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Highlights 

 

1) A consistency test for α-functions is derived. 

2) α-functions must be positive, decreasing, convex with negative third derivative. 

3) VLE data solely shape the α-function in the subcritical domain, not beyond. 

4) α-functions should pass this test to safely extrapolate to the supercritical domain. 

5) No α-function from the literature passes the proposed consistency test. 

 

Abstract 

 

This study highlights that α-functions used in cubic equations of state must be of class C² i.e. 

that their first  d dT  and second  2 2d dT  derivatives must exist and must be continuous, 

positive  0  , monotonically decreasing  d dT 0  , convex  2 2d dT 0   and also 

verify 3 3d dT 0  , for any value of the temperature T. Our proposed “consistency test for α-

functions” gathers all these conditions. The non-respect of one of them can entail low-accuracy 

prediction of binary phase diagrams involving at least one supercritical compound (this 

statement is illustrated through the case-studies of the CO2-argon and CO2-decane systems) as 

well as improper variations of pure-component supercritical properties ( h  and Pc ) with respect 

to the temperature. Finally, an extensive study of the mostly used α-functions described in the 

open literature is performed and shows that all of them fail this test. Some 

component-dependent α-functions may however pass this test but only if mathematical 

constraints are added to their parameters. 
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1 Introduction 

 

Numerous modifications to the Van der Waals cubic equation of state (CEoS) have been 

presented over the years [1], with the aim of representing with increasingly accuracy the 

properties of complex systems. As a matter of facts, most of these improvements do not 

incorporate a substantial difference in the functional combination of attractive and repulsive 

forces, with respect to the original formulation introduced by Van der Waals. As a rare 

exception, let us mention the Cubic-Plus-Association model (CPA) [2], which combines the 

Soave-Redlich-Kwong attractive and repulsive terms [3] with an association term introduced 

by Wertheim [4]. Indeed, analogously to the Van der Waals expression of the pressure equation 

[5], a generic CEoS may be written as the sum of a repulsive and an attractive term: 

 rep attP P P    (1) 

Although the analytical expressions of the repulsive and attractive terms proposed in literature 

do not correctly quantify the actual repulsive and attractive contributions to pressure, their sum 

results in a quantitative representation of fluid properties being sufficiently accurate to make 

their combination the “cornerstone of the generalized Van der Waals theory” [6]. 

Since the Van der Waals proposal, even the most successful two-parameter CEoS still expresses 

their attractive and repulsive terms by introducing a parameter a  which is a measure of the 

attractive forces (“energy parameter”) between molecules, and a parameter b  which is a 
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measure of the size (“intrinsic volume” or “co-volume”) of the molecules. It results the general 

formulation of a two-parameter CEoS: 

  
 

  1 2

a TRT
P T, v

v b v r b v r b


 

  
  (2) 

where 1r  and 2r  are two universal constants which depend on the selected CEoS. 

 

The most successful theoretically-based modification to the Van der Waals CEoS consisted in 

the recognition by Clausius in 1879 [7] of the temperature-dependency of the energy parameter. 

In 1949, Redlich and Kwong [8] proposed the first temperature-dependent formulation which 

resulted to be sufficiently accurate to gain popularity in the industry. Starting from this outcome, 

many researches have been focused on the improvement of the functional form of this term, 

which soon proved to strongly affect the modelling capability of a CEoS in fluid equilibrium 

calculations. The attractive term of any CEoS can be written as: 

    ca T Ta    (3) 

i.e. as the product of the value of the attractive term at the critical temperature  ca  multiplied 

by a so-called α-function. Such α-functions have a strong impact on the accuracy of CEoS and 

must be selected with caution. Not only the properties of pure compounds in the supercritical 

region are highly affected by the mathematical expression of the α-function but also the vapor-

liquid equilibrium calculations of multicomponent systems. From our experience, when applied 

to mixtures, the accuracy of CEoS is equally affected by the choice of the mixing rules and by 

the expression of the α-function. 

 

The first aim of this paper is thus to present the requirements that an α-function should 

absolutely fulfil in order to guarantee safe predictions of the vapor-liquid equilibrium and of 

derived thermodynamic properties at all temperatures. Emphasis will be made on the incapacity 

of α-functions regressed on subcritical properties to correctly extrapolate in the supercritical 

temperature domain without addition of supplementary constraints during the regression 

procedure. Such constraints ensure, among others, the proper curvature of the α-function. 

