Cueto 
email: ecueto@unizar.es
  
F Chinesta 
  
Separated Representations: A Powerful Strategy for Model Reduction

Résumé -In this paper we discuss about the features of a novel numerical method based on the use of separated representations for the variables of interest. This separated representation allows for an easy treatment of problems defined in a space of high number of dimensions, or in which some parameters are unnown or uncertain. As an example of such a problem we study the problem of cell signalling under a stochastic framework. The method also enables to solve problems in which one of the variables within is not known, by considering these unknowns as new model dimensions.
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1 Introduction. A method of separation of variables.

It is frequent in Science and Engineering that models are defined in spaces with a high number of dimensions. This characterisctic makes the numerical solution of these problems an intricate procedure, since a standard finite element discretisation of them involves an exponentially-growing number of degrees of freedom. This is a well-known phenomenon that has received the name of curse of dimensionality.

Several attempts have been made to overcome this curse. The employ of Monte Carlo procedures somawhat alleviates this burden, but it is well known that it converges with low velocity. Sparse grid techniques [START_REF] Bungartz | Sparse grids[END_REF] also help to overcome this difficulty, but are limited to a number of dimensions on the order of 20.

In this paper we overview a new attempt to overcome this difficulty that has proven to be very efficient for several problems [START_REF] Ammar | A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids[END_REF]. The method is based upon the assumption that the essential variable of the problem can be approximated as a finite sum of separable functions, i.e.,

Ψ(x 1 , x 2 , ..., x N ) = n F ∑ i=1 α i F i 1 (x 1 ) • F i 2 (x 2 ) • . . . • F i N (x N ) (1) 
It is readily seen that since each function F j can be discretised in a one-dimensional space by standard finite elements, the approximation grows only linearly -and not exponentially-with the number of space dimensions.

In order to find the final approximation of the solution, the method is composed of two steps : -A projection stage in which the best set of α coefficients is sought.

-An enrichment procedure, in which new terms are added to Eq. ( 1).

Ψ = n F ∑ j=1 α j F j 1 ⊗ F j 2 ⊗ . . . ⊗ F j N Ψ F + R 1 ⊗ R 2 ⊗ . . . ⊗ R N Ψ R (2) 
We usually employ an alternated directions approach, in which we are looking at each iteration to only one vector R j assuming known all the other vectors. Thus, in the weak formulation the test functions given by

Ψ * = R 1 ⊗ ... ⊗ R j-1 ⊗ R * j ⊗ R j+1 ⊗ ... ⊗ R N . (3) 
For a detailed derivation of the method, the interested reader can consult [START_REF] Ammar | A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids[END_REF].

Modelling of gene regulatory networks

In this contribution we are concerned, as an example of potential use of the proposed technique, with a problem of great scientific interest and social relevance. Gene regulatory networks are usually described in terms of the number of molecules of each biochemical species (e.g., A, B, C and D in Eq. ( 4)) that are present at a given location

Z(t) = (#A, #B, #C, #D) T , with initial state Z(t 0 ) = z 0 . ( 4 
)
This approach is usually preferred for the simulation of cell signaling processes since the number of molecules of interest present at a given region of a cell is usually on the order of dozens or hundreds. In this framework, the random ingredient of the reaction becomes evident and a stochastic differential equation is preferred to describe the process.

For any reaction R j , the propensity function will be given by a j (z)dt ≡ the probability, given

Z(t) = z, that R j occurs in [t,t + dt]. (5) 
Once reaction R j has occurred, a change in the number of molecules of the state variables follows, in the amount given by the stoichiometry of the reaction :

v j = s in i, j + s out i, j , (6) 
where s i, j repesents the stoichiometric coefficients of molecules of species i involved in reaction j. Equivalently,

z -v j a j (z -v j )
GGGGGGGGGGGGGAz,

and

z a j (z) G GGGGGGGG Az+v j . (8) 
Let us define the probability that each species exists in z number of molecules at any time t :

P(z,t|z 0 ,t 0 ) ≡ Prob{Z(t) = z, given Z(t 0 ) = z 0 }. (9) 
The Chemical Master Equation describes the time evolution of the probability taking into account each propensity a j :

∂P(z,t|z 0 ,t 0 ) ∂t = ∑ j [a j (z -v j )P(z -v j ,t|z 0 ,t 0 ) -a j (z)P(z,t|z 0 ,t 0 )] .
As explained before, the main problem with the simulation of cell signaling processes by the Chemical Master Equation (CME) is that the CME grows exponentially with the number of species [START_REF] Sreenath | Modelling the dynamics of signalling pathways[END_REF]. Consider, for instance, a situation in which there are N species with n copies of each specie. The number of possible states in that case is n N . In an eukaryotic cell, for instance, the number of species, on averge, can be of the order of 10 4 different proteins, while there will be 10 6 copies of each protein on average. This gives a situation in which we have 10 6000 possible states of the cell. But note that the presumed total number of elementary particles in the universe is on the order of 10 80 , thus making impossible to deal with such a problem with any -existing or not-computer. In the case of mRNA, or proteines, however, the most common situation is to have on the order of 10 copies per cell of each specie. Even in the case of such a simplification, the problem is of a tremendous magnitude.

