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Abstract

A new off-policy, offline, model-free, actor-critic reinforcement learning algorithm
dealing with continuous environments in both states and actions is presented. It
addresses discrete time problems where the goal is to maximize the discounted sum
of rewards using stationary policies. Our algorithm allows to trade-off between
data-efficiency and scalability. The amount of a priori knowledge is kept low by:
(1) using neural networks to learn both the critic and the actor, (2) not relying on
initial trajectories provided by an expert, and (3) not depending on known goal
states. Experimental results compare data-efficiency to 4 state-of-the-art algorithms
on three benchmark environments.

This article largely reproduces a previous work [34] by adding a higher dimensional environment, im-
proving control architectures and provides batch normalization for others state-of-the-art algorithms.

1 Introduction

Reinforcement learning (RL) is a framework for solving sequential decision problems, in which an
agent interacts with its environment and adapts its policy based on a scalar reward signal [27]. RL
agents can autonomously learn difficult tasks, like playing video games [19]. While the basic setting
of RL is currently well established, fully continuous environments for both state and action spaces
need new algorithms to solve more real-world problems. In many realistic tasks, like robotics, it is
time-consuming and costly to produce data. RL agents should thereby exhibit good data-efficiency,
i.e. exploiting each sample as best as possible, even at the cost of a longer computational time.

The purpose of this work is to design an RL algorithm that: (1) tackles continuous state and action
spaces, (2) is data-efficient, and (3) uses neural networks to be as generic as possible with minimal a
priori knowledge.

Recently, several RL algorithms for fully continuous environments have been developed with neural
networks control architectures [18, 24]. However, they were focused on task performance rather
than data-efficiency since they are model-free and data were not too costly to produce. Seeking
for data-efficiency usually means to use model-based algorithms, like Probabilistic Inference for
Learning COntrol (PILCO) [3]. However, PILCO lacks scalability [31] and model-based algorithms
do not always lead to straightforward improvements when using neural networks [8].
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In this work, we present an offline, model-free, off-policy, actor-critic RL algorithm that allows a
trade-off between scalability and data-efficiency. It is based on the fitted actor-critic family [1, 33]
and benefits from the improvements proposed by Deep Deterministic Policy Gradient (DDPG) [18].

2 Background

We are interested in RL problems, modeled as Markov Decision Processes (MDP) 〈S,A, T,R〉,
where the state space S and the action space A are continuous. The goal is to seek for an optimal
policy π∗ maximizing the expected discounted reward:

π∗ = argmax
π

J(π) = argmax
π

E
[ ∞∑
t=0

γt ×R(st, πt(st))
]
, (1)

where t denotes a time step and 0 < γ < 1 is the discount factor.

When the state space S is continuous, classical value-function methods like Least-Squares Temporal
Difference (LSTD) [2] rely on an estimation of Q : S ×A→ R, the sequential values of actions in
each state:

Qπ(s, a) = Eπ
[ ∞∑
k=0

γkrt+k+1

∣∣∣st = s, at = a
]
, (2)

where rt is the reward obtained at time t from R following π. Being data-efficient means to search
for the best policy given the collected samples. An example of a neural data-efficient, critic-only
algorithm is Fitted Q Iteration (FQI) [5, 21], which updates the Q function several times using the
Bellman operator as an approximated version of Value Iteration [12]. Instead of iterating over all
states and actions, it relies only on the collected samples (st, at, rt+1, st+1):

Qk+1 = arg min
Q∈F

N∑
t=1

[
Q(st, at)−

(
rt+1 + γ max

a′∈A
Qk(st+1, a

′)
)]2

. (3)

When the action space A is continuous, the use of an actor (i.e. a parametric policy) becomes
crucial to overcome the complexity of the argmax search. This often leads to actor-only methods
like Policy Gradient [28], Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [10] or Trust
Region Policy Optimization (TRPO) [24]. The major drawbacks of actor-only methods are the high
variability of the cost J (because there is no critic) and, for gradient-based methods, the plateau effect
and local minima that can lead to poor policies [7, 17]. On the other hand, actor-critic algorithms try
to combine both the advantages of previous methods. The critic learns a value function thus reducing
the variability of the approximation of J and the actor learns the parametric policy, allowing the use
of continuous actions.

We now present three state-of-the-art actor-critic algorithms that we will use for comparison in our
experiments (from least to most data-efficient):

• Continuous Actor Critic Learning Automaton (CACLA) is a successful actor-critic algorithm
[30] that uses neural networks for both the critic and the actor. Due to it’s online nature and
its on-policy updates, it cannot achieve good data efficiency (the collected data is used then
forgotten). In some environments, CACLA performs better than CMA-ES [29].

• Neural Fitted Actor Critic (NFAC) may achieve a better data efficiency than CACLA since
it uses FQI updates [33]. However, the data is forgotten after each end of episode because
the actor features on-policy update.

• Deep Deterministic Policy Gradient (DDPG) is also an actor-critic algorithm [18]. It
accomplishes online updates of the policy and Q function, and it reuse previous samples
through its off-policy update. Based on Neural Fitted Q with Continuous Actions [9], DDPG
is more scalable due to online updates, targets networks [19] and batch normalization [13].
The target networks serve to slow down the weights updates to increase the stability of
learning, by soft updating a copy of the policy and the value function.

