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Abstract

Cournot model of oligopoly appears as a central model of strategic inter-
action between competing firms both from a theoretical and applied perspec-
tive (e.g antitrust). As such it is an essential tool in the economics toolbox
and always a stimulus. Although there is a huge and deep literature on it and
as far as we know, we think that there is a ”mouse hole” wich has not al-
ready been studied: Cournot oligopoly with randomly arriving producers. In
a companion paper [Bernhard and Deschamps, 2016b] we have proposed a
rather general model of a discrete dynamic decision process where producers
arrive as a Bernoulli random process and we have given some examples relat-
ing to oligopoly theory (Cournot, Stackelberg, cartel). In this paper we study
Cournot oligopoly with random entry in discrete (Bernoulli) and continuous
(Poisson) time, whether time horizon is finite or infinite. Moreover we con-
sider here constant and variable probability of entry or density of arrivals.
In this framework, we are able to provide algorithmes answering four clas-
sical questions: 1/ what is the expected profit for a firm inside the Cournot
oligopoly at the beginning of the game?, 2/ How do individual quantities
evolve?, 3/ How do market quantities evolve?, and 4/ How does market price
evolve?
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1 Introduction

While it was ignored for many years it seems almost impossible today to think
about competition in economics without considering the Cournot oligopoly model.
As H. Demsetz said in his Economics of Business firms book in 1995 it is one of the
”safe harbors” of economic analysis, a statement also share by A. Daughety who
considers that the Cournot oligopoly model ”over the recent decades has come to
be an essential tool in many economist’s toolbox, and is likely to continue as such”
in his New Plagrave Dictionnary notice on Cournot competition.

In it classical form Cournot’s model is static, each producer’s strategy is the
quantity of output she will produce in the market for a specific homogeneous
good and when the number of identical producers goes to infinity the market price
converges toward the marginal cost. For many decades economists have extend
this classical form to a large extent including to asymetric producers, differen-
ciated goods and dynamics. On this last topic economists have notably consid-
ered the Cournot model with such characteristics as several periods of production
([Saloner, 1987], [Pal, 1991]), game with free entry ([Mankiw and Whinston, 1986],
[Amir et al., 2014]), as a repeated game form ([Abreu, 1986]), as a stochastic game
form ([Kebriaei and Rahimi-Kian, 2011]), as a Poisson game ([Myerson, 1998],
[Myerson, 2000]) and, more recently, a mean field game ([Chan and Sircar, 2015]),
in continuous-time ([Snyder et al., 2013]) or with intertemporal capacity constraints
([van den Berg et al., 2012]). But as far as we know, despite this huge and deep lit-
erature, there is a ”mouse hole” wich has not been already investigated: a Cournot
oligopoly model with randomly arriving producers.

To begin the study of this question we here consider a model where there is at
the initial step a fix number of symmetric producers of an homogeneous good play-
ing according to a complete information Cournot game with the common knowl-
edge hypothesis that, at each next step, an identical producer can (or not) enter in
the game and definitvely stay. We will use control theory and games differentials
methods as in [Harris et al., 2010] and [Ludkovski and Sircar, 2012].

The paper is organized as follows: in the next section we present the structure
of the general game dynamic model with randomly arriving players as we devel-
opped in [Bernhard and Deschamps, 2016b]. In Section 3, we present Cournot
oligopoly with randomly arriving in discrete time with the use of a Bernouilli pro-
cess in finite and infinite time horizon. Then in Section 4, using Poisson process,
we analyse Cournot oligopoly with random arrivals in continuous time wether the
game is finite or infinite. In each of these two sections we analyse the market
structure with the hypothesis of constant (or variable) probability (discrete case) or
density (continuous case) of entry and provide numerical results. Section 5 ends
the paper by discussing conclusions and limits of our analysis.
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2 General model

In a companion paper [Bernhard and Deschamps, 2016b], we investigated a rather
general model of a discrete dynamic decision process where players arrive as a
Bernoulli random process. We summarize here the results obtained there, simpli-
fied to fit our need in this article.