Similarly to the consistency tests developed to certify the quality of experimental vapor-liquid 

equilibrium data, it is proposed to develop a consistency test for α-functions, i.e., to derive a 

list of consistent constraints applicable to any α-function. Such a test aims at identifying which 

α-functions are (or not) thermodynamically consistent and should (or not) be used. In this paper, 

this consistency test will be applied to twelve α-functions issued from the literature. 
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2 Definition, historical background and general classification of the α-functions 

 

2.1 Definition of the α-function 

 

As for the original Van der Waals equation of state, the critical attractive parameter ( ca  ), the 

covolume  b  and the critical molar volume  cv  of any CEoS can be determined by applying 

the so-called critical constraints: 

 

 
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  (4) 

where exp
cT  and exp

cP  are the experimental critical temperature and pressure and where the 

critical molar volume  EoS
cv  is calculated by solving the CEoS under the conditions exp

cT T  

and exp
cP P . The resulting critical energy parameter  ca  and covolume  b  are usually 

expressed in terms of the CEoS-dependent coefficients a  and b : 

 

 exp
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c

exp
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b
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c

exp
c
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R T
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RT
b

P















  (5) 

While a covolume is necessarily temperature-independent [9], the energy parameter  a T  is 

written as the product of its value at the critical point, ca , and of a temperature-dependent α-

function: 

    ca T Ta    (6) 

Doing so, it follows that  T  is a non-dimensional factor which becomes unity at the critical 

temperature 

  cT 1    (7) 
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Therefore, α-function should be considered as a deviation factor of the energy parameter of a 

CEoS to its value at the critical temperature. 

 

2.2 Historical background and general classification of the α-functions 

 

One of the most influential contributions in the prediction of vapor pressures of non-polar and 

slightly polar pure compounds has been the introduction in 1972 of the Soave α-function [3]. 

Over the years, further modifications have been introduced to this functional form, mainly 

aimed at improving the correlation of vapor pressures. Higher accuracy was achieved by the 

addition of more parameters [10], [11] but as stated by Poling et al. [12], most of the α-functions 

presented in literature have been developed without evaluating their predictive capability in the 

supercritical domain. Indeed, the Soave α-function diverges at very high temperature, leading 

to unrealistic calculations of thermodynamic properties. Therefore, α-functions inspired by the 

Soave formulation, called polynomial α-functions as they are polynomials of the square-root of 

the reduced temperature, should not be used at high reduced temperature. To overcome this 

limitation, some authors proposed exponential α-functions [13–17] which are positive and 

decreasing functions on the whole temperature range. 

Aware of the benefits of using a polynomial α-function in the subcritical temperature domain 

and using an exponential α-function in the supercritical temperature domain, some authors 

proposed piecewise α-functions with different mathematical expressions for the α-function 

depending on whether the temperature is above or below the critical temperature, leading to 

possible discontinuities of the α-function derivatives at the critical temperature. Although this 

approach seems to be a good compromise between the complexity of the α-function expression 

and the accuracy of results, it was objected by Coquelet et al. [18] that continuity of the first 

and second derivatives of the α-function at the critical temperature must be enforced. If not, 

calculated residual enthalpies and heat capacities show discontinuities at the critical 

temperature. This abnormal behavior of the piecewise α-functions was also highlighted by 

Boston et al. [19], Twu et al. [16,17] when they respectively proposed their own α-functions 

and deeply analyzed by Neau et al. [20,21]. 

As reported by Valderrama [1], numerous α-functions can be found in the literature and are 

compared in some recent papers [22,23]. Enumerating all the existing α-functions is not of 

practical interest as only a dozen of them are used in the commercial process simulation 

software. Therefore, a general classification of the α-functions based on their mathematical 

form (polynomial or exponential) and on the unicity of their formulation (T-overall formulation 
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or piecewise) is presented in Table 1. Moreover, we found desirable to distinguish two kinds 

of α-functions: component-dependent α-functions and generalized ones. Parameters of 

component dependent α-functions have to be regressed, component by component, on 

experimental data while coefficients of generalized α-functions are determined with 

correlations needing the acentric factor    as input parameter. Therefore, generalized α-

functions can be applied to pure compounds for which no experimental vapor-liquid 

equilibrium data, except  , are known. This advantage is counterbalanced by a less accurate 

prediction of the thermodynamic properties. 

 

In the rest of the article, emphasis will be made on two α-functions having a T-overall 

formulation: the model proposed by Soave (1972) (from now on, called Soave) and the one 

introduced by Twu (1991) (from now on, called Twu91). Their expressions are reported below. 

 

 The Soave α-function [3] 

 

    
 

 

2

r r

2

2

m 0.480 1.574 for the Redlich-Kwong CEoS

m 0.37464 1.54226 for the Peng-Robinson 

T 1 m 1 T

0.176

0.269 C9 o2 E S

      

  

 




  

    

  (8) 

This α-function is polynomial, generalized and it has a T-overall formulation. Having regard to 

its simplicity and to the accuracy of results obtained by using it, this α-function should be 

regarded as a reference before deriving any new α-function. These reasons justify, in fact, its 

widespread popularity. 

 

 The Twu91 α-function [15] 

  
   N M 1 MN

r r rT T exp L 1 T        (9) 

This α-function is exponential, component-specific and it has a T-overall formulation. 

