
HAL Id: hal-01413886
https://hal.science/hal-01413886

Submitted on 11 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Off-Policy Neural Fitted Actor-Critic
Matthieu Zimmer, Yann Boniface, Alain Dutech

To cite this version:
Matthieu Zimmer, Yann Boniface, Alain Dutech. Off-Policy Neural Fitted Actor-Critic. NIPS 2016 -
Deep Reinforcement Learning Workshop, Dec 2016, Barcelona, Spain. �hal-01413886�

https://hal.science/hal-01413886
https://hal.archives-ouvertes.fr

Off-Policy Neural Fitted Actor-Critic

Matthieu Zimmer
University of Lorraine
LORIA, UMR 7503

Nancy, F-54000, France
matthieu.zimmer@loria.fr

Yann Boniface
University of Lorraine
LORIA, UMR 7503

Nancy, F-54000, France
yann.boniface@loria.fr

Alain Dutech
INRIA

LORIA, UMR 7503
Nancy, F-54000, France

alain.dutech@loria.fr

Abstract

A new off-policy, offline, model-free, actor-critic reinforcement learning algorithm
dealing with continuous environments in both states and actions is presented. It
addresses discrete time problems where the goal is to maximize the discounted sum
of rewards using stationary policies. Our algorithm allows to trade-off between
data-efficiency and scalability. The amount of a priori knowledge is kept low by:
(1) using neural networks to learn both the critic and the actor, (2) not relying on
initial trajectories provided by an expert, and (3) not depending on known goal
states. Experimental results compare data-efficiency to 4 state-of-the-art algorithms
on three benchmark environments.

This article largely reproduces a previous work [34] by adding a higher dimensional environment, im-
proving control architectures and provides batch normalization for others state-of-the-art algorithms.

1 Introduction

Reinforcement learning (RL) is a framework for solving sequential decision problems, in which an
agent interacts with its environment and adapts its policy based on a scalar reward signal [27]. RL
agents can autonomously learn difficult tasks, like playing video games [19]. While the basic setting
of RL is currently well established, fully continuous environments for both state and action spaces
need new algorithms to solve more real-world problems. In many realistic tasks, like robotics, it is
time-consuming and costly to produce data. RL agents should thereby exhibit good data-efficiency,
i.e. exploiting each sample as best as possible, even at the cost of a longer computational time.

The purpose of this work is to design an RL algorithm that: (1) tackles continuous state and action
spaces, (2) is data-efficient, and (3) uses neural networks to be as generic as possible with minimal a
priori knowledge.

Recently, several RL algorithms for fully continuous environments have been developed with neural
networks control architectures [18, 24]. However, they were focused on task performance rather
than data-efficiency since they are model-free and data were not too costly to produce. Seeking
for data-efficiency usually means to use model-based algorithms, like Probabilistic Inference for
Learning COntrol (PILCO) [3]. However, PILCO lacks scalability [31] and model-based algorithms
do not always lead to straightforward improvements when using neural networks [8].

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

In this work, we present an offline, model-free, off-policy, actor-critic RL algorithm that allows a
trade-off between scalability and data-efficiency. It is based on the fitted actor-critic family [1, 33]
and benefits from the improvements proposed by Deep Deterministic Policy Gradient (DDPG) [18].

2 Background

We are interested in RL problems, modeled as Markov Decision Processes (MDP) 〈S,A, T,R〉,
where the state space S and the action space A are continuous. The goal is to seek for an optimal
policy π∗ maximizing the expected discounted reward:

π∗ = argmax
π

J(π) = argmax
π

E
[∞∑
t=0

γt ×R(st, πt(st))
]
, (1)

where t denotes a time step and 0 < γ < 1 is the discount factor.

When the state space S is continuous, classical value-function methods like Least-Squares Temporal
Difference (LSTD) [2] rely on an estimation of Q : S ×A→ R, the sequential values of actions in
each state:

Qπ(s, a) = Eπ
[∞∑
k=0

γkrt+k+1

∣∣∣st = s, at = a
]
, (2)

where rt is the reward obtained at time t from R following π. Being data-efficient means to search
for the best policy given the collected samples. An example of a neural data-efficient, critic-only
algorithm is Fitted Q Iteration (FQI) [5, 21], which updates the Q function several times using the
Bellman operator as an approximated version of Value Iteration [12]. Instead of iterating over all
states and actions, it relies only on the collected samples (st, at, rt+1, st+1):