Time t is an integer (we will consider further down the continuous limit). At
time t1 one player is present, then players arrive as a Bernoulli process with a unit
probability p, (we will later allow p to depend on the rank of the arriving player)
player number m arriving at time tm. The game is played over an horizon T which
may be finite or infinite. A sequence of (usually positive decreasing) numbers
{πm} is given, denoting the reward of each player during one time period if there
are m players present. We let m(t) be the number of players actually present at
time t, a random variable. Therefore, at each period of time t, all players get a
reward πm(t). Let finally r ∈ (0, 1) be a discount factor. The reward of the n-th
player arrived is

Πn =
T∑

t=tn

rt−tnπm(t) ,

and we sought to evaluate its expectation Πe
n. Figure 1 illustrates that problem.

Concerning the sequence {πm}, we will use the following definitions:

Definition 1 The sequence {πm} is said to be

• bounded by π if there exists a positive number π such that

∀m ∈ N , |πm| ≤ π ,

• exponentially bounded by π if there exists a positive number π such that

∀m ∈ N , |πm| ≤ πm .

Notice that if the sequence {πm} is bounded by π, it is exponentially bounded by
max{1, π}, while if it is exponentially by π ≤ 1, it is bounded by π.

We also need the following notation for a domain of the discrete plane, for any
positive integer (a time interval) ν:

Dν = {(k, `) ∈ N2 | 0 ≤ ` ≤ k ≤ ν} . (1)

The theorems proved in [Bernhard and Deschamps, 2016b] can be simplified
here, with the use of the combinatorial coefficients

∀k ≥ ` ∈ N ,
(
k
`

)
=

k!

`!(k − `)!
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Figure 1: The events tree

Theorem 1 (Bernhard and Deschamps [2016]) If T < ∞, or if T = ∞ and the
sequence {πm} is bounded or exponentially bounded by $ < 1/r, the expected
payoff of the n-th arrived player is

Πe
n =





∑

(k,`)∈DT−tn

[(1− p)r]k
(

p

1− p

)`(
k
`

)
πn+` if p < 1 ,

T−tn∑

k=0

rkπn+k if p = 1 .

(2)

3 Discrete time

3.1 Constant entry probability

3.1.1 Algorithm

We offer an alternative approach to theorem 1 to evaluate Πe
n, recovering an algo-

rithm that can easily be derived from formula (2). Given any natural integer (time
interval) k, let q`(k) be the probability that ` players arrive during that time in-
terval. In a Bernoulli process, only one player may arrive at each instant of time.
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Thus, there are only two incompatible ways to achieve exactly ` arrivals at time k:
either there were ` − 1 arrivals at time k − 1 and one arrived at time k, or there
were already ` arrivals at time k − 1 and none arrived at time k. Hence

q`(k) = pq`−1(k − 1) + (1− p)q`(k − 1) . (3)

Now, it holds that

Πe
n =

T∑

t=tn

E(πm(t) | tn) , and E(πm(t) | tn) =

t−tn∑

`=0

q`(t− tn)πn+` .

Therefore, using t− tn = k,

Πe
n =

T−tn∑

k=0

k∑

`=0

rkq`(k)πn+`

We define w`(k) = rkq`(k) to obtain

Πe
n =

T−tn∑

k=0

k∑

`=0

w`(k)πn+` =
∑

(k,`)∈DT−tn

w`(k)πn+` , (4)

and also the recursive formula, useful for numerical computations:

Πe
n(T ) = Πe

n(T − 1) +

T−tn∑

`=0

w`(T − tn)πn+` .

The w`(k) can be computed according to the following recursion. (The first two
lines may be seen as initialization tricks, while the third one directly derives from
equation (3))

w0(0) = 1 ,

∀k ∈ N , w−1(k) = wk(k − 1) = 0 ,

∀` ≤ k , w`(k) = rpw`−1(k − 1) + r(1− p)w`(k − 1) ,

We know from appendix A that the πm of interest here are uniformly bounded,
and therefore, from theorem 1, that this can be extended to the case where T =∞.