Parameters L, M and N have to be optimized, component by component, over experimental 

data so that better accuracy is expected in comparison to the Soave α-function. 
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Component-dependent α-functions 

 T-overall formulation 

(unique temperature formulation) 
Piecewise 

Polynomial 

Soave (1984) [24] 
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Gibbons-Laughton [25] 
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Exponential 

Twu (1988) [14] 
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Twu (1991) [15] 

 r rT exp L 1 T       
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Generalized α-functions 

 T-overall formulation 

(unique temperature formulation) 

Piecewise 

Polynomial 

Soave (1972) [3] 
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Exponential 

Trebble-Bishnoi [29] 

 r

2

2
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Twu (1995) [16,17] 
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1 N M 1 1 M N
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
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(see appendix C for more details) 

Table 1. Classification of α-functions commonly found in process simulation software. 

 

Component-dependent α-functions are usually parameterized over vapor-liquid equilibrium 

data, which are also the most reported data in the literature. Therefore, most of the α-functions 

will have a similar behavior in the subcritical temperature domain. However, the literature lacks 

of specific, theoretically-based guidelines to derive an α-function that could guarantee 

consistent predictions, also in the supercritical temperature domain, of thermodynamic 

properties related to the α-function itself and to its derivatives. With that respect, the purpose 

of the next section is to present requirements that a proper α-function should fulfil. 

 

3 Requirements for a consistent α-function 

 

Firstly, to avoid non-physical positive values of the attractive term, α-functions should be 

positive and thus lead to a decrease of the pressure of the system when the attraction between 

molecules increases. As stated by Deiters [30], a negative α-function “only results from 

compensating an insufficient repulsion term” and should be regarded as a consequence of a 

maladjusted model but not as a theoretical valid behavior. 

Secondly, α-functions should be constant at the infinite temperature limit. This constant can be 

positive or zero. Colina et al. [31] give proof that the limiting value of α at the infinite 

temperature limit would be equal to zero, by assuming that (i) “at infinite temperature, the cubic 

EoS reduces to a hard-body EoS, with residual internal energy identically zero at all densities” 
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and (ii) the Van der Waals repulsive term  RT v b  correctly represents hard-body 

repulsions. However, Abbott and Prausnitz [32] and Sandler [33] leave some uncertainty on 

whether the α-function at infinite temperature should assume a zero rather than a positive finite 

value. Since no unquestionable theoretical evidences have been found on this issue, we do not 

conclude about the constant value of the α-function at infinite temperature. 

Thirdly, as temperature decreases, the average molecular kinetic energy is reduced, resulting in 

a system where molecules are particularly prone to interacting, upon collision. This explains 

why the CEoS energy parameter should become increasingly important when temperature 

decreases. In other words, α has to be a decreasing function of temperature, its first derivative 

has not only to be negative but has also to cancel out at the infinite temperature limit to ensure 

a finite α-value. It should be noticed that, if an α-function is both positive and decreasing, it 

will automatically admit a finite value at the infinite temperature limit. 

The last point is that not only the α-function but also its first and second derivatives with respect 

to the temperature have to be continuous functions of temperature in order to avoid 

discontinuities in the calculated state functions. As highlighted in Eq.(10), α indeed appears in 

the mathematical expression of the fugacity and the residual molar enthalpy, the first derivative 

of α appears in the mathematical expression of the residual molar enthalpy and entropy and the 

second derivative of α appears in the mathematical expression of the residual heat capacity at 

constant volume. 
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 (10) 

 

We can summarize our observations by: 
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 

2

2

d
0 and continuous

For all T: 

T 0 and c

dT

d
 continuous

ontinuous

dT

 

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








 (11) 

These conditions are often cited in the literature as sufficient conditions for consistent 

predictions of thermodynamic properties but: are they really sufficient? In the next section, we 

are going to answer this key question through a case study: the calculation of the isothermal 

phase diagram of the system CO2-argon at 253.1 K, with the Peng-Robinson CEoS, associated 

with two α functions that satisfy criteria in (11). Before presenting calculation results over this 

system, it is worth pointing out that it is a complex mixture to be modelled since it exhibits a 

type III phase behavior in the classification scheme of Van Konynenburg and Scott [34]. 

 

4 Case-study: prediction of the CO2-argon binary phase diagram 

 

The CO2-argon binary system is considered as a key system for CO2-Capture and Storage (CCS) 

applications [35]. It is desired to predict the phase diagram of this system at 253.1 K with the 

Peng-Robinson CEoS and highly efficient mixing rules which combine the expression by Huron 

and Vidal [36] with the residual part of the Wilson activity-coefficient model [37]. The two 

parameters of the Wilson model were regressed in order to minimize the following objective 

function which takes into account the deviations between calculated and experimental molar 

fractions of CO2 in the liquid (x) and gas (y) phases: 

 

exp exp

i i

N Nexp expcalc calc
i ii i

exp exp
i 1 i 1

2 2

obj,1

x y

x x y y
F

 

    
    

   
  





    (12) 

where 
i

exp


  is the experimental standard deviation associated to the ith data point of property Γ. 