Qk+1 = arg min
Q∈F

N∑
t=1

[
Q(st, at)−

(
rt+1 + γ max

a′∈A
Qk(st+1, a

′)
)]2

. (3)

When the action space A is continuous, the use of an actor (i.e. a parametric policy) becomes
crucial to overcome the complexity of the argmax search. This often leads to actor-only methods
like Policy Gradient [28], Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [10] or Trust
Region Policy Optimization (TRPO) [24]. The major drawbacks of actor-only methods are the high
variability of the cost J (because there is no critic) and, for gradient-based methods, the plateau effect
and local minima that can lead to poor policies [7, 17]. On the other hand, actor-critic algorithms try
to combine both the advantages of previous methods. The critic learns a value function thus reducing
the variability of the approximation of J and the actor learns the parametric policy, allowing the use
of continuous actions.

We now present three state-of-the-art actor-critic algorithms that we will use for comparison in our
experiments (from least to most data-efficient):

• Continuous Actor Critic Learning Automaton (CACLA) is a successful actor-critic algorithm
[30] that uses neural networks for both the critic and the actor. Due to it’s online nature and
its on-policy updates, it cannot achieve good data efficiency (the collected data is used then
forgotten). In some environments, CACLA performs better than CMA-ES [29].

• Neural Fitted Actor Critic (NFAC) may achieve a better data efficiency than CACLA since
it uses FQI updates [33]. However, the data is forgotten after each end of episode because
the actor features on-policy update.

• Deep Deterministic Policy Gradient (DDPG) is also an actor-critic algorithm [18]. It
accomplishes online updates of the policy and Q function, and it reuse previous samples
through its off-policy update. Based on Neural Fitted Q with Continuous Actions [9], DDPG
is more scalable due to online updates, targets networks [19] and batch normalization [13].
The target networks serve to slow down the weights updates to increase the stability of
learning, by soft updating a copy of the policy and the value function.

Recently, two new methods have been proposed to increase the efficiency of some RL algorithms.

2

• When the dimensions of action space A are bounded, instead of limiting the output of the
neural policy with a last layer (for instance with a hyperbolic tangent) that squashes the
gradient obtained from the critic, it is preferable to have an unbounded last layer with an
adapted gradient strategy [11].

• Retrace(λ) is a new strategy to weight a sample for off-policy learning [20], it provides
low-variance, safe and efficient updates.

3 Algorithm

Our algorithm, that we name Data Efficient Neural Fitted Actor Critic (DENFAC), can be seen as a
neural version of a fitted actor-critic (FAC) algorithm [1]. It contains an approximated version of
both Value and Policy Iteration (for the critic and the actor respectively).

The critic is updated with a FQI update where the argmax operator is replaced by the policy choice.
Moreover, the policy is able to change at each update to approximately fit what would be the argmax.

Qk+1 = argmin
Q∈Fc

∑
(st,at,rt+1,st+1)∈D

c(st, at)
[
Q(st, at)−

(
rt+1 + γQk(st+1, πk(st+1))

)]2
, (4)

πk+1 = argmax
π∈Fa

∑
st∈D

Qk+1

(
st, πk(st)

)
, (5)

where c(st, at) = min
(
1, πk−1(at|st)

πb(at|st)
)

is the weight associated to a sample [20], and πb is the policy
that gathered the sample. This coupled optimization can be applied multiple times without acquiring
new samples.

DENFAC is an off-line algorithm, therefore the execution part of one episode consists only of
performing the policy choices and collecting the samples (st, at, rt+1, st+1) that are added to D
(the replay buffer). The off-line part is depicted in Algorithm 1. The algorithm is data-efficient
because it performs a type of FQI. Furthermore, unlike DDPG, it performs updates over the largest
set of data given a computational constraint. This might requires too much computational time
so the data-efficiency vs scalability dilemma can be adjusted through the length of D. Another
meta-parameter of Algorithm 1, reset_critic that reset the weight of the critic to another initial
solution, can lead to an even better data-efficiency by allowing the critic to get out of local minima.

A challenging problem in this algorithm is how to handle the growth of D. In this work, we consider
D as a First-In First-Out (FIFO) queue. So the agent accesses to its memory of the latest episodes. It
can be enough in some simple environments but it is clearly sub-optimal in a data-efficiency point
of view. Defining a weight associated to each data of D from the δ-error might be a solution [23].
However, in contrast to [23] the δ-error depends not only on the critic but also of the actor. It is not
clear yet if the sampling from D should be the same for the actor and the critic.