Indeed, that algorithm may be derived from formula (2) identifying

w`(k) = rk(1− p)k−`p`
(
k
`

)

and using the classical formula of the “Pascal triangle”:
(
k
`

)
=

(
k − 1
`− 1

)
+

(
k − 1
`

)
.
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3.1.2 Numerical results

Figure 2 provides a plot of Πe
1(T ) assuming t1 = 0, for T varying from 0 to 20,

and for p ∈ {0, .1, .4, .7, 1}. In this plot, we chose r = .9 and πn = 1/(n + 1)2.
All the computations in this article were done with Scilab.

Figure 2: Plots of Πe
1(T ) against T for various values of p, with r = .9.

3.2 Variable entry probability

We have seen in the introduction that it may be desirable to let the probability of
entry depend on the rank of the entrant. The method of paragraph 3.1.1 can easily
be extended to such a case.

3.2.1 Algorithm

Let therefore pm be the probability of entry of the competitor of rank m.
We modify slightly our previous algorithm, by introducing now the probability

qn,m(k) of having m players present at time tn + k knowing that they were n at
time tn, and wn,m(k) = rkqn,m(k). (Notice that if pn happens to be constant equal
to p, then wn,m(k) = wm−n(k).) Equation (3) is now replaced by

qn,m(k) = pmqn,m−1(k − 1) + (1− pm+1)qn,m(k − 1) ,
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and we get

∀n ∈ N , wn,n(0) = 1 ,

∀n, k , wn,n−1(k) = wn,n+k(k − 1) = 0 ,

∀n ≤ m ≤ n+ k , wn,m(k) = rpmwn,m−1(k − 1) + r(1− pm+1)wn,m(k − 1) .

Formula (4) generalizes into

Πe
n =

T−tn∑

k=0

k∑

`=0

wn,n+`(k)πn+` =
∑

(k,`)∈DT−tn

wn,n+`(k)πn+` . (5)

3.2.2 A backward algorithm

While the algorithm of the previous paragraph is well adapted to an infinite horizon
(neglecting terms of high order thanks to the discount factor), it does not fit our aim
to let pm depend on Πe

m. To reach this goal, we need to compute the latter before
using the former. This is provided by the following algorithm.

Let F be a fixed entry cost. We take advantage of the fact that we assume that
no entry will occur once Πe

n < F . The last entrant, say of rank N has an expected
profit

Πe
N =

πN
1− r

and is defined by the fact that

πN+1 < (1− r)F ≤ πN .

Therefore, we know N and Πe
N . From there, we can proceed by backward induc-

tion.
We write the profit Πn as a function of the arrival times tn and tn+1 as the sum

of the profits accumulated between these two time instants, plus the profit to be
made after time tn+1 (all these quantities are random variables) as

Πn(tn) =

tn+1∑

t=tn

rt−tnπn + rtn+1−tnΠn+1(tn+1) .

We may use the fact that, on the one hand

Πe
n(tn) = E(Πn | tn)

and on the other hand

E(Πn+1 | tn) = Etn+1 [E(Πn+1 | tn+1)] = Etn+1

[
Πe
n+1(tn+1)

]
,
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to get

Πe
n =

∞∑

tn+1=tn+1

(1− pn+1)tn+1−tn−1pn+1

[
tn+1∑

t=tn

rt−tnπn + rtn+1−tnΠe
n+1(tn+1)

]
.

(6)
It takes some calculations given in appendix B to conclude

Πe
n =

1

1− (1− pn+1)r

(
πn + pn+1rΠ

e
n+1

)
. (7)

This formula can be used backward from Πe
N .

3.2.3 Numerical results

Figure 3 provides a plot of the expected profit in the infinite horizon game as a
function of the rank of entry, computed with the backward algorithm. In this cop-
utation, we chose r = .9, πn = 100/(n+ 1)2. We let somewhat arbitrarily F = 2
and

pn = 1− F

Πe
n

in order to have an entry probability increasing with the expected payoff (i.e de-
creasing with the rank of entry) and equal to zero as Πe

n drops below the cost of
entry. For these parameters, only 21 players enter the game.