In order to test the influence of the selected α-function on the resulting calculations, two 

different α-functions, that are the Soave and the Twu91 α-functions, were successively 

considered for both pure carbon dioxide and argon. The m-parameter of the Soave α-function 

was calculated by applying Eq. (8), while the three parameters L, M and N of the Twu91 α-

function were determined by minimizing the objective function expressed by Eq. (13), which 

takes into account the deviations between calculated and pseudo-experimental vapor pressures 

(
satP ), enthalpies of vaporization  vapH  and saturated liquid heat capacities ( sat

P,Lc ): 
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

 (13) 

The pseudo-experimental 
satP , vapH  and sat

P,Lc  data were extracted from the correlations 

available in the DIPPR database: for each property, 50 equidistant data points were generated 

in the temperature validity range of the correlations. Following this regression procedure, 

optimal parameters have been obtained for the Twu91 α-function. Those are reported in 

 Table 2. 

 

 CO2 Argon 

L 0.040 0.027 

M 0.943 0.968 

N 8.538 8.213 

Table 2. Twu91 α-function parameters of CO2 and argon obtained by minimizing Eq. (13). 

 

A significant difference between the two calculated phase diagrams of the CO2-argon system 

is observable in Figure 1. To better analyze the cause of such a difference, it is worth recalling 

that the two phase diagrams were modeled using the same CEoS and the same mixing rules; 

they thus only differ in the choice of the α-function. 
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Figure 1. Binary phase diagram of the CO2-Ar system at 253.1 K calculated with the Peng-

Robinson CEoS and two different α-functions parameterized on subcritical vapor-liquid 

equilibrium data. 

 

When the Soave α-function is used for both compounds, a nearly perfect prediction of the phase 

diagram is achieved (the continuous curve is extremely close to the experimental data points). 

On the other hand, very poor results are obtained with the Twu91 α-function. By having a look 

at the dashed curve in Figure 1, it could be erroneously concluded that the Peng-Robinson EoS 

is totally unable to correlate the CO2-argon system and that it over predicts the binary critical 

pressure and the solubility of argon in CO2. It is undeniably surprising to observe that the 

generalized Soave α-function, which does not contain any adjustable parameter, performs better 

than the component-dependent Twu91 α-function that involves three adjustable parameters per 

component. In order to better understand the origin of the significant difference between the 

two calculated phase diagrams, it is necessary to analyze more closely each of the two α-

functions (Soave and Twu91) which were designed to accurately reproduce pure component 

vapor-liquid equilibrium data. To this aim, α-curves of CO2 and argon are reported in Figure 2 

and Figure 3. The two figures highlight that, in the temperature range where the parameters 

were fitted (let us say between 0.4Tc and Tc), the Soave and Twu 91 α-functions are 

superimposed for both pure components. 
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Figure 2. α-curves of CO2 parameterized on subcritical vapor-liquid equilibrium data. 
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Figure 3. α-curves of argon parameterized on subcritical vapor-liquid equilibrium data. 

 

At the working temperature of 253.1 K, pure CO2 is subcritical (Tc = 304.21 K) while pure 

argon is supercritical (Tc = 150.86 K). Since for CO2 the working temperature is in the range 

where the parameters were fitted, it is not surprising to observe (see x symbol in Figure 2) that, 



A consistency test for α-functions of cubic equations of state 

- 14 - 

at this temperature, the two α-functions return the same value. On the other hand, at 253.1 K, 

argon is supercritical (Tr = 1.7), that is at a temperature completely outside the range where the 

parameters were fitted. At this temperature, the two α-functions take totally different values 

(αSoave ≈ 0.8 and αTwu ≈ 0.2), as shown in Figure 3. At this step it is thus possible to conclude 

that the mismatch in α-values for argon is the unique responsible for the poor correlation of the 

CO2-argon vapor-liquid equilibrium data with the Twu91 α-function at 253.1 K. Such a 

difference between α-function values in the supercritical domain, for both CO2 and argon, 

appears to be caused by the presence of two inflection points along the Twu91 α-curve. As 

highlighted by Figure 2 and Figure 3, Twu91 α-functions of argon and CO2 go from convex 

to concave to convex with a steep and quick decrease in the concave part of the α-curve. On the 

other hand, the Soave α-function is strictly convex on the whole temperature range with a 

significantly slower decrease in the supercritical domain. Figure 2 and Figure 3 thus give rise 

to two questions which are addressed in the next section: are the two inflection points observed 

on the Twu91 α-curve the actual responsible for the poor correlation of the binary vapor-liquid 

equilibrium data and, above all, are such inflection points thermodynamically consistent? 