DENFAC learns a deterministic policy, thus during the execution part an exploration strategy must be
used. It can greatly influence the data-efficiency. We do not address this issue in this work. In the
experimental setup, each algorithm uses the same exploration strategy : a Gaussian noise is added to
the actor choice.

FAC DDPG NFAC DENFAC
Offline & Batch × × ×

Off-policy × × ×
Fitted Critic × × ×

Actor updated through ∇Q × × ×
Learn Q × × ×

Reset Networks × ×
Retrace ×

Target Networks ×
Batch Normalization × ×

Figure 1: Properties of the nearest actor-critic algorithms : FAC [1], DDPG [18] and NFAC [33].

3

Data: D replay buffer of N samples, Q0 value-function, πb previous policies, K number of fitted
iteration, G number of gradient descent for actor updates, inverting_gradient strategy,
reset_critic strategy

Result: πK the next policy to play, QK the next value function
for k ← 1 to K do

for (st, at, ut, rt+1, st+1) ∈ D do

qk,t ←
{
rt+1, if st+1 ∈ S∗

rt+1 + γQk−1(st+1, πk−1(st+1)), otherwise
end
Qk ← randomly initialize critic network if reset_critic else Qk−1
Update critic by minimizing the loss:

L =
1

N

N∑
t=1

min
(
1,
πk−1(at|st)
πb(at|st)

)(
qk,t −Qk(st, at)

)2
Randomly initialize actor network πk
for g ← 1 to G do

Update the actor policy using the batch gradient:
if inverting_gradient then

∇a = ∇a.
{
(amax − a)/(amax − amin) if∇a < 0

(a− amin)/(amax − amin), otherwise
end

∇θπkπk =
1

N

N∑
t=1

∇aQ(st, a)|a=πk(st)∇θπkπk(st)

end
end

Algorithm 1: Data Efficient Neural Fitted Actor Critic (DENFAC)

4 Experimental Setup

An experimental comparison of DENFAC, DDPG, CMA-ES, NFAC and CACLA is done into three
environments: Acrobot [26], Cartpole [22] and Half-Cheetah [32].

In Acrobot (double swing-up), the reward function is defined as (1) +1 if the goal is reached (arm
straight up), (2) the normalized max height of end effector if 500 steps are reached, and (3) 0
otherwise.

In Cartpole (inverted pendulum), the reward function is defined as (1) 0 when the cart position is
between [−0.05; 0.05] and the pole angle between [− π

60 ,
π
60], (2) −2× (500− last_step) if it exits

at last_step (pole angle /∈ [−π6 ,
π
6] or cart position /∈ [−2.4; 2.4]), and (3) -1 otherwise.

In Half-Cheetah, the reward function is R(s, a) = vx(s)− 0.05 · ‖a‖22 − 1 · g(s) where vx(s) is the
speed of the cheetah on x axis and g(s) is 1 if the heel, the or 0 otherwise.

The discount factor is fixed to γ = 0.9 (Acrobot) and γ = 0.99 (Cartpole and Half-Cheetah). States
are composed of the joint positions/angles and joint position/angle velocities. Dimensions of S ×A
are 4× 1 (Acrobot), 4× 1 (Cartpole) and 20× 6 (Half-Cheetah).

The neural networks use (1) Adam learning algorithm [16], (2) the leaky rectified linearity (ReLU)
[6], and (3) batch normalization [13]. Critic networks contain 2 hidden layers of 50 and 7 neurons.
The structure of the actor networks is fixed to : 1× 5× 1 units (Acrobot), 1× 20× 1 units (Cartpole),
and 20× 20× 10× 6 units (Half-Cheetah). The last layer of the critic and actor networks is linear.
The actor policy is a truncated Gaussian policy between [amin = −1, amax = 1] with σ = 0.05
where the mean is determined by the output of the last linear layer. Each weight is initialized from a
normal distribution N (0, 0.01). Batch normalization is applied on each layer for both the actor and
the critic, except on the last two layers.

4

Figure 2: Illustration of Acrobot (left), Cartpole (middle) and Half-Cheetah (right) environments
(reproduced from Wikipedia and [32]).

For each experimental setup, we first optimize all the meta-parameters of DDPG and then apply
them to DENFAC. To obtain a fair comparison, we also optimized the number of updates performed
by DDPG, and we applied the inverting gradient strategy (when it was better) to make it more
data-efficient. NFAC and CACLA algorithms are improved with batch normalization, denoted as
NFAC+ and CACLA+ in Figure 3. Only CMA-ES do not use batch normalization for its policy as it
does not rely on the gradient.