4 Continuous time

We aim to derive the continuous time limit formulas and algorithms as the step size
goes to zero. The profit when n players are present is now a rate of profit per unit
time, denoted by $n. Accordingly, q, Q, and C(q) are now rates of production,
respectively expense, per unit time (although we keep the same notation as in the
discrete time case). Let h (instead of 1) be the step size, an integer submultiple of
the horizon T when in finite horizon. Of course, the number of steps to reach a
fixed time goes to infinity as h goes to zero, but the per step discount factor goes
to one. Let an upperindex (h) denote the relevant quantities when the step size is
h. Specifically, we set

r(h) = e−δh

for a fixed continuous discount factor δ.
In the limit, the individual profit of the player of rank n arrived at time tn is

Πn(tn) =

∫ T

tn

e−δ(t−tn)$m(t) dt .

7



Figure 3: Expected payoff for the infinite horizon game as a function of the rank
of entry for pn = 1− F

Πe
n

, with r = .9.

4.1 Constant Poisson density of arrivals

4.1.1 Continuous formula

Formula (2) must now be slightly modified into

Πe
n =

T−tn
h∑

k=0

[r(h)(1− p(h))]k
k∑

`=0

(
p(h)

1− p(h)

)`(
k
`

)
π

(h)
n+` . (8)

The limit as h → 0 in the above formula leads to the following one, which has
been derived directly with a Poisson process in [Bernhard and Hamelin, 2016]:

Theorem 2 In the limit as the step size goes to zero, the expected payoff is given
by formula

Πe
n =

∫ T−tn

0
e−(λ+δ)t

∞∑

`=0

(λt)`

`!
$n+` dt . (9)

If the sequence {$m} is bounded or bounded by the powers $m ≥ |$m| of a
number $ ≤ 1 + δ/λ, this formula can be extended to T =∞.
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Proof The calculation hereafter is directly inspired by the classic analysis of the
continuous limit of a Bernoulli process, which is known to be a Poisson process.
Let the discrete quantities be expressed, up to second order in h, in terms of the
continuous ones as follows, where δ, λ and the sequence {$m} are the continuous
data:

r(h) = e−δh , p(h) = λh , π(h)
n = $nh . (10)

In formula (8), we let simultaneously h go to zero and each k go to infinity keeping
kh = t− t constant. It is a classic fact that

(1− λh)k = ek ln(1−h) ' ek(−λh) → e−λ(t−tn) .

Therefore,
[r(h)(1− p(h))]k ' e−(λ+δ)h .

Furthermore
(

λh

1− λh

)`(
k
`

)
$nh =

∏`−1
i=0 λh(k − i)
(1− λh)``!

$nh .

When h → 0 and k → ∞ with kh = t, λh(k − i) → λt. Also, (1 − λh)` → 1.
We therefore have

Πe
n '

T−tn
h∑

k=0

e−(λ+δ)t
k∑

`=0

λ`
t`

`!
$n+`h

which converges to (9). Finally, if $n ≤ $n, (9) yields

Πe
n ≤

∫ T−tn

0
e−(λ+δ)t$n

∞∑

`=0

(λ$t)`

`!
dt =

∫ T−tn

0
e(−λ−δ+λ$)t dt

which converges when T →∞ provided that−λ−δ+λ$ < 0, i.e. $ < 1+δ/λ.
(Notice however that in our application to Cournot equilibrium, the sequence {$n}
is decreasing, therefore bounded, thus we do not need that bound which concerns
increasing returns.)

One may notice that e−λt(λt)`/`! is just the probability that, in a Poisson pro-
cess of intensity λ, exactly ` positive events (here player’s arrivals) occur during a
time period of length t. Therefore, this can also be written, as expected

Πe
n =

∫ T

tn

e−δ(t−tn)E($m(t) | tn) dt = E
[∫ T

tn

e−δ(t−tn)$m(t) dt

∣∣∣∣ tn
]
.

where the expectation is taken under a Poisson law of intensity λ.
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4.1.2 Algorithm

We introduce the notation

wn,n+` =

∫ T−tn

0
e−(λ+δ)t (λt)

`

`!
dt . (11)

with which we re-write formula (9):

Πe
n =

∞∑

m=n

wn,m$m =

∞∑

`=0

wn,n+`$n+` .

Successive integrations by parts easily yields (see appendix C)

wn,n+` =
λ`

(λ+ δ)`+1

[
1− e−(λ+δ)(T−tn)

∑̀

k=0

(λ+ δ)k(T − tn)k

k!