 

5 Are inflection points on α-curves thermodynamically consistent? 

 

To begin, let us recall that at an inflection point, the curvature of a function changes sign and 

hence its second derivative vanishes: 

 

r,inflection point

2

2

Tr

d
0

dT


   (14) 

Among all the thermodynamic properties that can be derived from a CEoS, the residual heat 

capacity at constant volume is directly proportional to the second derivative of the α-function: 

  
 

2
c 2

2
1 2

r
v

1

es Ta v r bd
c T, v ln

b r r v r bdT

 
    


  (15) 

The vc  coefficient is given by: 

      res
vv vc T,v c T c T,v    (16) 

with vc  the heat capacity at constant volume of the perfect gas. As a direct consequence, if an 

α-curve exhibits an inflection points at temperature 
*T , the second derivative of α with respect 

to the temperature vanishes (see Eq.(14)) at 
*T , res

vc  cancels out and, thus, vc  takes the value 
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of that of the perfect gas, vc  (see Eq.(16)), uniquely dependent on temperature. It is thus 

possible to write that, at 
*T : 

    
v

* *
vc T , v c T   (17) 

and whatever the molar volume is (i.e. irrespectively of the pressure), vc  is the same (that of 

the perfect gas). Since, at the temperature 
*T , vc  results to be pressure independent, all the 

isobaric curves in a vc - T  plane are going to intersect at such a temperature. For illustration 

purpose, the change of vc  with respect to T , calculated for pure CO2 with the Twu91 α-

function (see Table 2 for values of L, M and N), is shown in Figure 4 within the pressure range 

50-150 bar. As expected, at the two reduced temperatures ( *
r,1T  and *

r,2T ) where the α-curve 

exhibits an inflection point (i.e. where the second derivative vanishes) all the isobars (P / bar = 

50, 100, 150) in the ( vc , T ) plane intersect. Experimental evidences about this peculiar behavior 

have never been observed and therefore we are convinced of its unphysical foundation. 

Consequently, the presence of inflection points on α-curves should be regarded as 

thermodynamically inconsistent and should, thus, be avoided. In other words, the second 

derivative of α-functions should never cancel out. 
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Figure 4. Illustration of the unphysical isobars crossing when the second derivative of an α-

function cancels – case of CO2. 



A consistency test for α-functions of cubic equations of state 

- 16 - 

 

To avoid inconsistent inflection points on the α-curve we must impose the convexity of the α-

function, for any temperature value: 

 
2

2d
0 for all T

dT



  (18) 

That being said, parameters of the Twu91 α-function of CO2 and argon have thus been re-

regressed in this section by imposing the constraint 2 2d dT 0   on the second derivative (the 

mathematical aspects are derived in Appendix A). Corresponding values for the L, M and N 

parameters are reported in Table 3. 

 

 CO2 Argon 

L 0.091 0.072 

M 0.890 0.919 

N 3.805 2.667 

Table 3. Parameters regressed for the Twu91 α-function when convexity of the α-curve is 

enforced. 

 

α-curves obtained with and without the imposition of the convexity of the corresponding -

function (Eq. (18)), are reported in Figure 5 and Figure 6. The second derivative of the convex 

α-function is also reported, to enable the reader to attest that, as imposed, it is always positive. 
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Figure 5. α-function of pure argon and its second derivative when the convexity constraint is 

enforced. 
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Figure 6. α-function of pure CO2 and its second derivative when the convexity constraint is 

enforced. 

As highlighted by Figure 5 at the working temperature of 253.1 K, the value of the non-convex 

α-function of argon (being supercritical in this condition) is 0.19. Differently, Twu91 L, M and 
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N parameters optimized under the imposition of the convexity constraint lead to an α-function 

value of 0.81, at the same temperature of 253.1 K. On the other hand, at 253.1 K α-value of 

CO2, (being subcritical at that temperature), is only slightly affected by the addition of the 

convexity constraint (see Figure 6); it raises from 1.10 to 1.13. 

Moreover, it should be noticed, from both Figure 5 and Figure 6, that major changes on α-

curves, deriving from the imposition of constraint in Eq. (18), lie in the supercritical domain, 

leaving almost unchanged the subcritical part of it. This is a straightforward consequence of 

the fact that, as mentioned above, only subcritical data were used in the optimization procedure. 

It is also possible to conclude that different sets of parameters leading to the same objective 

function value, i.e. leading to the same -function values in the subcritical domain, are obtained 

when Eq. (13) is minimized. Such sets of parameters however lead to totally different behaviors 

in the supercritical region. 

Furthermore, Figure 7 reports the comparison between experimental VLE data and phase 

diagrams calculated by means of the PR-EoS either combined with the Soave α-function (as 

previously shown in Figure 1) or with the re-parameterized Twu91 model (L, M, N parameters 

collected in Table 3). Comparing Figure 1 and Figure 7, that only differ in the VLE 

calculations performed with the Twu91 model, it is possible to attest that the imposition of the 

condition 
2 2d dT 0   to Twu91 parameters (Figure 7) results in a spectacular improvement 

of the accuracy of such a model. Figure 7 also highlights that a similar accuracy of prediction 

is achieved using either the Twu91 α-function with the convexity constraint or the Soave α-

function. 
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Figure 7. Binary phase diagram of the CO2-Ar system at 253.1 K when the convexity 

constraint is enforced (
2 2d dT 0  ). 