Figure 3: Median and quartiles of the best registered performance in Acrobot (the lower, the better),
Cartpole (the higher, the better) and Half-Cheetah (the higher, the better) environments during RL
learning with each algorithm. Each experiment has been run 40 times for statistical results.

In order to characterize data-efficiency on Figure 3, we plot the best performance the agent has done
since the beginning. It can only improve therefore it does not represent the exploration made by each
algorithm. The number of data collected is correlated to the number of episode.

Figure 3 shows that DENFAC quickly develops good policies on each tasks compared to DDPG
(even if DDPG is online). However, unexpectedly DENFAC, which is off-policy, has the same order
of performance that NFAC+, which is on-policy. It let us think that either D should not be a simple
FIFO queue, or that the policy update of NFAC+ allows a better exploration.

Surprisingly, the actor-only method CMA-ES achieves very good data-efficiency on those environ-
ments. In higher dimensional environments, it can lack scalability [4] but here it outperforms online
algorithms like CACLA or DDPG even if they have access to the reward information faster (online
algorithms).

5

Figure 4: Median and quartiles of the best registered performance Half-Cheetah (the higher, the
better) environments during RL learning with each algorithm.

αa inverting mini additional batch reset
αc gradient batch size τ updates K G size D critic

Acrobot DDPG 0.1 No 64 0.001 8
DENFAC 0.1 No 10 25 6000 Yes

Cartpole DDPG 0.1 Yes 64 0.1 8
DENFAC 0.1 Yes 10 25 3000 No

Half-Cheetah DDPG 0.1 Yes 64 0.001 8
DENFAC 0.1 Yes 10 25 3000 No

Figure 5: Best meta-parameters found for DDPG and DENFAC.

CACLA or CACLA+ cannot reach the goal in only 750 episodes on Acrobot. On those environments,
it’s the less data-efficient algorithm but also the faster in computational time. It proves that having a
replay buffer like NFAC, DDPG and DENFAC helps to improve data-efficient.

We did not notice that adding a L2 regularization term in the critic, as done in the original version of
DDPG, improves it in those environments. In some experiments, we also run our algorithm in an
online setting or with target networks, but this did not improve the data-efficiency, while requiring
more computations (results not shown here).

5 Conclusions and further work

We investigated the data-efficency vs scalability dilemma in three fully continuous environments.
Data-efficency often implies more computational time spent on each data impeding the scalability.
In some cases, resetting the weights of the neural networks shows even more data-efficency. All
those additional costs must be negligible compared to the cost of producing data in the environment
otherwise such methods are not appropriate. DENFAC is more data-efficient than 4 state-of-the-art
actor-critic algorithms in some environments but comes at a higher computational cost. To further
improve DENFAC, it should be analyzed how to replace the FIFO queue for D and if uniform
sampling could be improved [23]. Moreover, DENFAC lacks stability in learning, target networks
did not help, slowing down the change in the policy might increase his stability [24].

6

Acknowledgments

The data has been numerically analyzed with the free software package GNU Octave [15]. We
used Caffe as neural network library [14] and Open Dynamic Engine (ODE) as physic engine [25].
Experiments presented in this paper were carried out using the Grid’5000 testbed, supported by a
scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as
well as other organizations (see https://www.grid5000.fr).

References
[1] András Antos, Rémi Munos, and Csaba Szepesvari. Fitted Q-iteration in continuous action-space

MDPs. 2008.

[2] Steven J. Bradtke, Andrew G. Barto, and Pack Kaelbling. Linear least-squares algorithms for
temporal difference learning, 1996.

[3] Marc Deisenroth and Carl E. Rasmussen. PILCO: A model-based and data-efficient approach
to policy search. In International Conference on Machine Learning, pages 465–472, 2011.

[4] Yan Duan, Xi Chen, John Schulman, and Pieter Abbeel. Benchmarking Deep Reinforcement
Learning for Continuous Control. arXiv preprint arXiv:1604.06778, 2016.

[5] Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement
learning. Journal of Machine Learning Research, 6(Apr):503–556, 2005.

[6] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep Sparse Rectifier Neural Networks.
In Aistats, volume 15, page 275, 2011.

