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Résumé— A Heaviside function is used within the Arlequin method to derive an enriched Ar-
lequin methodology labeled theShooting Star Method. The potential of the latter to propagate
cracks with great flexibility and effectiveness is exemplified by a numerical test.
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1 Introduction

Generating repetetivily meshes that match material discontinuities, propagating cracks or evol-
ving zones with strains or stresses localizations in order to achieve accurate finite element so-
lutions, is a rather tedious and time consuming task. Many flexible numerical methodologies
have been developed during the last two decades to tackle efficiently this issue. Among other
approaches, let us mention the Partition of Unity Method [8] and the Extended Finite Element
Method (X-FEM) (e.g. [9]). These methods, quite reminescent to Treftz approach, enrich basically
the finite element space, associated to a given coarse mesh by a local analytical or semi-analytical
knowledge about the globally unknown solution. Typically, Level-Sets functions and asymptotic
local behaviours of the solution of the considered problem are used locally in the X-FEM. These
methods are particularly relevant for the approximation of problems where the local behaviour of
the solution is known. The s-method [6] and the finite element method with patches [7] are full
finite element-based approach that enriches the coarse finite element space by a local one.
The Arlequin modeling framework [2, 3, 4, 5]) has a wider range of application and presents as
a real flexible multimodel and multiscale paradigm : by superposing a local model (say a patch)
to a global model and using a partition of energies, it allows for almost any different represen-
tation for the super-imposed models. For the simulation of crack propagation or the evolution of
fatigue or damage into a solid that may transform into a macroscopic crack, the project of using
the Arlequin framework with possible blending with other partition of unity methods has been ini-
tiated few years ago. First steps of this project, using only the Arlequin framework, were achieved
and significant numerical results have been reported and/or communicated [10, 11]. Two typical
results, extracted from [10, 11], are given in the numerical section. In this work, a step forward
is achieved in our project : a new methodology that keep the coarse mesh unchanged during the
whole propagation process is developed. For this, the fine Arlequin patch is always relocalized in
the near critical crack tip zone and the coarse space is enriched by a Heaviside function, which is
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adapted during the propagation process. This approach which could be labeled theshooting star
method is developed and numerically tested in this work.

2 Continuous Arlequin Formulation of a cracked elastic body pro-
blem

We consider a bidimensional linear elastic cracked solid, occupying the closure of a bounded
domainΩ0. The boundary of the solid is partitioned intoΓu, Γg, Γ. Γu is the part where the solid is
clamped, andΓ defines the crack whose tip is denoted byo. Free boundary conditions are applied
on the faces of the crack and onΓg. The solid is submitted to a volume density of loadsf .
Let Ω1 be a subdomain ofΩ0, located in the near crack tip zone, which is partitioned into two
regular non overlapping domainsΩc andΩ f such that (see figure 1) :

o ∈ Ω f (1)

∂Ω1 ⊂ ∂Ωc (2)

meas(Ωi) > 0, i = c, f (3)

Ω0

Γ

Ω1

Ω f

Ωc
o

Figure 1: Arlequin domains

A Lagrangian Arlequin formulation of this problem reads as following : (see e.g. [3, 4, 5])

Find (u0, u1, Φ) ∈V 0×V 1×M ; (4)

∀v0 ∈V 0, a0(u0, v0)+ c(Φ, v0) = l0(v0) (5)

∀v1 ∈V 1, a1(u1, v1)− c(Φ, v1) = l1(v1) (6)

∀Ψ ∈ M, c(Ψ, u0−u1) = 0 (7)

whereV 0 =
{

v ∈ H1(Ω0); v = 0 onΓu
}

and whereV 1 = H1(Ω1). The mediator spaceM = H1(Ωc).
Furthermore, fori = 0,1, the weighted internal and external virtual works are defined by :

∀ui, vi ∈V i, ai(ui,vi) =
Z

Ωi

αi σ(ui) : ε(vi)dx (8)

∀vi ∈V i, li(vi) =
Z

Ωi

βi f .vi dx (9)

The weight parameter functions(αi,βi), i = 0,1, are defined inΩ0 and satisfy : ([5])

αi,βi ∈ [0,1] in Ω0 (10)

α0 + α1 = 1, β0 + β1 = 1 in Ω0 (11)

α0,β0 = 1 in Ω0\Ω1 (12)

∃α0 > 0; αi ≥ α0 in Ω f (13)
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The coupling operatorc is defined by :

∀(ψ ,v) ∈ M×V 1 ,c(ψ,v) =

Z

Ωc

κ0{ψ · v} + κ1{ε(ψ) : ε(v)} dx (14)

This problem has been analyzed mathematically in [5] and proved to be well-posed.

3 Discrete formulation : the shooting star method

To solve efficiently the Arlequin problem defined in the previous section, we suggest the fol-
lowing scheme : letT 0

h be a mesh of the unfractured domainΩΓ
0. Let T 1

h be a mesh ofΩ1, signi-
ficantly finer thanT 0

h , especially in the very near crack tip zone. LetΩs
o andΓ0 denote the set of

elements ofT 0
h containing the crack tipo and the part of the crackΓ exterior toΩs

o, respectively.
Let B0 = (ϕ0i, i = 1,n0) be a classical vector-valued finite element basis associated to the meshT 0

h .
We denote byV r

0h the finite element space spanned byB0. This coarse space is enriched as follows.

