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Extinction in a finite time for solutions of large classes of

Parabolic Equations involving p-Laplacian

Y. Belaud, A. Shishkov

December 11, 2016

Abstract

We study the property of extinction in a finite time for nonnegative solu-

tions of
1

q

∂

∂t
(uq)−∇(|∇u|p−2∇u) +a(x)uλ = 0 for the Dirichlet Boundary

Conditions when q > λ > 0, p ≥ 1 + q, p ≥ 2, a(x) ≥ 0 and Ω ⊂ RN

a bounded domain of RN (N ≥ 1). Necessary and sufficient conditions

are provided with the help of a family of infimum. When p > 1 + q, the

threshold is for power functions but for p = 1 + q, it happens extinction in

a finite time for very flat functions.

1 Introduction

Let q > λ > 0, p ≥ 1 + q, p ≥ 2 and Ω ⊂ RN a bounded domain of RN (N ≥ 1). We consider u a nonnegative
solution of

(1)


1

q

∂

∂t
(uq)−∇(|∇u|p−2∇u) + a(x)uλ = 0

u(x, 0) = u0(x)

for the Dirichlet Boundary Condition. In this article, we study the fact that the solutions vanish.

Definition 1.1 Let say that problem (1) has the extinction in finite time property if for arbitrary solution u, it
exists some positive T such as u(x, t) = 0 a.e. in Ω, ∀t ≥ T .

So, we introduce the following notation :

(2) T (u0) = sup
{
t > 0, ∀τ ∈ [0, t], ||u(τ)||L2(Ω) > 0

}
.

This problem has been intensively studied by many authors by means of differents methods. Among these methods,
one can mention energy methods. In [21], the authors introduce a new energy method called semi-classical method.
They transform a parabolic problem into a sequence of elliptic problems, namely, the behaviour in large time for
solutions of some parabolic equations is linked with the asymptotic behaviour of a family of first eigenvalues in
the semi-classical limit. That is to say, for q = 1, p = 2, for the Neumann Boundary Conditions, they introduce

µn = inf

{∫
Ω

(
|∇u|2 + 2na(x)uλ+1

)
dx : u ∈W 1,2(Ω),

∫
Ω
u2 dx = 1

}
.

By iterations and using the maximum principle, they find a sufficient condition. This later was improved in [4]
thank to Lieb-Thirring formula [22]. Moreover, in the same article, the authors have given a necessary condition
using a Kaplan’s like-method [20], [25] and the idea of homothetic test-functions. Unfortunatly, these two condi-
tions were differents. In [2], for the first time, in only two cases for p > 2, q = 1 and p = 2, q < 1, for the sufficient

condition, the critical power δ0 =
p(q − λ)

p− (1 + q)
appeared under the condition N > p. No necessary conditions were

provided because the Kaplan’s like-method used the fact that −∆ is a self-adjoint operator. Some properties of
the first eigenvalue and the first eigenfunction are studied in [3].
A Diny-like condition has appeared for the first time in this kind of problem in [5] and high-order operators are
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studied in [6]. The main drawback of Kondratiev-Véron method is based on the comparaison principle. So we
introduce a new semi-classical method : we give a sufficient condition for p > 1 + q and p = 1 + q and a necessary
condition for p > 1 + q and p = 2 = 1 + q, i.e., q = 1.
There are two steps for the sufficient condition :

1. We transform the parabolic problem into a problem of behaviour for some kind of nonlinear eigenvalues.
There is extinction in a finite time for solutions of (1) if an integral depending of some Raleight quotients is
finite. We define

µ(h) = inf
v∈W 1,p

0 (Ω), ||v||1+q

L1+q(Ω)
=h

∫
Ω
|∇v|p dx+

∫
Ω
a(x) |v|1+λ dx.

We proof under assumptions that there is extinction in a finite time if

(3)

∫ 1

0

dh

µ(h)
< +∞,

This condition is valid for a large class of maximum monotone operators of Hilbert Spaces.
But it seems that the genuine notion is a kind of uniform upper bound for the extinction time, i.e., we define
for all h0 > 0,

(4) T+(h0) = sup
{
T (u0) : u0 ∈W 1,p

0 (Ω), 0 < ||u0||1+q
L1+q(Ω)

≤ h0

}
.

With this new definition, condition (3) implies that

T+(h0) < +∞ ∀h0 > 0, and lim
h0→0

T+(h0) = 0.

2. Now, the point is to find estimates of µ(h). The main tool is Sobolev injections, that’s why we have the
restriction N > p. The quantity µ(h) is estimated in two differents ways depending on the value of p with
respect to 1 + q, i.e., p > 1 + q or p = 1 + q.

For the necessary condition, it can be expected that if the norm of the initial condition u0 is small then its
extinction time is also small. But we prove that

(5) T+(h0) ≥ sup
0<h≤h0

(1 + λ)

p(q − λ)

h

µ(h)
.

This condition is also valid for a large class of maximum monotone operators of Hilbert Spaces.
There are two important cases :

1.

(6) lim
h→0

h

µ(h)
= +∞ =⇒ T+(h0) = +∞,

means that for any h0 > 0 and T > 0, there is an initial data u0 such as T (u0) > T . But without any further
assumption, it seems difficult to get a u0 such as T (u0) = +∞ in the general case.
When p = 1 + q, (6) never happens.

2.

(7) lim inf
h→0

h

µ(h)
≥ C > 0 =⇒ lim inf

h0→0
T+(h0) > 0,

implies that for any h0 > 0, one can find an initial data u0 such as ||u0||1+q
L1+q(Ω)

= h0 and T (u0) ≥ C for

some fixed C > 0. An initial data with a positive norm as small as we want exists but with an extinction
time greater than a fixed positive constant.
When p = 1 + q, (7) happens only when a(x) = 0 a.e. in Ω which is a trivial case.
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For p > 1 + q, by means of “good” homothetic test-function, we estimate µ(h) by above.
We have seen that for p = 1 + q, condition (5) isn’t relevant. For this reason, when p = 2 (and so q = 1), we
use some kind of asymptotic Kaplan’s method, i.e., we prove that under condition of a(x), for all time T > 0, a

“good” first eigenfunction ϕ such as

∫
Ω
u(x, T )ϕ(x) dx > 0 exists.