[7] Ivo Grondman, Lucian Buşoniu, Gabriel AD. Lopes, and Robert Babuška. A survey of actor-
critic reinforcement learning: Standard and natural policy gradients. IEEE Transactions on
Systems, Man and Cybernetics, 42(6):1291–1307, 2012.

[8] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous Deep Q-
Learning with Model-based Acceleration. arXiv preprint arXiv:1603.00748, 2016.

[9] Roland Hafner and Martin Riedmiller. Reinforcement learning in feedback control. Machine
Learning, 84(1-2):137–169, 2011.

[10] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolu-
tion strategies. Evolutionary computation, 9(2):159–195, 2001.

[11] Matthew Hausknecht and Peter Stone. Deep Reinforcement Learning in Parameterized Action
Space. arXiv preprint arXiv:1511.04143, 2016.

[12] Ronard A. Howard. Dynamic Programming and Markov Processes. 1960.

[13] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. arXiv preprint arXiv:1502.03167, 2015.

[14] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional Architecture for Fast Feature
Embedding. arXiv preprint arXiv:1408.5093, 2014.

[15] S\oren Hauberg John W. Eaton David Bateman and Rik Wehbring. {GNU Octave} version
4.0.0 manual: a high-level interactive language for numerical computations. 2015.

[16] Diederik P. Kingma and Jimmy Lei Ba. Adam: a Method for Stochastic Optimization. Interna-
tional Conference on Learning Representations, pages 1–13, 2015.

[17] Vijay R. Konda and John N. Tsitsiklis. Actor-Critic Algorithms. Neural Information Processing
Systems, 13:1008–1014, 1999.

[18] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971, 2015.

7

[19] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, and Others. Human-level
control through deep reinforcement learning. Nature, 518:529–533, 2015.

[20] Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc G. Bellemare. Safe and Efficient
Off-Policy Reinforcement Learning. arXiv preprint arXiv:1606.02647, 2016.

[21] Martin Riedmiller. Neural fitted Q iteration - First experiences with a data efficient neural
Reinforcement Learning method. In Lecture Notes in Computer Science, volume 3720 LNAI,
pages 317–328, 2005.

[22] Martin Riedmiller, Jan Peters, and Stefan Schaal. Evaluation of Policy Gradient Methods
and Variants on the Cart-Pole Benchmark. In IEEE International Symposium on Approximate
Dynamic Programming and Reinforcement Learning, pages 254–261, apr 2007.

[23] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized Experience Replay.
arXiv, pages 1–23, 2015.

[24] John Schulman, Sergey Levine, Michael Jordan, and Pieter Abbeel. Trust Region Policy
Optimization. International Conference on Machine Learning, page 16, 2015.

[25] Russell Smith. Open dynamics engine. 2005.

[26] Mark W. Spong. Swing up control problem for the acrobot. IEEE Control Systems Magazine,
15(1):49–55, 1995.

[27] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction (Adaptive
Computation and Machine Learning). A Bradford Book, 1998.

[28] Richard S. Sutton, David Mcallester, Satinder Singh, and Yishay Mansour. Policy Gradient
Methods for Reinforcement Learning with Function Approximation. In Advances in Neural
Information Processing Systems 12, pages 1057–1063, 1999.

[29] Hado Van Hasselt. Reinforcement Learning in Continuous State and Action Spaces. In
Reinforcement Learning, pages 207–251. Springer Berlin Heidelberg, 2012.

[30] Hado Van Hasselt and Marco A. Wiering. Reinforcement learning in continuous action spaces. In
Proceedings of the IEEE Symposium on Approximate Dynamic Programming and Reinforcement
Learning, pages 272–279, 2007.

[31] Niklas Wahlström, Thomas B. Schön, and Marc Peter Deisenroth. From Pixels to Torques:
Policy Learning with Deep Dynamical Models. arXiv preprint arXiv:1502.02251, 2015.

[32] Paweł Wawrzyński. Learning to control a 6-degree-of-freedom walking robot. In International
Conference on Computer as a Tool, pages 698–705, 2007.

[33] Matthieu Zimmer, Yann Boniface, and Alain Dutech. Neural Fitted Actor-Critic. In European
Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning,
2016.

[34] Matthieu Zimmer, Yann Boniface, and Alain Dutech. Toward a data efficient neural actor-critic.
In 13th European Workshop on Reinforcement Learning, 2016.

8

	Introduction
	Background
	Algorithm
	Experimental Setup
	Conclusions and further work