Let Kd
0 be the set of indicesk such that

◦
ωk ∩Γ0 6= /0,

◦
ωk standing for the interior of the support of

the basis functionϕ0k. Let Ωd denote the union of these supports.Ωd is divided by the crackΓ into
two domains, denoted byΩ+

d andΩ−
d . A precise definition of the domainΩ+

d (and thus ofΩ−
d )

relies on the signed distance function : defining at each pointp ∈ Γ a classical positively oriented
frame (τp,νp), one can associate to each pointx ∈ Ωd (one of) its nearest point(s)x∗ on Γ. The
domainΩ+

d is then defined by :

Ω+
d = {x ∈ Ωd ; (x− x∗).νx∗ ≥ 0} (15)

The following finite dimensional space :

V 0h = V r
0h +V d

0h = span{(ϕ0i)i=1,n0,(Hϕ0 j) j∈Kd
0
} (16)

is then taken as an approximation ofV 0, whereH refers to the sign-like function, defined by :

H(x) =

{

+1 in Ω+
d

−1 elsewhere
(17)

Now, based on the fine meshT 1
h of the cracked subdomainΩ1, a classical finite element subspace

V 1h is constructed for the approximation of the local spaceV 1. The discrete mediator spaceMh is
taken equal to the space of restriction ofV 1h to the coupling zoneΩc (though other choices are
possible, as reported in [4, 5]). Finally, we assume that :

Ωs
o ⊂ Ω f (18)

The condition (18) is a relaxation of the condition (1) that takes into account the finite scale
introduced by the discretization.
With these finite dimensional spaces, our discrete enriched Arlequin approximation of the problem
defined by (5)-(14) reads as follows.

Find(ur
0h,u

d
0h,u1h,φh) ∈V r

0h ×V d
0h ×V 1h ×Mh;

∀(vr
0h,v

d
0h,v1h,ψh) ∈V r

0h ×V d
0h ×V 1h ×Mh

a0(u
r
0h,v

r
0h)+ ad

0(u
d
0h,v

r
0h)+ c(φh,v

r
0h) = l0(v

r
0h) (19)

ad
0(u

r
0h,v

d
0h)+ a0(u

d
0h,v

d
0h)+ cd(φh,v

d
0h) = l0(v

d
0h) (20)

a1(u1h,v1h)− c(φh,v1h) = l1(v1h) (21)

c(ψh,u
r
0h −u1h)+ cd(ψh,u

d
0h) = 0 (22)
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where :

ad
0(u

r
0h,v

d
0h) =

Z

Ω0∩Ω+
d

α0 σ(ur
0h) : ε(vd

0h)dx+
Z

Ω0∩Ω−
d

α0 σ(ur
0h) : ε(vd

0h)dx (23)

cd(ψh,u
d
0h) =

Z

Ωc∩Ω+
d

{

κ0ψh ·u
d
0h) + κ1ε(ψh) : ε(ud

0h))
}

dx (24)

+

Z

Ωc∩Ω−
d

{

κ0ψh ·u
d
0h) + κ1ε(ψh) : ε(ud

0h))
}

dx

This system involves terms related to the coupling between the enrichment degrees of freedom of
the coarse model and the ones of the fine model. These terms are new when referring to specific
computational developments for the standard Arlequin formulation, given in [4] and for the X-
FEM, given in [9]. They require additional computational efforts that will be detailed during the
conference.

4 Numerical results

4.1 Previous results

Figure 2, extracted from [10], shows the propagation of damage into a bimaterial solid sub-
mitted to a cyclic loading acting on its upper edge. From a numerical point of view, the critical
mechanical phenomena in the near crack tip zone are taken into account by a local Arlequin patch,
evolving and moving with the evolution of the critical zone during the cyclic loading. Observe that
the coarse global mesh is adapted when needed to take into account the part of the crack which
is not contained in the Arlequin patch. Observe also that, for the considered test, the direction of
propagation of the crack is the (known) straight material interface ; which simplifies significantly
the simulation and particularly the adaptation of the coarse mesh to match the part of the crack
outside of the patch.

(a) (b) (c)

Figure 2: Propagation of damage and creation of a crack within the Arlequin framework (three
selected snapshots)

Figure 3, extracted from [11], shows the propagation of a crack in an elastic structure by means
of a refined finite element Arlequin patch, adapted to the evolution of the cracked zone, while the
coarse mesh is unchanged during the whole process. Data for this problem (called the double
cantilever beam test) were taken from the paper by Belytschko and Black [1].
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(a) (b)

Figure 3: Propagation of a crack for the double-cantilever elastic beam

4.2 New results

25o

52
.5

m
m

47mm

5m
m

E = 2×105MPa
ν = 0.3

u = u0

Figure 4: geometry for the crack propagation test

We simulate here a quasi-static propagation of a crack in a linear homogeneous and isotropic
bidimensional elastic crown (see figure 4) in plane strain conditions. The top of the ring is assigned
a displacementu0 in the y direction. A small crack is initiated in the crown. The procedure used
for the simulation of the propagation is the following simplified one : for a given size of the crack,
the solution is calculated. The polar angle giving the maximum orthonormal stress component on
the first crown of elements of the patch surrounding the crack tip is taken as the direction of pro-
pagation of the crack. Then a constant increment of 0.5mm is assigned to the crack.
Some steps of the propagation are reported in figures 5-a-b-c. A zoom is given in figure 5-d. Theses
qualitative numerical results aim only at illustrating the effectiveness of our Arlequin/level-set me-
thodology to simulate with enhanced flexibility the propagation of a crack. The main point is that
this methodology prevents the remeshing of the whole structure, while capturing the main mecha-
nical features in the critical zones. Only the patch surrounding the crack tip is locally remeshed at
each step of the crack propagation.

5 Conclusion

A new methodology using the Heaviside enrichment within the multiscale Arelequin frame-
work is developed here. The effectiveness of this methodology to introduce and propagate cracks
in sound meshes is exemplified. The extension of this methodology to the simulation of damage
propagation is an ongoing work that will be discussed during the conference.
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Figure 5: propagation of a crack
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