Here, we have to split p > 1 + q and p = 1 + q (called critical case). Calculations and estimates are differents due
to the nature of (1). Indeed, for p > 1 + q, there are three different degrees of homogeneity while when p = 1 + q,
there are only two. It provides two radically different thresholds (power functions for p > 1 + q and very flat
functions for the critical case).
We define for p > 1 + q,

δ0 =
p(q − λ)

p− (1 + q)
.

We assume

(8) a(x) =
|x|δ0
ω(|x|)

for x small enough and otherwise a(x) ≥ C > 0.

For the sufficient condition, we assume that

(9) ρ 7→ ρδ0

ω(ρ)
is a continuous nondecreasing function when ρ > 0 is small enough,

(10) ρ 7→ ω(ρ) is a nonincreasing function when ρ > 0 is small enough,

(11) ∀γ1 ∈ (0, 1), ∃C > 0, ∃γ2 > 0, ∀h ∈ (0, 1], ω(hγ1) ≥ C (ω(h))γ2 ,

(12) ∃η > 0, ∀h ∈ (0, h0], ω(h) ≤ h−η for some h0 > 0.

For the necessary condition, we assume that

(13) ω(ρ) =
1

(− ln ρ)α
for α >

p− (1 + λ)

p− (1 + q)
+
δ0

N
.

Theorem 1.1
Assume that p > 1 + q, O ∈ Ω, (8).

1. Assume (9).

(a) If

lim inf
ρ→0

ω(ρ) > 0,

then

lim inf
h0→0

T+(h0) > 0.

In particular, it happens when

ω(ρ) =
1

(− ln ρ)α
,

for

α ≤ 0.

(b) If we assume (10), (11), (12) and

lim
ρ→0

ω(ρ) = +∞,
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then

∀h0 > 0, T+(h0) = +∞.

In particular, it happens when

ω(ρ) =
1

(− ln ρ)α
,

for

α < 0.

2. Assume that N > p. The function ω satisfies (13). Then all the solutions vanish in a finite time.
More precisely,

∀h0 > 0, T+(h0) < +∞ and lim
h0→0

T+(h0) = 0.

For p = 1 + q, we define

(14) a(x) = exp

(
−ω(|x|)
|x|p

)
.

We assume for the function ω,
(A1) ω(r) is a continuous and nondecreasing function ∀r ≥ 0,
(A2) ω(0) = 0, ω(r) > 0, ∀r > 0,
(A3) ω(r) ≤ ω0 <∞, ∀r > 0,
(A4) ω(r) ≥ rp−δ, ∀s ∈ (0, s0), s0 > 0, p > δ > 0,

(A5) the function
ω(r)

rp
is nonincreasing on (0, s0).

Theorem 1.2 Assume that p = 1 + q and O ∈ Ω. We assume (14), (A1)− (A5) and N > p. If∫ c

0

ω(r)

r
dr < +∞,

then all the solutions vanish in a finite time. More precisely,

∀h0 > 0, T+(h0) < +∞ and lim
h0→0

T+(h0) = 0

Moreover, assume only (14) and p = 2 (i.e. q = 1).

1. If

lim inf
ρ→0

ω(ρ) > 0,

then

lim inf
h0→0

T+(h0) > 0.

2. If

lim
ρ→0

ω(ρ) = +∞,

then

∀h0 > 0, T+(h0) = +∞.

The proofs of Theorems 1.1 and 1.2 are based on an abstract theorem, a proposition and four lemmas.
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2 Proof

The next theorem is the key-stone for necessary condition and sufficient condition for p > 1 + q and sufficient
condition for p = 1 + q.
Let H be an Hilbert Space for q = 1 and L2(Ω) for q 6= 1 (it is just a matter of algebra structure).
When q = 1, || || is the usual norm on H and when q 6= 1, || || = || ||L1+q(Ω) is the L1+q(Ω)-norm on L2(Ω).
We always denote by J be a proper convex lower semi-continuous function on H for q = 1 and on L2(Ω) for q 6= 1.
We define A = ∂J as the subdifferential of J . Let’s denote the domain of A by D(A).
Let’s remember that D(J) = {u ∈ H, J(u) < +∞}.
For simplicity’s sake, we assume that A is a single-valued operator.
In what follows, we consider that H = L2(Ω) but it can be easily extend to all Hilbert Space when q = 1.
Let u be a solution of

(15)
1

q

∂

∂t
(|u|q−1u) +Au = 0, u(0) = u0.

We define for all u0 ∈ D(A) \ {0},

(16) T (u0) = sup {t > 0, ∀τ ∈ [0, t], u(τ) 6= 0} ,

and for all h0 > 0,

(17) T+(h0) = sup
{
T (u0) : u0 ∈ D(A)

⋂
L1+q(Ω), 0 < ||u0||1+q

L1+q(Ω)
≤ h0

}
.

The following assumptions can be made :

H0 : inf
v∈D(J)

J(v) = J(0) = 0,

H1 : ∀h > 0, D(A)
⋂{

v ∈ L1+q(Ω), ||v||1+q
L1+q(Ω)

= h
}
6= ∅.

Let’s define for all h > 0,

(18) µ(h) = inf
v∈D(A)

⋂{
v∈L1+q(Ω), ||v||1+q

L1+q(Ω)
=h
} < Av, v > .

H2 : ∀h > 0, µ(h) > 0.

H3 : ∃p > 1, ∀v ∈ D(A), < Av, v >≤ pJ(v).

H4 : ∃λ ∈ [0, p− 1), ∀v ∈ D(A), < Av, v >≥ (1 + λ)J(v).