A satisfactory prediction of the binary phase diagram being now achieved by the imposition of

2 2d dT 0  , our following priority concern is the investigation of the necessity of adding new 

constraints to properly predict state functions, such as enthalpies and heat capacities, also in the 

supercritical domain. 

 

6 Relevance of the parameters obtained by imposing d²α/dT² > 0 to predict state 

functions in the supercritical domain 

 

Pseudo-experimental enthalpy ( h ) and heat capacity (
Pc ) were generated for pure CO2 and 

pure argon in the supercritical domain, in particular for reduced temperatures ranging from 1.2 

to 5. The reference Span-Wagner equation [38] was used in this work to estimate properties of 

CO2 at 10, 59.7, 109, 159 and 209 bar, while the Tegeler-Span-Wagner reference equation [39] 

was used for argon at 10, 42, 74, 106 and 138 bar. Figure 8 shows the comparison between 

properties calculated with these reference models and their values determined with the Peng-

Robinson EoS combined with the Twu91 -function (see Table 3 for values of L, M, and N). 

As it can be seen from Figure 8c and Figure 8d, molar enthalpies ( h ) are well represented by 

the newly regressed α-functions for both CO2 and Ar: not only the numerical values are 
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accurately predicted but also the change of h  with respect to the temperature is properly 

reproduced. Totally different conclusions apply for the 
Pc . The Peng-Robinson EoS with the 

currently evaluated α-function predicts a “wave shape” while the application of reference 

equations results in a weak change of the 
Pc  with respect to temperature (a minimum is only 

observed). Such unexpected behavior is particularly visible in Figure 8b, relative to CO2. By 

comparing Figure 6 and Figure 8b, it is noticeable that both 
2 2d dT  and 

Pc  curves exhibit 

the same “wave shape” in a similar temperature range. It is thus expected that the 
Pc  curve 

would exhibit a more realistic trend by removing the “wave shape” on the 
2 2d dT  curve. To 

do that, it is enough to eliminate (see Figure 6) the increasing part of such a function. In other 

words, it is expected that the imposition of condition 
3 3d dT 0   would result in 

Pc

variations with temperature, calculated with the PR EoS, being similar to those obtained with 

the reference equations. 
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Figure 8. Prediction of supercritical 
Pc  of argon (a) and CO2 (b) and prediction of 

supercritical h  of argon (c) and CO2 (d) when convexity constraint (
2 2d dT 0  ) only is 

applied. 

 



A consistency test for α-functions of cubic equations of state 

- 23 - 

To check this hypothesis, the parameters of the Twu91 α-function of CO2 and argon have been 

thus re-optimized under the simultaneous imposition of 
2 2d dT 0   and 

3 3d dT 0  . 

Optimal values of parameters are reported in Table 4. 

 

 CO2 Argon 

L 0.091 0.072 

M 0.890 0.919 

N 3.805 2.667 

Table 4. Parameters regressed for the Twu91 α-function when both the convexity of the α-

curve  2 2d dT 0   and the negativity of the third derivative of the α-function 

 3 3d dT 0   are enforced. 

 

α-functions that result from the use of these parameters (Table 4) are represented in Figure 9 

and Figure 10. These figures also report the second derivatives, calculated with respect to 

temperature, relative to these α-functions. A major change in the shape of the α-curve which 

results from the use of this new set of constraints concerns the rate at which α-functions decrease 

to zero. It can be seen that the use of parameters reported in Table 3 (optimized over the unique 

constraint 
2 2d dT 0  ) results in α-functions that equal zero at a reduced temperature Tr ~ 4, 

while the application of parameters optimized under the simultaneous imposition of 

2 2d dT 0   and 
3 3d dT 0   generates α-functions that equal zero at higher reduced 

temperatures, Tr > 8. Therefore, for such functions, the attractive term of the CEoS used for the 

calculations still plays a relevant role at high temperature. 

 

Supercritical h  and 
Pc  of CO2 and argon are represented in Figure 11. For both compounds, 

the quality of prediction of h  is similar to the one previously obtained when the third derivative 

of the α-functions could be positive. On the other hand, this new set of parameters not only 

guarantees more accurate 
Pc  values but also correct trends of 

Pc -variations with temperature, 

with respect to results obtained from reference models. 

 

It is legitimate now to wonder what was the prize to pay to get such a large improvement of the 

state functions in the supercritical domain. Were subcritical properties damaged?  To answer 
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this question, deviations on satP , vapH  and sat
P,Lc  for both compounds have been calculated 

and reported in Table 5. The content of this table enables the comparison between results 

obtained with the addition of the constraint on the third derivative of the α-function to the results 

obtained when only the convexity constraint was enforced. As highlighted by Table 5, this huge 

improvement on the prediction of the supercritical properties is marginally counterbalanced by 

a small accuracy decrease of sat
P,Lc  of CO2 and argon. Moreover, it is worth noting that satP  of 

CO2 is better predicted when the negativity constraint on the third derivative of the α-function 

is set and that vapH  is calculated with the same accuracy in both cases. 