]
. (12)

Introduce the notation

vn,` = e−(λ+δ)(T−tn)λ
`−1(T − tn)`

`!
.

We propose the following algorithm:

∀n ∈ N , vn,n =
1

λ
e−(λ+δ)(T−tn) ,

∀(n, `) ∈ N2 , vn,n+` =
λ(T − tn)

`
vn,n+`−1 ,

∀n ∈ N , wn,n =
1

λ+ δ
(1− λvn,n) ,

∀(n, `) ∈ N2 , wn,n+` =
λ

λ+ δ
(wn,n+`−1 − vn,n+`) .

Moreover, in the case of an infinite horizon: T − tn =∞, all the vn,n+` are equal
to zero, and the wn,n+` = λ`/(λ+ δ)`+1 are independent from n.

Two simple cases in infinite horizon Two simple cases are as follows:

1. If $m = $0r
m for some positive $0 and r. Then formula (9) integrates in

closed form, giving

Πe
n =

$0r
n

(1− r)λ+ δ
[1− e−[(1−r)λ+δ](T−tn)] ,

which simplifies to

Πe
n =

$0r
n

(1− r)λ+ δ

in infinite horizon.
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Figure 4: Curves Πe
n against n for the infinite horizon game, with δ = .1 and for

various intensities λ.

2. If the players just share equally a fixed flux $1 of resource, i.e. $m =
$1/m, then the last remark above yields

Πe
1 =

$1

λ

∞∑

k=1

1

k

(
λ

λ+ δ

)k
=
$1

λ
ln

(
1 +

λ

δ

)
.

4.1.3 Numerical results

The above two cases are not Cournot payoffs. We give in Figure 4 numerical
results for the case where $m = 1/(m + 1)2, infinite horizon, δ = .1, and λ ∈
{0, .1, .4, .7, 1}.

4.2 Variable Poisson density of arrivals

4.2.1 General formula

We wish now to let the density of arrivals λ be a function of the rank of the next
player to arrive (the number of players already present plus one). We are therefore
confronted with a sequence of inter-arrival time intervals which are independent
random variables each with an exponential law of coefficient, or intensity, λm. We
can use an approach similar to that of subsection 3.2.1.

11



Let λm be the arrival density for the m-th player. Let also qn,m(t) be the
probability that m players be present at time t, knowing that they were n at time
tn. We claim the following:

Theorem 3 The sequence qn,m(t) is the unique solution of the following set of
differential equations:

∀n ∈ N , qn,n(tn) = 1 , q̇n,n = −λn+1qn,n ,

∀m > n , qn,m(tn) = 0 , q̇n,m = λmqn,m−1 − λm+1qn,m .

Proof The first differential equation is just another, numerically efficient, way to
write qn,n(t) = exp[−λn+1(t− tn)], which is the probability that no event occurs
during the time interval (tn, t) for a random variable with an exponential law of
density λn+1.

Consider qn,m(t) for m > n. Notice first that by hypothesis qn,m(0) = 0.
Let h be a time step destined to vanish. Let also p(h)

n be the probability of arrival
of the n-th player during a step of length h. Hence p(h)

n = hλn + 0(h) (where
0(h)/h→ 0 as h→ 0). Also, the probability of arrival of several players during a
step of length h is of the order 0(h). The event of being m players present at time
t is either that there were m players at time t − h and none arrived, or there were
m − 1 players at time t − h, and one arrived, or that there were less than m − 1
players at time t − h and several arrived during the interval [t − h, t]. Hence we
have

qn,m(t) = (1− p(h)
m+1)qn,m(t− h) + p(h)

m qn,m−1(t− h) + 0(h)

= (1− hλm+1)qn,m(t− h) + hλmqn,m−1(t− h) + 0(h) .

Hence

qn,m(t)− qn,m(t− h)

h
= −λm+1qn,m(t− h) + λmqn,m−1(t− h) + ε(h)

where ε(h) → 0 with h. It suffices to take the limit as h → 0 to obtain the result
of the theorem.