Remark 2.1

1. Assumption H0 implies A0 = 0.

2. Assumptions H2 and H3 imply J(v) > 0 for all v ∈ D(J) \ {0}.

3. Assumption H4 is always true for λ = 0.

4. To some extend, H3 means that J is some kind of polynome in u and of all its derivative.

Theorem 2.1 Let u0 ∈ D(A) \ {0}. Under H0 −H4, for solutions of (15), we have the following results :

(19)

∫ 1

0

dh

µ(h)
< +∞ =⇒

(
∀h0 > 0, T+(h0) < +∞ and lim

h0→0
T+(h0) = 0

)
,

and

(20)

(
∀h0 > 0, T+(h0) < +∞ and lim

h0→0
T+(h0) = 0

)
=⇒ lim

h0→0

h0

µ(h0)
= 0.
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If it’s true, we have the following estimates :

(21) T (u0) ≤ T+
(
||u0||1+q

L1+q(Ω)

)
≤ 1

1 + q

∫ ||u0||1+q

L1+q(Ω)

0

dh

µ(h)
,

and

(22) T+(h0) ≥ sup
0<h<h0

(1 + λ)

p(q − λ)

h

µ(h)
.

Proof: For the sufficient condition, we assume that

∫ 1

0

dh

µ(h)
< +∞.

Taking the scalar product with u leads to

(23)
1

1 + q

d

dt

(
||u||1+q

L1+q(Ω)

)
+ < Au, u >= 0.

But by definition of µ(h),

< Au, u >≥ µ
(
||u||1+q

L1+q(Ω)

)
.

So,

1

1 + q

d

dt

(
||u||1+q

L1+q(Ω)

)
+ µ

(
||u||1+q

L1+q(Ω)

)
≤ 0.

Since µ(h) > 0 for all h > 0,

d

dt

(
||u||1+q

L1+q(Ω)

)
µ
(
||u||1+q

L1+q(Ω)

) ≤ −(1 + q).

We integrate between 0 and t < T (u0).∫ ||u||1+q

L1+q(Ω)

||u0||1+q

L1+q(Ω)

dh

µ(h)
≤ −(1 + q)t.

Hence,∫ ||u0||1+q

L1+q(Ω)

||u||1+q

L1+q(Ω)

dh

µ(h)
≥ (1 + q)t.

We deduce that for all t < T (u0),∫ ||u0||1+q

L1+q(Ω)

0

dh

µ(h)
≥ (1 + q)t.

Going to the limit gives∫ ||u0||1+q

L1+q(Ω)

0

dh

µ(h)
≥ (1 + q)T (u0),

and therefore T (u0) < +∞. Moreover,

T+(h) ≤ 1

1 + q

∫ h

0

dθ

µ(θ)
,

and

T+(h)→ 0,
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as h→ 0.
For the necessary condition, since u is regular, we have

d

dt
J(u(t)) =< ut, Au >= − < ut, ut|u|q−1 >= −|| ut|u|

q−1
2 ||2L2(Ω).

According to Cauchy-Schwarz-Buniakowsky inequality,

| < ut, u|u|q−1 > |2 = | < ut|u|
q−1

2 , u|u|
q−1

2 > |2 ≤ || ut|u|
q−1

2 ||2L2(Ω) ||u||
1+q
L1+q(Ω)

Hence,

(< Au, u >)2 ≤ (− d

dt
J(u(t))) ||u||1+q

L1+q(Ω)
.

So,

(24)
d

dt
J(u(t)) ≤ −(< Au, u >)2

||u||1+q
L1+q(Ω)

=
1

1 + q

d

dt

(
||u||1+q

L1+q(Ω)

) < Au, u >

||u||1+q
L1+q(Ω)

.

Then, using H4,

d

dt
J(u(t)) ≤ 1 + λ

1 + q

d

dt

(
||u||1+q

L1+q(Ω)

) J(u(t))

||u||1+q
L1+q(Ω)

.

By integration, we obtain

(25) J(u(t)) ≤ J(u0)(
||u0||1+q

L1+q(Ω)

) 1+λ
1+q

(
||u||1+q

L1+q(Ω)

) 1+λ
1+q

.

1

1 + q

d

dt

(
||u||1+q

L1+q(Ω)

)
+ pJ(u(t)) ≥ 0.

J(u(t)) ≤ J(u0)(
||u0||1+q

L1+q(Ω)

) 1+λ
1+q

(
||u||1+q

L1+q(Ω)

) 1+λ
1+q

1

1 + q

d

dt

(
||u||1+q

L1+q(Ω)

)
+

pJ(u0)(
||u0||1+q

L1+q(Ω)

) 1+λ
1+q

(
||u||1+q

L1+q(Ω)

) 1+λ
1+q ≥ 0.

d

dt

(
||u||1+q

L1+q(Ω)

)
(
||u||1+q

L1+q(Ω)

) 1+λ
1+q

+
(1 + q)pJ(u0)(
||u0||1+q

L1+q(Ω)

) 1+λ
1+q

≥ 0.

1 + q

q − λ

(
||u||1+q

L1+q(Ω)

) q−λ
1+q − 1 + q

q − λ

(
||u0||1+q

L1+q(Ω)

) q−λ
1+q

+
(1 + q)pJ(u0)(
||u0||1+q

L1+q(Ω)

) 1+λ
1+q

t ≥ 0.

1

q − λ

(
||u||1+q

L1+q(Ω)

) q−λ
1+q ≥ 1

q − λ

(
||u0||1+q

L1+q(Ω)

) q−λ
1+q − pJ(u0)(

||u0||1+q
L1+q(Ω)

) 1+λ
1+q

t.

pJ(u0)(
||u0||1+q

L1+q(Ω)

) 1+λ
1+q

T (u0) ≥ 1

q − λ

(
||u0||1+q

L1+q(Ω)

) q−λ
1+q

.

T (u0) ≥ 1

p(q − λ)

||u0||1+q
L1+q(Ω)

J(u0)
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T (u0) ≥ (1 + λ)

p(q − λ)

||u0||1+q
L1+q(Ω)

< Au0, u0 >
.

T+(h0) = sup
0<||u0||1+q

L1+q(Ω)
≤h0

T (u0).

Let h0 > 0.