Finally, the CO2-argon binary phase diagram is represented in Figure 12. Impressive results 

are obtained by the application of the full set of constraints (
2 2d dT 0   and 

3 3d dT 0  ), 

even slightly better than when only the convexity constraint is enforced. As shown by 

Figure 12, the resulting optimal Twu91 formulation is characterized by an accuracy similar to 

that of the Soave α-function. 
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Figure 9. α-function of CO2 and it second derivative when constraints 
2 2d dT 0   and 

3 3d dT 0   are simultaneously applied. 
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Figure 10. α-function of argon and it second derivative when constraints 
2 2d dT 0   and 

3 3d dT 0  are simultaneously applied. 
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Figure 11. Prediction of supercritical 
Pc  of argon (a) and CO2 (b) and prediction of 

supercritical h  of argon (c) and CO2 (d) when constraints 
2 2d dT 0   and 

3 3d dT 0   

are both applied. 

 



A consistency test for α-functions of cubic equations of state 

- 28 - 

 Constraints applied Error Psat Error ΔvapH Error sat
p,Lc   

Argon 

2

2

r

d
0

dT



 0.27% 2.16% 3.95% 

2 3
r r

2 3d d
0 and 0

dT dT

 
   0.28% 2.30% 4.74% 

CO2 

2

2

r

d
0

dT



 0.56% 0.92% 5.52% 

2 3
r r

2 3d d
0 and 0

dT dT

 
   0.29% 1.01% 6.99% 

Table 5. Comparison of the errors calculated on subcritical properties for CO2 and argon when 

only a constraint on the second derivative of the α-function is applied and when the constraint 

on the third derivative is added to the previous one. 
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Figure 12. Binary phase diagram of the CO2-argon system at 253.1 K when constraints 

2 2d dT 0   and 
3 3d dT 0   are simultaneously applied. 

 

In conclusion, the addition of a new negativity constraint on the third derivative of the α-

function (i) leads to a thermodynamically consistent α-function on the whole temperature range, 

avoiding non-physical 
Pc  changes with respect to temperature, (ii) allows for a good prediction 

of subcritical properties used in the regression procedure and (iii) correctly extrapolates to the 
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supercritical domain. We can thus claim that a proper α-function must satisfy all the following 

constraints: 
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The set of conditions reported in Eq. (19) establishes what we decided to call a “consistency 

test for an α-function”. In other words, if one of these constraints is not satisfied, the EoS will 

possibly return – depending on the temperature and pressure domain – inaccurate or unexpected 

values. 

At this step, it could be argued that our derivations rely on the unique analysis of the Ar + CO2 

binary system which contains two molecules having the same size. In order to convince the 

reader that our conclusions are general, the size-asymmetric CO2 + n-decane system is studied 

in the next section. 

 

7 Study of a size-asymmetric binary mixture with classical mixing-rules: case of 

the CO2 + n-C10 system 

In this section, our objective is to test the influence of the selected -function on the correlation 

of the properties of the CO2 + n-decane size-asymmetric binary system with the PR EoS. As 

was previously made, three -functions will be compared: the soave -function, an inconsistent 

Twu91 -function (which fails the proposed consistency test) and a consistent-Twu91 -

function (which passes the proposed consistency test). To treat this system, classical mixing 

rules are preferred over complex mixing rules for two reasons: (i) excellent accuracy of 

prediction is achieved for this system by only regressing a ijk  over experimental phase 

equilibrium data and (ii) discussion will be facilitated when it will come to compare different 

optimal ijk  values. Their expressions are reported below: 
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
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  (20) 

In a first step, the isothermal (P,x,y) phase diagram was calculated at 520 K with the 3 different 

-functions. For CO2, the parameters are those determined in the previous sections (see Table 

2 and Table 4) and the plots of the inconsistent and consistent Twu91 -functions are shown 

in Figure 2 and Figure 9 respectively. For n-C10, the three parameters of the Twu91 -function 

are those which minimize Eq. (13). They were determined twice: (i) without any specific 

constraints and (ii) by simultaneously imposing 
2 2d dT 0   and 

3 3d dT 0   in order to get 

a consistent -function. At 520 K, CO2 is supercritical  2r,COT 1.71  and as highlighted by 

Figure 2 and Figure 9, at such a temperature, the inconsistent and consistent Twu91 -

functions have very different values. On the other hand, n-C10 is subcritical  10r,n CT 0.84   

so that the two Twu91 -functions, the parameters of which were fitted in this temperature 

range, have very similar values. Calculations of the phase diagrams at 520 K are reported in 

Figure 13. In this figure, no difference can be seen between the red full curve (Soave α-

function) and the blue dashed curve (consistent Twu91 -function): they are superimposed even 

in the vicinity of the critical pressure. Fitted ijk  values to be used with the Soave and the 

consistent Twu91 α-functions are also very close with respective values of 0.14 and 0.11 which 

correspond to expected values of this parameter. Figure 13 also highlights that the green dashed 

curve corresponding to the inconsistent Twu91 -function does not correlate badly the 

experimental data points although it over predicts the critical pressure. However, the major 

drawback with the use of this inconsistent -function is the value of the optimal ijk  which was 

found to be equal to –2.43, far beyond an acceptable value. This abnormal ijk  value can be 

explained by the role this parameter plays when the inconsistent Twu91 -function is used. 