The most extended algorithm for the simulaiton of chemical reaction under the assumption of few copies of each molecule is that of D.T. Gillespie [START_REF] Gillespie | Exact stochastic simulation of coupled chemical reactions[END_REF]. It is based on the calculation of individual trajectories of the species, instead of solving for the individual state transition probabilities. The method has a slow convergence rate and no guaranteed error bounds. It also requires a large number of realizations [START_REF] Munsky | The finite state projection algorithm for the solution of the chemical master equation[END_REF].

On the contrary, following the separation of variables algorithm described before, consider the CME as given by ∂P(z,t) ∂t

= AP(z,t), (10) 
where operator A contains the propensities :

A = ∑ i A i (11) 
One can write each operator A i in terms of tensorial products applied on each direction of the state space z :

A = n A ∑ j=1 A j 1 ⊗ A j 1 • • • ⊗ A j N (12) 
and, equivalently, the probability :

P ≈ n F ∑ j=1 α j F j 1 ⊗ F j 2 • • • ⊗ F j N . ( 13 
)
This algorithm provides a means of overcoming the curse of dimensionality associated with the CME. In the next secions we include some examples to illustrate the performance of the method.

3 Numerical examples

λ-phage switch

This constitutes the simplest model in cell signalling processes. When a bacteriophage λ infects a cell, either stays dormant or it reproduces until the dead of the cell. The resulting behaviour depends on two competing proteins that inhibit mutually each other, see Fig. 1. The so-called toggle switch is composed of a two-gene co-repressive network. The constitutive P L promoter The operator for this example is composed by two terms : A = A 1 + A 2 :

A 1 P(z 1 , z 2 ) = αβ β + γz 2 p(z 1 -1, z 2 ) + δ(z 1 + 1) • P(z 1 + 1, z 2 )- αβ β + γz 2 + δ • z 1 P(z 1 , z 2 ).
and A 2 equivalent with z 1 and z 2 interchanged. We computed the solution for δ = 0.05, α = 1.0, γ = 1.0 and β = 0.4. It can be shown that the corresponding deterministic model in this case leads to a monostable point. The simulations show that after t = 5s one has a case where both average values of both proteins and small levels of the one protein combined with higher level of the other protein are quite likely, and this remains the case for the stationary distribution as well [START_REF] Hegland | A solver for the stochastic master equation applied to gene regulatory networks[END_REF], Fig. 2.

Simulations in the presence of uncertainty

The true problem when modeling the kinetics of gene networks is the determination of the propensities for all the reactions involved in the network. Although many databases are nowadays available (see, for instance [START_REF] Sreenath | Modelling the dynamics of signalling pathways[END_REF]), for complex reactions, such as the TGF-β, for instance, whose activity has been related to cancer, around half of the propensities have not been determined experimentally.

For this cases, the separation of variables can provide a valuable insight into some problems, by just considereing the unknow propensities as new space dimensions. A way to overcome this difficulty is to take the unknown propensity as a new coordinate belonging to the uncertainty interval. The transient solution for a particular value of the propensity can then be computed by restricting the general solution to each particular value of this extra-coordinate. Obviously, the price to be paid is the increase of the model dimensionality. However, this is not a serious issue when one proceeds within the separated representation framework just described.

To illustrate this feature, we have simulated a cascade of two terms. A cascade occurs when a gene produces proteins that enahnce the expression of the succeding gene, see Fig. 

A = k ∑ i=1 A i (14)
where A 1 is given by : A 1 (z)P(z) = α • p(ze 1 ) + δ • (z 1 + 1) • P(z + e 1 ) -(α + δ • z 1 )p(z) (15)

In order to check the proposed technique, and for the ease of illustration, we have considered a cascade of only 2 terms, with the parameter δ as an unknown. Note that the solution (obtained in one execution of the program), see Fig. 4, provides the solution for different values of δ, that repoduce the ones in the literature [START_REF] Hegland | A solver for the stochastic master equation applied to gene regulatory networks[END_REF]. 
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 1 Figure 1 -Schematic mechanism of the bacteriophage λ-switch.
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 2 Figure 2 -Solution at steady state by separation of variables. Axes denote the number of protein 1 (abscissa) and protein 2 (ordinate).
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 3 Figure 3 -Schematic representation of a cascade.
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  . The operator related to a cascade of length k writes :

Figure 4 -

 4 Figure 4 -Solution for the cascade problem with unknown propensities. Solution at time t = 0, t = 30s, and t = 600s (approx. steady state).