(26) T+(h0) ≥ sup
0<||u0||1+q

L1+q(Ω)
≤h0

(1 + λ)

p(q − λ)

||u0||1+q
L1+q(Ω)

< Au0, u0 >
.

For all u0 ∈ D(A) \ {0}, there is a sequence (un) such as ||un||1+q
L1+q(Ω)

= ||u0||1+q
L1+q(Ω)

and

< Aun, un >→ µ
(
||u0||1+q

L1+q(Ω)

)
. When we go to the limit in (26),

T+(h0) ≥ sup
0<h≤h0

(1 + λ)

p(q − λ)

h

µ(h)
.�

In L2(Ω) when Ω ⊂ RN is a bounded domain with O ∈ Ω, let’s say

J(u) =
1

p

∫
Ω
|∇u|p dx+

1

1 + λ

∫
Ω
a(x) |u|1+λ dx,

for 0 < λ < q ≤ p− 1 with D(J) = W 1,p
0 (Ω) for p ≥ 2.

Proposition 1 The functional J satisfies assumptions H0 −H4.

Proof: Assumptions H0 and H1 are satisfied when D(J) = W 1,p
0 (Ω). Using Poincaré’s inequality and Hölder’s

inequality,

< Av, v >≥ C
∫

Ω
|v|p dx ≥ C ′

(∫
Ω
|v|1+q dx

) p
1+q

,

which means µ(h) ≥ C ′ h
p

1+q > 0 for all h > 0. So H2 is valid. Moreover, it is clear that H3 and H4 are also valid.
�

Lemma 1 We assume that p > 1 + q, O ∈ Ω, (8) and (9).

1. If

lim
ρ→0

ω(ρ) = 0,

then

(27) µ(h) ≤ C h

ω(hε0)
.

for some C > 0 when

ε0 =
p− (1 + λ)

N(p− (1 + λ)) + (δ0 + p)(1 + q)
.

2. If

lim inf
ρ→0

ω(ρ) > 0,

then

(28) µ(h) ≤ C h,

for some C > 0.
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3. If we assume (10), (11), (12) and

lim
ρ→0

ω(ρ) = +∞,

then

(29) lim
h→0

h

µ(h)
= +∞.

Proof: Since O ∈ Ω, ρ0 > 0 exists such as Bρ0 (the ball of center O and radius ρ0) is included in Ω.

Let v ∈ C∞0 (B1) be with v ≥ 0 and

∫
B1

v1+q = 1.

Let ρ be in (0, ρ0). We define vρ(x) = v(xρ ). Then,∫
Ω
v1+q
ρ (x) dx =

∫
Bρ

v1+q
ρ (x) dx =

∫
Bρ

v1+q

(
x

ρ

)
dx = ρN

∫
B1

v1+q(y) dy = ρN .

As a consequence,

∥∥∥∥∥ vρ

ρ
N

1+q

∥∥∥∥∥
L1+q(Ω)

= 1. On the other hand,

∇xvρ(x) = ρ−1∇yv
(
x

ρ

)
.

Hence,∫
Ω
|∇v|p dx =

∫
Bρ

|∇vρ|p dx = ρN−p
∫
B1

|∇v|p dy.

By using h
1

1+q
vρ

ρ
N

1+q

in the definition of µ(h),

µ(h) ≤ h
p

1+q ρ
− pN

1+q

∫
Ω
|∇vρ|p dx+ h

1+λ
1+q ρ

−N 1+λ
1+q

∫
Ω
a(x)v1+λ

ρ dx.

So,

(30) µ(h) ≤ h
p

1+q ρ
N−p− pN

1+q

∫
B1

|∇v|p dy + h
1+λ
1+q ρ

N−N 1+λ
1+q

∫
B1

a(ρy)v1+λ(y) dy.

Since ρ 7→ ρδ0

ω(ρ)
is a nondecreasing function for h small enough,

a(ρy) =
(ρ||y||)δ0
ω(ρ||y||)

≤ ρδ0

ω(ρ)
,

for y ∈ B1. Therefore,

µ(h) ≤ C(p, q, λ, v)

(
h

p
1+q ρ

N−p− pN
1+q + h

1+λ
1+q ρ

N−N 1+λ
1+q

+δ0 1

ω(ρ)

)
.

A deducing can be made :

(31) µ(h) ≤ C(p, q, λ, v)

(
h

p
1+q ρ

−N(p−(1+q))
1+q

−p
+ h

1+λ
1+q ρ

N q−λ
1+q

+δ0 1

ω(ρ)

)
.

We take ρ = hε0 for ε0 > 0. So,

µ(h) ≤ C(p, q, λ, v)

(
h

p
1+q
−ε0N(p−(1+q))

1+q
−ε0p + h

1+λ
1+q

+ε0N
q−λ
1+q

+ε0δ0 1

ω(hε0)

)
.
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We choose ε0 such as
p

1 + q
− ε0

N(p− (1 + q))

1 + q
− ε0p =

λ+ 1

1 + q
+ ε0N

q − λ
1 + q

+ ε0δ0, i.e.,

ε0 =
p− (1 + λ)

N(p− (1 + λ)) + (δ0 + p)(1 + q)
.

Hence,

1 + λ

1 + q
+ ε0N

q − λ
1 + q

+ ε0δ0

=
(1 + λ)N(p− (1 + λ)) + (1 + λ)(δ0 + p)(1 + q) +N(p− (1 + λ))(q − λ) + δ0(1 + q)(p− (1 + λ))

(1 + q)(N(p− (1 + λ)) + (δ0 + p)(1 + q))

=
(1 + q)N(p− (1 + λ)) + p(1 + λ)(1 + q) + p(1 + q)δ0

(1 + q)(N(p− (1 + λ)) + (δ0 + p)(1 + q))
.

But According to the definition of δ0,

p(1 + λ) + pδ0 = (δ0 + p)(1 + q),

which leads to

p

1 + q
− ε0

N(p− (1 + q))

1 + q
− ε0p =

λ+ 1

1 + q
+ ε0N

q − λ
1 + q

+ ε0δ0 = 1.