Recently, two new methods have been proposed to increase the efficiency of some RL algorithms.
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• When the dimensions of action space A are bounded, instead of limiting the output of the
neural policy with a last layer (for instance with a hyperbolic tangent) that squashes the
gradient obtained from the critic, it is preferable to have an unbounded last layer with an
adapted gradient strategy [11].

• Retrace(λ) is a new strategy to weight a sample for off-policy learning [20], it provides
low-variance, safe and efficient updates.

3 Algorithm

Our algorithm, that we name Data Efficient Neural Fitted Actor Critic (DENFAC), can be seen as a
neural version of a fitted actor-critic (FAC) algorithm [1]. It contains an approximated version of
both Value and Policy Iteration (for the critic and the actor respectively).

The critic is updated with a FQI update where the argmax operator is replaced by the policy choice.
Moreover, the policy is able to change at each update to approximately fit what would be the argmax.

Qk+1 = argmin
Q∈Fc

∑
(st,at,rt+1,st+1)∈D

c(st, at)
[
Q(st, at)−

(
rt+1 + γQk(st+1, πk(st+1))

)]2
, (4)

πk+1 = argmax
π∈Fa

∑
st∈D

Qk+1

(
st, πk(st)

)
, (5)

where c(st, at) = min
(
1, πk−1(at|st)

πb(at|st)
)

is the weight associated to a sample [20], and πb is the policy
that gathered the sample. This coupled optimization can be applied multiple times without acquiring
new samples.

DENFAC is an off-line algorithm, therefore the execution part of one episode consists only of
performing the policy choices and collecting the samples (st, at, rt+1, st+1) that are added to D
(the replay buffer). The off-line part is depicted in Algorithm 1. The algorithm is data-efficient
because it performs a type of FQI. Furthermore, unlike DDPG, it performs updates over the largest
set of data given a computational constraint. This might requires too much computational time
so the data-efficiency vs scalability dilemma can be adjusted through the length of D. Another
meta-parameter of Algorithm 1, reset_critic that reset the weight of the critic to another initial
solution, can lead to an even better data-efficiency by allowing the critic to get out of local minima.

A challenging problem in this algorithm is how to handle the growth of D. In this work, we consider
D as a First-In First-Out (FIFO) queue. So the agent accesses to its memory of the latest episodes. It
can be enough in some simple environments but it is clearly sub-optimal in a data-efficiency point
of view. Defining a weight associated to each data of D from the δ-error might be a solution [23].
However, in contrast to [23] the δ-error depends not only on the critic but also of the actor. It is not
clear yet if the sampling from D should be the same for the actor and the critic.

DENFAC learns a deterministic policy, thus during the execution part an exploration strategy must be
used. It can greatly influence the data-efficiency. We do not address this issue in this work. In the
experimental setup, each algorithm uses the same exploration strategy : a Gaussian noise is added to
the actor choice.

FAC DDPG NFAC DENFAC
Offline & Batch × × ×

Off-policy × × ×
Fitted Critic × × ×

Actor updated through ∇Q × × ×
Learn Q × × ×

Reset Networks × ×
Retrace ×

Target Networks ×
Batch Normalization × ×

Figure 1: Properties of the nearest actor-critic algorithms : FAC [1], DDPG [18] and NFAC [33].
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Data: D replay buffer of N samples, Q0 value-function, πb previous policies, K number of fitted
iteration, G number of gradient descent for actor updates, inverting_gradient strategy,
reset_critic strategy

Result: πK the next policy to play, QK the next value function
for k ← 1 to K do

for (st, at, ut, rt+1, st+1) ∈ D do

qk,t ←
{
rt+1, if st+1 ∈ S∗

rt+1 + γQk−1(st+1, πk−1(st+1)), otherwise
end
Qk ← randomly initialize critic network if reset_critic else Qk−1
Update critic by minimizing the loss:

L =
1

N

N∑
t=1

min
(
1,
πk−1(at|st)
πb(at|st)

)(
qk,t −Qk(st, at)

)2
Randomly initialize actor network πk
for g ← 1 to G do

Update the actor policy using the batch gradient:
if inverting_gradient then

∇a = ∇a.
{
(amax − a)/(amax − amin) if∇a < 0

(a− amin)/(amax − amin), otherwise
end

∇θπkπk =
1

N

N∑
t=1

∇aQ(st, a)|a=πk(st)∇θπkπk(st)

end
end

Algorithm 1: Data Efficient Neural Fitted Actor Critic (DENFAC)

4 Experimental Setup

An experimental comparison of DENFAC, DDPG, CMA-ES, NFAC and CACLA is done into three
environments: Acrobot [26], Cartpole [22] and Half-Cheetah [32].

In Acrobot (double swing-up), the reward function is defined as (1) +1 if the goal is reached (arm
straight up), (2) the normalized max height of end effector if 500 steps are reached, and (3) 0
otherwise.