Knowing these probabilities, we can compute

E$m(t) =
∞∑

m=n

qn,m(t)$m ,

and therefore

Πe
n =

∫ T

tn

e−δ(t−tn)E$m(t) dt =

∫ T

tn

e−δ(t−tn)
∞∑

m=n

qn,m(t)$m . (13)

12



4.2.2 Algorithm

Finite horizon We start from the formula (13) which we rewrite as

vn,m(t) := e−δtqn,m(tn + t) , (14)

wn,m :=

∫ T−tn

0
vn,m(t) dt , (15)

and

Πe
n =

∞∑

m=n

wn,m$n+m . (16)

We propose to compute the vn,m(t) via the integration of the following differential
equations, directly derived from those for qn,m(t):

∀n ∈ N , vn,n(0) = 1 , v̇n,n = −(λn+1 + δ)vn,n , (17)

∀m > n , vn,m(0) = 0 , v̇n,m = λmvn,m−1 − (λm+1 + δ)vn,m . (18)

Infinite horizon The computation simplifies in the case where T = ∞. Indeed,
we can write equation (15) taking equation (18) into account, as

wn,m =

∫ ∞

0

1

δ + λm+1
[λmvn,m−1(t)− v̇n,m(t)] dt .

However, it follows from its definition (14) that vn,m(t)→ 0 as t→∞. Also, for
m > n, vn,m(0) = 0. Therefore the integral of v̇n,m vanishes. And we are left
with

∀n ∈ N , wn,n =
1

λn+1 + δ
,

∀m > n , wn,m =
λm

λm+1 + δ
wn,m−1

(19)

and formula (16).

4.2.3 A finite entry problem

As in the discrete time case, we wish to investigate a problem where the density λm
is a (decreasing) function of the expected payoff of the m-th player, becoming null
when that expected payoff drops below a fixed entry cost F . We therefore need to
compute that specific payoff before we can use λm in the algorithm. We proceed
as in the discrete time case, with the approximations (10) and taking the limit as
h→ 0. The last entrant’s expected payoff is now

Πe
N =

$N

δ
,

13



and N is the integer such that

$N+1 < δF ≤ $N .

Formula (7) reads

Πe
n =

1

1− (1− λn+1h)(1− δh)

[
$nh+ λn+1h(1− δh)Πe

n+1

]

and therefore, taking the limit as h→ 0:

Πe
n =

1

λn+1 + δ

(
$n + λn+1Πe

n+1

)
, (20)

Πe
N =

$N

δ
, or equivalently λN+1 = 0 . (21)

We can also expand in

Πe
n =

1

λn+1 + δ

{
$n +

λn+1

λn+2 + δ

[
$n+1 +

λn+2

λn+3 + δ

(
$n+2 + λn+3Πe

n+3

)]}

and continue until the last term is

λN
λN+1 + δ

($N + λN+1ΠN+1) =
λN
δ
$N .

Clearly, we have

Πe
n =

N∑

m=n

wn,m$m ,

i.e. formula (16), with the same recursion (19). One may notice that

wn,m =
1

λn

m∏

k=n

λk
λk+1 + δ

,

but the recursion (20)(21) is more useful. It can be applied backward, with a law
λn = Λn(Πe

n). (Although adjusting the laws Λn is made difficult by the fact that
we do not know Πe

1 beforehand. If the $n are decreasing with n, we only know
that Πe

1 < $1/δ.)

4.2.4 Numerical results

Figure 5 shows the plot of the expected payoff as a function of the rank of entry
for the infinite horizon game, computed with the backward algorithm. We chose
δ = .1, $n = 100/(n+ 1)2, F = 2, and λn = 1− F/Πe

n.

14



Figure 5: Expected payoff for the infinite horizon game as a function of the rank
of entry for λn = 1− F

Πe
n

, with δ = .1.

5 Conclusion

We have studied Cournot oligopoly with randomly arriving producers in discrete
and continuous time wether the game horizon is finite or infinite. Our results are in
the same spirit as in the classical Cournot oligopoly but we are able to answer pre-
cisely in this new set up four questions: what is the expected profit for a firm inside
the Cournot oligopoly at the beginning of the game? How do individual quantities
evolve? How do market quantities evolve? How does market price evolve?