With this ε0, we obtain

µ(h) ≤ C(p, q, λ, v)h(1 +
1

ω(hε0)
).

If

lim
ρ→0

ω(ρ) = 0,

then for h small enough,

µ(h) ≤ C h

ω(hε0)
,

for some C > 0.
If

lim inf
ρ→0

ω(ρ) > 0,

then

µ(h) ≤ C h,

for some C > 0.
Let’s go back to (31). We take ρ = hε0ω(h)α for α > 0. This value of ε0 implies that

µ(h)

h
≤ C(p, q, λ, v)

(
(ω(h))

−α
(
N(p−(1+q))

1+q
+p
)

+ (ω(h))
α
(
N q−λ

1+q
+δ0

)
1

ω(hε0ω(h)α)

)
.

Using (12), it exists h0 > 0 such as for all 0 < h ≤ h0,

hε0ω(h)α ≤ hε0−αη.

Moreover, ω is a nonincreasing function hence,

ω(hε0ω(h)α) ≥ ω(hε0−αη).

10



It is always possible to assume that ε0 − αη ≥
ε0

2
. So, if h belongs to (0,min(h0, 1)),

hε0−αη ≤ h
ε0
2 .

Always for the same reason,

ω(hε0−αη) ≥ ω(h
ε0
2 ),

which leads to

ω(hε0ω(h)α) ≥ ω(h
ε0
2 ).

The previous inequality is true for all 0 < h ≤ min(h0, 1) and for all α ∈
(

0,
ε0

2η

)
.

So, we use assumption (11) for γ1 =
ε0

2
. There exist C > 0 and γ2 > 0 such as

ω(h
ε0
2 ) ≥ C (ω(h))γ2 .

Therefore,

ω(hε0ω(h)α) ≥ C (ω(h))γ2 .

(ω(h))
α
(
N q−λ

1+q
+δ0

)
ω(hε0ω(h)α)

≤ 1

C

1

(ω(h))
γ2−α

(
N q−λ

1+q
+δ0

) .
We can take α > 0 small enough such as

γ2 − α
(
N
q − λ
1 + q

+ δ0

)
> 0.

Finally,

lim
h→0

µ(h)

h
= 0,

since

lim
ρ→0

ω(ρ) = 0.�

Lemma 2 We assume that p > 1 + q, N > p, O ∈ Ω, (8) and (13). Then∫ 1

0

dh

µ(h)
< +∞.

Proof: For all h > 0, there is vh ∈W 1,p
0 (Ω) such as ||vh||1+q

L1+q(Ω)
= h and

2µ(h) ≥
∫

Ω
|∇vh|p dx+

∫
Ω
a(x)v1+λ

h dx.

To simplify, we drop h for vh := v. So,∫
Ω
|∇v|p dx ≤ 2µ(h)

h

∫
Ω
v1+q dx−

∫
Ω
a(x)v1+λ dx.

Since p > 1 + q,∫
Ω
|∇v|p dx ≤

∫
Ω
vp
(

2µ(h)

h

1

vp−(1+q)
− a(x)

vp−(1+λ)

)
dx.

11



Sobolev injection and Hölder inequality when N > p give

CS

(∫
Ω
vp
∗
dx

) p
p∗

≤
(∫

Ω
vp
∗
dx

) p
p∗

∫
Ω

([
2µ(h)

h

1

vp−(1+q)
− a(x)

vp−(1+λ)

]+
)N

p

dx


p
N

.

when
1

p∗
=

1

p
− 1

N
. Hence,

C
N
p

S ≤
∫

Ω

([
2µ(h)

h

1

vp−(1+q)(x)
− a(x)

vp−(1+λ)(x)

]+
)N

p

dx

=

∫
{x:a(x)≤ 2µ(h)

h
vq−λ(x)}

(
2µ(h)

h

1

vp−(1+q)(x)
− a(x)

vp−(1+λ)(x)

)N
p

dx.

We define for v > 0,

f(v) =
β

vp−(1+q)
− α

vp−(1+λ)
,

when α, β > 0. By a study of the variations of f , we obtain

max
v>0

f(v) = f(vM ),

when

vM =

(
α

β

p− (1 + λ)

p− (1 + q)

) 1
q−λ

,

and so,

f(vM ) =
β(

α
β
p−(1+λ)
p−(1+q)

) p−(1+q)
q−λ

− α(
α
β
p−(1+λ)
p−(1+q)

) p−(1+λ)
q−λ

.

=

( p− (1 + q)

p− (1 + λ)

) p−(1+q)
q−λ

−
(
p− (1 + q)

p− (1 + λ)

) p−(1+λ)
q−λ

 β p−(1+λ)
q−λ

α
p−(1+q)
q−λ

.

Since meas{x : a(x) = 0} = 0, we deduce that for almost all x ∈
{
x : a(x) ≤ 2µ(h)

h
vq−λ(x)

}
,

2µ(h)

h

1

vp−(1+q)(x)
− a(x)

vp−(1+λ)(x)
≤

( p− (1 + q)

p− (1 + λ)

) p−(1+q)
q−λ

−
(
p− (1 + q)

p− (1 + λ)

) p−(1+λ)
q−λ

(2µ(h)

h

) p−(1+λ)
q−λ 1

a(x)
p−(1+q)
q−λ

.

Moreover, let ε > 0. We have

h = ||v||1+q
L1+q(Ω)

=

∫
Ω
v1+q dx ≥

∫
v1+q≥ε

v1+q dx ≥ εmeas{x : v1+q ≥ ε}.

By taking ε = ε(h), we obtain

h

ε(h)
≥ meas{x : v1+q ≥ ε(h)} = meas{x : v ≥ ε(h)

1
1+q }.

So,

C
N
p

S ≤
∫
{x:a(x)≤ 2µ(h)

h
vq−λ(x)}

⋂
{x:v≥ε(h)

1
1+q }

([
2µ(h)

h

1

vp−(1+q)(x)
− a(x)

vp−(1+λ)(x)

]+
)N

p

dx

12



+

∫
{x:a(x)≤ 2µ(h)

h
vq−λ(x)}

⋂
{x:v<ε(h)

1
1+q }

([
2µ(h)

h

1

vp−(1+q)(x)
− a(x)

vp−(1+λ)(x)

]+
)N

p

dx.