In Cartpole (inverted pendulum), the reward function is defined as (1) 0 when the cart position is
between [−0.05; 0.05] and the pole angle between [− π

60 ,
π
60 ], (2) −2× (500− last_step) if it exits

at last_step (pole angle /∈ [−π6 ,
π
6 ] or cart position /∈ [−2.4; 2.4]), and (3) -1 otherwise.

In Half-Cheetah, the reward function is R(s, a) = vx(s)− 0.05 · ‖a‖22 − 1 · g(s) where vx(s) is the
speed of the cheetah on x axis and g(s) is 1 if the heel, the or 0 otherwise.

The discount factor is fixed to γ = 0.9 (Acrobot) and γ = 0.99 (Cartpole and Half-Cheetah). States
are composed of the joint positions/angles and joint position/angle velocities. Dimensions of S ×A
are 4× 1 (Acrobot), 4× 1 (Cartpole) and 20× 6 (Half-Cheetah).

The neural networks use (1) Adam learning algorithm [16], (2) the leaky rectified linearity (ReLU)
[6], and (3) batch normalization [13]. Critic networks contain 2 hidden layers of 50 and 7 neurons.
The structure of the actor networks is fixed to : 1× 5× 1 units (Acrobot), 1× 20× 1 units (Cartpole),
and 20× 20× 10× 6 units (Half-Cheetah). The last layer of the critic and actor networks is linear.
The actor policy is a truncated Gaussian policy between [amin = −1, amax = 1] with σ = 0.05
where the mean is determined by the output of the last linear layer. Each weight is initialized from a
normal distribution N (0, 0.01). Batch normalization is applied on each layer for both the actor and
the critic, except on the last two layers.
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Figure 2: Illustration of Acrobot (left), Cartpole (middle) and Half-Cheetah (right) environments
(reproduced from Wikipedia and [32]).

For each experimental setup, we first optimize all the meta-parameters of DDPG and then apply
them to DENFAC. To obtain a fair comparison, we also optimized the number of updates performed
by DDPG, and we applied the inverting gradient strategy (when it was better) to make it more
data-efficient. NFAC and CACLA algorithms are improved with batch normalization, denoted as
NFAC+ and CACLA+ in Figure 3. Only CMA-ES do not use batch normalization for its policy as it
does not rely on the gradient.

Figure 3: Median and quartiles of the best registered performance in Acrobot (the lower, the better),
Cartpole (the higher, the better) and Half-Cheetah (the higher, the better) environments during RL
learning with each algorithm. Each experiment has been run 40 times for statistical results.

In order to characterize data-efficiency on Figure 3, we plot the best performance the agent has done
since the beginning. It can only improve therefore it does not represent the exploration made by each
algorithm. The number of data collected is correlated to the number of episode.

Figure 3 shows that DENFAC quickly develops good policies on each tasks compared to DDPG
(even if DDPG is online). However, unexpectedly DENFAC, which is off-policy, has the same order
of performance that NFAC+, which is on-policy. It let us think that either D should not be a simple
FIFO queue, or that the policy update of NFAC+ allows a better exploration.

Surprisingly, the actor-only method CMA-ES achieves very good data-efficiency on those environ-
ments. In higher dimensional environments, it can lack scalability [4] but here it outperforms online
algorithms like CACLA or DDPG even if they have access to the reward information faster (online
algorithms).

5



Figure 4: Median and quartiles of the best registered performance Half-Cheetah (the higher, the
better) environments during RL learning with each algorithm.

αa inverting mini additional batch reset
αc gradient batch size τ updates K G size D critic

Acrobot DDPG 0.1 No 64 0.001 8
DENFAC 0.1 No 10 25 6000 Yes

Cartpole DDPG 0.1 Yes 64 0.1 8
DENFAC 0.1 Yes 10 25 3000 No

Half-Cheetah DDPG 0.1 Yes 64 0.001 8
DENFAC 0.1 Yes 10 25 3000 No

Figure 5: Best meta-parameters found for DDPG and DENFAC.

CACLA or CACLA+ cannot reach the goal in only 750 episodes on Acrobot. On those environments,
it’s the less data-efficient algorithm but also the faster in computational time. It proves that having a
replay buffer like NFAC, DDPG and DENFAC helps to improve data-efficient.

We did not notice that adding a L2 regularization term in the critic, as done in the original version of
DDPG, improves it in those environments. In some experiments, we also run our algorithm in an
online setting or with target networks, but this did not improve the data-efficiency, while requiring
more computations (results not shown here).

5 Conclusions and further work

We investigated the data-efficency vs scalability dilemma in three fully continuous environments.
Data-efficency often implies more computational time spent on each data impeding the scalability.
In some cases, resetting the weights of the neural networks shows even more data-efficency. All
those additional costs must be negligible compared to the cost of producing data in the environment
otherwise such methods are not appropriate. DENFAC is more data-efficient than 4 state-of-the-art
actor-critic algorithms in some environments but comes at a higher computational cost. To further
improve DENFAC, it should be analyzed how to replace the FIFO queue for D and if uniform
sampling could be improved [23]. Moreover, DENFAC lacks stability in learning, target networks
did not help, slowing down the change in the policy might increase his stability [24].
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