There are at least five limitations to our analysis. First, we do not have a dy-
namic equilibrium since there is no intertemporal link between each step (such as
capacity constraints, stickiness, etc.), we only have a sequence of static equilibria.
Second, there is no exit of players, yet this would be more realistic. In an other
paper we explicitly consider these issues and propose a way to overcome these two
limitations [Bernhard and Deschamps, 2016a].

The third limitation of this paper is that we only consider a Bernoulli or a Pois-
son process of entry. We think that they are the most simple and usual probability
laws concerning random events, but in some contexts they could unfortunatly be
inappropriate. In such cases new analysis have to be done. Fourth, in our setting
market demand is always deterministic (linear or isoelastic). Last but not least, we

15



have only considered symmetric producers (incumbents and potential entrants), an
hypothesis which leads to symmetric profits for producers who are in the game
since the same step. We left for further developements the case where producers
belong to several classes of players and the market demand is random.
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A Classic n-fixed results

C = cq C = cq2

P
=
a
−
bQ P ?n = a+nc

n+1 P ?n = a(b+2c)
(n+1)b+2c

q?n = a−c
(n+1)b Q?n = n(a−c)

(n+1)b q?n = a
(n+1)b+c Q?n = na

(n+1)b+c

π?n = 1
b

[
a−c
n+1

]2
Π?
n = n

b

[
a−c
n+1

]2
π?n= a2(b+c)

[(n+1)b+2c]2
Π?
n = na2(b+c)

[(n+1)b+2c]2

P
=
a
Q
−

1 ε

P ?n = nc
n− 1

ε

P ?n =
(

2aεc
n− 1

ε

) 1
1+ε

q?n=

[
a(ε− 1

n)

n
1
ε cε

]ε
Q?n=

[
a(ε− 1

n)
cε

]ε
q?n=

[
a(ε− 1

n)

2n
1
ε cε

] ε
1+ε

Q?n=

[
a(n− 1

ε)
2c

] ε
1+ε

π?n = cQ?
n

n(nε−1) Π?
n = cQ?

n
nε−1 π?n=

c(n+ 1
ε)

n2(n− 1
ε)
Q?n

2 Π?
n=

c(n+ 1
ε)

n(n− 1
ε)
Q?n

2

Table 1: Equilibrium values in Cournot oligopoly with n agents

We wish to apply our model to Cournot oligopoly, under the combination of
two hypotheses, one relative to the demand function —linear or isoelastic—, the
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C = cq C = cq2

P
=
a
−
bQ P ?n ∼ c+ a−c

n → c P ?n ∼ a(b+2c)
b n−1 → 0

q?n ∼ a−c
b n−1 Q?n → a−c

b q?n ∼ a
bn
−1 Q?n → a

b

π?n∼ (a− c)2n−2 Π?
n∼ (a− c)2n−1 π?n ∼ a2(b+c)

b2
n−2 Π?

n∼ a2(b+c)
b2

n−1

P
=
a
Q
−

1 ε

P ?n ∼ c
(
1 + 1

nε

)
→ c P ?n ∼ (2aεc)

1
1+ε n−

1
1+ε → 0

q?n ∼
(
a
c

)ε
n−1 Q?n →

(
a
c

)ε
q?n∼

(
a
2c

) ε
1+ε n−

1
1+ε Q?n∼

(
an
2c

) ε
1+ε

π?n ∼ aε

εcε−1n
−2 Π?

n ∼ aε

εcε−1n
−1 π?n ∼ αn−

2
1+ε Π?

n ∼ αn
ε−1
ε+1

α =
(
a
2

) 2ε
1+ε c

1−ε
1+ε

Table 2: Asymptotics as n→∞

other to the production cost of the players —linear or quadratic. We always con-
sider identical players, enjoying complete information about the rules of the game
and about the current number of players present in the game at each instant of time.