It follows that

C
N
p

S ≤
∫
{x:v≥ε(h)

1
1+q }

([
2µ(h)

h

1

vp−(1+q)(x)
− a(x)

vp−(1+λ)(x)

]+
)N

p

dx

+

∫
{x:a(x)≤ 2µ(h)

h
ε(h)

q−λ
1+q }

([
2µ(h)

h

1

vp−(1+q)(x)
− a(x)

vp−(1+λ)(x)

]+
)N

p

dx.

Hence,

C
N
p

S ≤
∫
{x:v≥ε(h)

1
1+q }

2µ(h)

h

1

ε(h)
p−(1+q)

1+q

N
p

dx

+

( p− (1 + q)

p− (1 + λ)

) p−(1+q)
q−λ

−
(
p− (1 + q)

p− (1 + λ)

) p−(1+λ)
q−λ

N
p ∫
{x:a(x)≤ 2µ(h)

h
ε(h)

q−λ
1+q }

(2µ(h)

h

) p−(1+λ)
q−λ 1

a(x)
p−(1+q)
q−λ

N
p

dx.

We obtain

0 < C = C(Ω, N, p, q, λ) ≤

µ(h)

h

1

ε(h)
p−(1+q)

1+q

N
p

h

ε(h)

+

(
µ(h)

h

)N(p−(1+λ))
p(q−λ)

∫
{x:a(x)≤ 2µ(h)

h
ε(h)

q−λ
1+q }

dx

a(x)
N
δ0

It leads to

0 < C ≤

µ(h)

h

1

ε(h)
p−(1+q)

1+q

N
p

h

ε(h)
+

(
µ(h)

h

)N(p−(1+λ))
p(q−λ)

∫
{x:a(x)≤ 2µ(h)

h
ε(h)

q−λ
1+q }

ω(|x|)
N
δ0

|x|N
dx.

We define ρ > 0 small enough,

φ : ρ 7→ ρ

ω(ρ)
N
δ0

and ψ : ρ 7→ ρN

ω(ρ)
N
δ0

.

Both functions are continuous, increasing and ψ(ρ) = ρN−1φ(ρ). Since the function a(x) = ψ(|x|)
δ0
N is radial, we

use a change of variables in radial coordinates :

0 < C ≤

µ(h)

h

1

ε(h)
p−(1+q)

1+q

N
p

h

ε(h)
+

(
µ(h)

h

)N(p−(1+λ))
p(q−λ)

∫ ψ−1

( 2µ(h)
h

ε(h)
q−λ
1+q

) N
δ0


0

1

φ(ρ)
dρ.

Using (27), we have

µ(h) ≤ C h

ω(hε0)
,

which leads to,

0 < C ≤

 1

ω(hε0)

1

ε(h)
p−(1+q)

1+q

N
p

h

ε(h)
+

(
µ(h)

h

)N(p−(1+λ))
p(q−λ)

∫ ψ−1

( 2µ(h)
h

ε(h)
q−λ
1+q

) N
δ0


0

1

φ(ρ)
dρ.
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We define

γ0 =
p(1 + q)

N(p− (1 + q)) + p(1 + q)
.

We take γ < γ0 and ε(h) = hγ . So, since ω(ρ) >> ρε for all ε > 0, 1

ω(hε0)

1

ε(h)
p−(1+q)

1+q

N
p

h

ε(h)
→ 0,

so,

0 < C ≤
(
µ(h)

h

)N(p−(1+λ))
p(q−λ)

∫ ψ−1

( 2µ(h)
h

ε(h)
q−λ
1+q

) N
δ0


0

1

φ(ρ)
dρ.

By definition, for ρ > 0 small enough,

ψ(ρ)
1
N =

ρ

ω(ρ)
1
δ0

.

We deduce that for r > 0 small enough,

ψ−1(r) = r
1
N ω(ψ−1(r))

1
δ0 ≤ r

1
N ω

1
δ0
0 .

Hence,

0 < C ≤
(
µ(h)

h

)N(p−(1+λ))
p(q−λ)

∫ K h
γ(q−λ)
(1+q)δ0

0

1

φ(ρ)
dρ,

for another γ ∈ (0, γ0), K > 0 and h > 0 small enough. For

ω(ρ) =
1

(− ln ρ)α
,

we must have α >
δ0

N
to insure that

∫ 1

0

ω(ρ)
N
δ0

ρ
dρ < +∞.

So, for C > 0 and h > 0 small enough,

0 < C ≤
(
µ(h)

h

)N(p−(1+λ))
p(q−λ)

(− lnh)
δ0−αN
δ0 .

Hence,

C

µ(h)
≤ 1

h (− lnh)
αN−δ0
δ0

p(q−λ)
N(p−(1+λ))

=
1

h (− lnh)
(αN−δ0)(p−(1+q))

N(p−(1+λ)

.

For

α >
p− (1 + λ)

p− (1 + q)
+
δ0

N
,

we obtain∫ 1

0

dh

µ(h)
< +∞.�
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Lemma 3 We assume that p = 1 + q = 2, O ∈ Ω and (14). Then there are u0 ∈W 1,2
0 (Ω) and C > 0 such as for

all r > 0 small enough,

T (u0) ≥ C ω(r).

Proof: The following proof is a simpler version of [4]. Let’s take α > 1, r > 0 and u0 ∈ W 1,2
0 (Ω) such as

||u0||L∞(Ω) = 1 and u0 = 1 on a neighbourhood of O.
We define ϕr as the first function for −∆ on the ball of centre 0 and radius r for the Dirichlet Boundary Condition.
We normalise it to 1, i.e., ||ϕr||L2(Ω) = 1. The first eigenvalue is denoted by λ1,r.
The function ϕαr and its normal derivative is equal to zero on the sphere of radius r. So,

d

dt

∫
Ω
u(x, t)ϕαr (x) dx−

∫
Ω
u(x, t) ∆(ϕαr )(x) dx+

∫
Ω
a(x)uλ(x, t)ϕαr (x) dx = 0.

But

∆(ϕαr ) = α(α− 1)ϕα−2
r |∇ϕr|2 + αϕα−1

r ∆ϕr = α(α− 1)ϕα−2
r |∇ϕr|2 − αλ1,rϕ

α
r .

Therefore,

d

dt

∫
Ω
u(x, t)ϕαr (x) dx+ αλ1,r

∫
Ω
u(x, t)ϕαr (x) dx+

∫
Ω
a(x)uλ(x, t)ϕαr (x) dx

= α(α− 1)

∫
Ω
u(x, t)ϕα−2

r (x)|∇ϕr|2(x) dx ≥ 0.

Using Hölder’s inequality, we have∫
Ω
a(x)uλ(x, t)ϕαr (x) dx ≤

(∫
Ω
u(x, t)ϕαr (x) dx

)λ(∫
Ω
a(x)

1
1−λ ϕαr (x) dx

)1−λ
.

We define

y(t) =

∫
Ω
u(x, t)ϕαr (x) dx,

and λ1,1 = λ1 the first eigenvalue of the unit ball. Hence,

y′(t) +
αλ1

r2
y(t) +

(∫
Ω
a(x)

1
1−λ ϕαr (x) dx

)1−λ
y(t)λ ≥ 0.

Since r 7→ a(r) is a non decreasing function,(∫
Ω
a(x)

1
1−λ ϕαr (x) dx

)1−λ
=

(∫
Br

a(x)
1

1−λ ϕαr (x) dx

)1−λ
≤ a(r)

(∫
Br

ϕαr (x) dx

)1−λ

= a(r) rN(1−λ)

(∫
B1

ϕα1 (x) dx

)1−λ
.

We define

C1 =

(∫
B1

ϕα1 (x) dx

)1−λ
.

Finally,

y′(t) +
αλ1

r2
y(t) + C a(r) rN(1−λ) y(t)λ ≥ 0.

We define

z(t) = y(t)1−λ.
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So,

z′(t)

1− λ
+
αλ1

r2
z(t) + C1 a(r) rN(1−λ) ≥ 0.

Hence,

z′(t) +
α(1− λ)λ1

r2
z(t) + C1(1− λ) a(r) rN(1−λ) ≥ 0.

d

dt

(
z(t) exp

(
α(1− λ)λ1

r2
t

))
+ C1(1− λ) a(r) rN(1−λ) exp

(
α(1− λ)λ1

r2
t

)
≥ 0.

We define

ζ(t) = z(t) exp

(
α(1− λ)λ1

r2
t

)
.

So, with this new notation,

ζ ′(t) + C1(1− λ) a(r) rN(1−λ) exp

(
α(1− λ)λ1

r2
t

)
≥ 0.

We integrate between 0 and t > 0.

ζ(t)− ζ(0) + C1
a(r) rN(1−λ)+2

αλ1

(
exp

(
α(1− λ)λ1

r2
t

)
− 1

)
≥ 0.

So, ζ(0) = C1 implies that

ζ(t) ≥ C1

(
1− a(r) rN(1−λ)+2

αλ1

(
exp

(
α(1− λ)λ1

r2
t

)
− 1

))
.

We have ζ(t) > 0 for all t ∈ [0, T0(r)) when

T0(r) =
r2

α(1− λ)λ1
ln

(
1 +

αλ1

a(r) rN(1−λ)+2

)
.

Hence, for r > 0 small enough,

T0(r) ≥ C ω(r)

Now, it is clear that if

lim
r→0

ω(r) = +∞,

then

T (u0) ≥ lim
r→0

T0(r) = +∞,

which implies that

T+(h) = +∞,

for all h > 0. �

Lemma 4 We assume that p = 1 + q = 2, O ∈ Ω, (14) and (A1)− (A5). If∫ c

0

ω(r)

r
dr < +∞,

then ∫ 1

0

dh

µ(h)
< +∞.
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Proof: We start with (30) for p = 1 + q so, for all ρ > 0,

µ(h) ≤ hρ−p
∫
B1

|∇v|p dy + h
1+λ
p ρ

N−N 1+λ
p

∫
B1

a(ρy)v1+λ(y) dy.

We estimate a(ρy) by exp

(
−ω(ρ)

ρp

)
, so for h small enough,

(32) µ(h) ≤ C(p, λ, v)

(
hρ−p + h

1+λ
p ρ

N−N 1+λ
p exp

(
−ω(ρ)

ρp

))
.

Using assumption (A5), for h > 0 small enough, there is a function ρ(h) such as

h = exp

(
−ω(ρ(h))

ρp(h)

)
.

Hence,

lnh =
−ω(ρ(h))

ρp(h)
≥ −ω0

ρp(h)
,

which gives

ρ(h) ≤
(

ω0

− lnh

) 1
p

.

Moreover,

lnh =
−ω(ρ(h))

ρp(h)
≤ − 1

ρδ(h)
.

So,

ρ(h) ≥
(

1

− lnh

) 1
δ

.

We have

ρ−p(h) =
− lnh

ω(ρ(h))
≤ − lnh

ω

((
1

− lnh

) 1
δ

) .
Now,

µ(h) ≤ C(p, λ, v)

h − lnh

ω

((
1

− lnh

) 1
δ

) + h
1+λ
p

(
ω0

− lnh

)N
p
−N 1+λ

p2

h

 .

Clearly, for h > 0 small enough,

(33) µ(h) ≤ C h − lnh

ω

((
1

− lnh

) 1
δ

) .
Now after an upper bound, the lower bound. For all h > 0, there is vh ∈W 1,p

0 (Ω) such as ||v||1+q
L1+q(Ω)

= h and

2µ(h) ≥
∫

Ω
|∇v|p dx+

∫
Ω
a(x)v1+λ dx.
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To simplify, we drop h for vh := v. So,∫
Ω
|∇v|p dx ≤ 2µ(h)

h

∫
Ω
v1+q dx−

∫
Ω
a(x)v1+λ dx.