Let P (Q) be the inverse demand function and C(q) the individual production
cost. We have

π = qP (Q)− C(q) ,

that each player seeks to maximize, assuming other players’ production fixed. The
method is as follows: write Q = q + (n− 1)qn, hence

π = qP
(
q + (n− 1)qn

)
− C(q) ,

equate the partial derivative with respect to q to 0, and in that equation place q = q?n.
The results are summarized in Table 1. In table 2, we give the asymptotic equivalent
as n → ∞. In the case of quadratic costs, the price goes to zero as n → ∞. In
the case of linear demand function, total production goes to a finite limit, while
individual profits go to zero as n−2, and therefore also total profit as n−1. But the
total production and profit behave differently depending on whether the production
cost is linear or quadratic: in the former case, gross production goes to a finite limit
and total profits go to zero, while in the latter, gross production and total profits go
to infinity.

Let us also emphasize that the same theory developed to evaluate the expecta-
tion of the cumulative profit of the players applies mutatis mutandis to evaluate the
expectation of any other cumulative quantity pertaining to this game, e.g. in the
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application to the Cournot oligopoly, the finite time cumulative gross production

G =

T∑

t=t1

Qn .

B Derivation of the backward algorithm formula

We start from equation (6)

Πe
n =

∞∑

tn+1=tn+1

(1− pn+1)tn+1−tn−1pn+1

[
tn+1∑

t=tn

rt−tnπn + rtn+1−tnΠe
n+1(tn+1)

]
.

The inner sum over t can be expressed in closed form, to get

Πe
n =
∞∑

tn+1=tn+1

(1− pn+1)tn+1−tn−1pn+1

[
1− rtn+1−tn

1− r πn + rtn+1−tnΠe
n+1(tn+1)

]
.

substitute t for the dummy summation index tn+1, and expand in

Πe
n =

pn+1

1− pn+1

[( ∞∑

t=tn+1

(1− pn+1)t−tn −
∞∑

t=tn+1

[(1− pn+1)r]t−tn
)

πn
1− r

+
∞∑

t=tn+1

[(1− pn+1)r]t−tnΠe
n+1

]
.

Use again the closed form of the sums of powers:

Πe
n =

pn+1

1− pn+1

[(
1− pn+1

pn+1
− (1− pn+1)r

1− (1− pn+1)r

)
πn

1− r

+
(1− pn+1)r

1− (1− pn+1)r
Πe
n+1

]
.

or

Πe
n =

(
1− pn+1r

1− (1− pn+1)r

)
πn

1− r +
pn+1r

1− (1− pn+1)r
Πe
n+1.

or, finally, formula (7):

Πe
n =

1

1− (1− pn+1)r

(
πn + pn+1rΠ

e
n+1

)
.
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C Evaluating the wn,n+`

We aim to derive formula (12) from formula (11). To simplify the calculation, we
let λ+ δ = γ and T − tn = S. We aim to evaluate

wn,n+` =

∫ S

0
e−γt

(λt)`

`!
dt .

Performing an integration by parts, we obtain

wn,n+` =

∫ S

0
e−γt

(λt)`

`!
dt = λ`

∫ S

0

t`

`!
d

(
−1

γ
e−γt

)

=
λ`

γ

([
−e−γt

t`

`!

]S

0

+

∫ S

0
e−γt

t`−1

(`− 1)!
dt

)

=
λ`

γ

(
−e−γt

S`

`!
+

∫ S

0
e−γt

t`−1

(`− 1)!
dt

)

We apply the same integration by parts to the last integral, and repeat again once
to get

wn,n+` =
λ`

−γ

{
e−γS

−S`
`!

+
1

γ

[
−e−γS

S`−1

(`− 1)!

+
1

γ

(
−e−γS

S`−2

(`− 2)!
+

∫ S

0
e−γt

t`−3

(`− 3)!
dt

)]}

=
λ`

γ4

[
−e−γS

(
γ3S`

`!
+
γ2S`−1

(`− 1)!
+

γS`−2

(`− 2)!

)
+ γ

∫ S

0
e−γt

t`−3

(`− 3)!
dt

]
.

Performing the same substitution ` times, we end up with

wn,n+` =
λ`

γ`+1

[
−e−γS

(
γ`S`

`!
+
γ`−1S`−1

(`− 1)!
+ . . .+ γS

)
+ γ

∫ S

0
e−γtdt

]

=
λ`

γ`+1

[
1− e−γS

(
γ`S`

`!
+
γ`−1S`−1

(`− 1)!
+ . . .+ γS + 1

)]
,

which is formula (12).
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