Since p = 1 + q,∫
Ω
|∇v|p dx ≤

∫
Ω
vp
(

2µ(h)

h
− a(x)

vp−(1+λ)

)
dx.

Sobolev injection and Hölder inequality when N > p give

CS

(∫
Ω
vp
∗
dx

) p
p∗

≤
(∫

Ω
vp
∗
dx

) p
p∗

∫
Ω

([
2µ(h)

h
− a(x)

vp−(1+λ)

]+
)N

p

dx


p
N

.

when
1

p∗
=

1

p
− 1

N
. Hence,

C
N
p

S ≤
∫

Ω

([
2µ(h)

h
− a(x)

vp−(1+λ)

]+
)N

p

dx.

Therefore,

C
N
p

S ≤
(

2µ(h)

h

)N
p

meas

{
x :

2µ(h)

h
≥ a(x)

vp−(1+λ)

}
.

Let ε > 0. We have

h = ||v||1+q
L1+q(Ω)

=

∫
Ω
v1+q dx ≥

∫
v1+q≥ε

v1+q dx ≥ εmeas{x : v1+q ≥ ε}.

By taking ε = hγ with 0 < γ < 1, we obtain

h1−γ ≥ meas{x : v1+q ≥ hγ} = meas{x : vp−(1+λ) ≥ h
γ(p−(1+λ))

1+q }.

So,

meas

{
x :

2µ(h)

h
≥ a(x)

vp−(1+λ)

}
= meas

({
x :

2µ(h)

h
≥ a(x)

vp−(1+λ)

}⋂
{x : vp−(1+λ) ≥ h

γ(p−(1+λ))
1+q }

)

+ meas

({
x :

2µ(h)

h
≥ a(x)

vp−(1+λ)

}⋂
{x : vp−(1+λ) < h

γ(p−(1+λ))
1+q }

)
.

It follows that

meas

{
x :

2µ(h)

h
≥ a(x)

vp−(1+λ)

}
≤ h1−γ + meas

({
x :

2µ(h)

h
≥ a(x)

vp−(1+λ)

}⋂
{x : vp−(1+λ) < h

γ(p−(1+λ))
1+q }

)
.

We obtain

meas

{
x :

2µ(h)

h
≥ a(x)

vp−(1+λ)

}
≤ h1−γ + meas

{
x :

2µ(h)

h
h
γ(p−(1+λ))

1+q ≥ a(x)

}
.

Now, from (33), for h > 0 small enough,

µ(h) ≤ C h − lnh

ω

((
1

− lnh

) 1
δ

) .
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By (A4), ω(r) ≥ rp−δ for r > 0 small enough. It leads to

(34) µ(h) ≤ C h − lnh((
1

− lnh

) p−δ
δ

) = C h (− lnh)
p
δ .

There are two consequences :(
2µ(h)

h

)N
p

h1−γ → 0,

and

2µ(h)

h
h
γ(p−(1+λ))

1+q → 0,

when h→ 0. We deduce that there is C > 0 such as for h > 0 small enough,

C ≤
(

2µ(h)

h

)N
p

meas

{
x :

2µ(h)

h
h
γ(p−(1+λ))

1+q ≥ exp

(
−ω(|x|)
|x|p

)}
.

So,

C ≤
(

2µ(h)

h

)N
p

meas

{
x : ln

(
2µ(h)

h
h
γ(p−(1+λ))

1+q

)
≥ −ω(|x|)

|x|p

}
.

We take x such as ln

(
2µ(h)

h
h
γ(p−(1+λ))

1+q

)
≥ −ω(|x|)

|x|p
. Since ω is bounded, it satisfies

ln

(
2µ(h)

h
h
γ(p−(1+λ))

1+q

)
≥ − ω0

|x|p
,

i.e.,

|x| ≤

 ω0

− ln

(
2µ(h)
h h

γ(p−(1+λ))
1+q

)


1
p

.

By monotonicity of ω (assumption (A1)),

ω(|x|) ≤ ω


 ω0

− ln

(
2µ(h)
h h

γ(p−(1+λ))
1+q

)


1
p

 .

Clearly,

C ≤
(

2µ(h)

h

)N
p

meas


x : ln

(
2µ(h)

h
h
γ(p−(1+λ))

1+q

)
≥ −

ω


 ω0

− ln

(
2µ(h)
h

h
γ(p−(1+λ))

1+q

)


1
p


|x|p


.
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Consequently,

C ≤
(

2µ(h)

h

)N
p

meas


x : |x|p ≤

ω


 ω0

− ln

(
2µ(h)
h

h
γ(p−(1+λ))

1+q

)


1
p


− ln

(
2µ(h)
h h

γ(p−(1+λ))
1+q

)


.

Hence,

C ≤
(

2µ(h)

h

)N
p

meas


x : |x|N ≤



ω


 ω0

− ln

(
2µ(h)
h

h
γ(p−(1+λ))

1+q

)


1
p


− ln

(
2µ(h)
h h

γ(p−(1+λ))
1+q

)



N
p


.

It leads to

C ≤
(

2µ(h)

h

) ω


 ω0

− ln

(
2µ(h)
h

h
γ(p−(1+λ))

1+q

)


1
p


− ln

(
2µ(h)
h h

γ(p−(1+λ))
1+q

) ,

for another C > 0. Now, by (34), for h > 0 small enough,

µ(h)

h
h
γ(p−(1+λ))

1+q ≤ hε,

for some ε > 0. We obtain

C ≤
(
µ(h)

h

) ω

((
K
− lnh

) 1
p

)
− lnh

,

for C,K > 0. We end by using a change of variables. �

3 Proof of Theorem 1.1 and Theorem 1.2

We use Lemma 1 (resp. Lemma 3) to prove Proposition 1. By Theorem 2.1 and Lemmas 1 and 2 (resp. Lemmas
3 and 4), we obtain the conclusion. �
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