Indeed, in this case, the ijk  endorses the role of a corrective term which restores the quality of 

prediction of the CEoS by counterbalancing the wrongly estimated α-value of CO2 at 520 K. 

At this step, one could believe that it is not necessary to regress the α-function parameters by 

imposing the constraints listed in Eq. (19) as long as the ijk , or any other parameter from any 
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mixing rule, can compensate the defects of the α-function. This reasoning is however not 

admissible because, as previously demonstrated, heat capacities and enthalpies of CO2 at 520 

K will be extremely poorly predicted if the α-function does not pass the proposed consistency 

test. Therefore, a too large ijk  value is not only an unordinary value but also a warning against 

poorly regressed α-function parameters that might lead to inaccurate predictions of supercritical 

properties of pure compounds. 

 

In the next few lines, in order to convince the reader of the absolute necessity of using a 

consistent α-function in their calculations, the mixing enthalpies (hM) of the CO2 + n-C10 system 

are predicted with the three considered -functions (Soave, consistent and inconsistent Twu91). 

Calculations are performed at 125 bar and at 470.11 K and 573.11 K and the results are reported 

in Figure 14 and Figure 15. At 470.11 K and 125 bar (Figure 14), the inconsistent Twu91 -

function (that corresponds to ijk 2.43  ) over predicts by a factor 100 the experimental 

mixing enthalpies and wrongly predicts a one-phase system whatever the composition is. On 

the other hand, coupling a ijk  of 0.11 with the consistent Twu91 α-function or a ijk  of 0.14 

with the Soave α-function leads to an accurate prediction of hM. It is believed that the consistent 

Twu91 α-function performs better than the Soave α-function (see Figure 14b) because its 

parameters were not only regressed on vapor pressures but also on vaporization enthalpies and 

heat capacities (Soave solely parameterized his -function with the objective of reproducing 

the experimental vapor pressures). At 573.11 K and 125 bar (Figure 15) a non–existing VLE 

is predicted and poor results are obtained for the mixing enthalpies when a ijk  of –2.34 is 

coupled with the inconsistent Twu91 α-function while the two others α-functions allow for an 

excellent adequacy between the experimental points and the predicted curves. 

 

In conclusion, we can state that the constraints defined by Eq. (19) apply whatever the binary 

system. This section also pointed out that the classical Van der Waals mixing rules, involving 

a ijk , do not permit to overcome the limitations of a poorly regressed α-function. Indeed, when 

a very large ijk  is calculated to balance the deficiencies of a non-consistent α-function, not so 

bad VLE correlation can be achieved but extremely poor predictions of the derived properties 

(here illustrated with the mixing enthalpies) is performed. 
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Figure 13. Prediction of the CO2–n-C10 phase diagram at 520 K with different α-functions and 

classical mixing rules. Red full curve is calculated with the Soave α-function while blue and 

green dashed curves are calculated with the Twu91 α-function. Parameters of the α-function 

used to calculate the green curve do not satisfy the consistency test while parameters of the blue 

curve do. 
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Figure 14. Calculation of the mixing enthalpies of the CO2–n-C10 system at 470.11 K and 125 

bar. 
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Figure 15. Calculation of the mixing enthalpies of the CO2–n-C10 system at 573.11 K and 125 

bar. 

 

Although it is claimed that the consistency test developed in this paper apply whatever the 

component, a special attention should be paid to the so-called “quantic fluids” like He and H2. 

This is the aim of the next section. 
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8 The special case of quantic fluids (H2 and He) 

He and H2, the critical temperatures of which are 5.20 K and 33.15 K respectively, are qualified 

of quantic fluids as their low temperature physical behaviors can only be represented if quantum 

effects are taken into account in the modelling procedure. Consequently, they must be treated 

apart from other classical fluids. As an example, Gasem et al. [40] and Mahmoodi et al. [22] 

noticed that when α-functions of H2 and He are both regressed on vapor pressures, they exhibit 

an increasing  d / dT 0   and concave portion  2 2/ dd T 0   followed, at least for H2, by 

a decreasing  d / dT 0   and convex portion  2 2/ dd T 0   in the supercritical domain. 

 

Working with quantic fluids and in order to determine the proper shape (convex or concave) of 

α-functions in the subcritical temperature range, let us recall that res
vc  and the second derivative 

of the α-function have always the same sign. We indeed can write: 

  
 

2
c 2

2
1 2 1

res
v

phase 0
independant

Ta v r b d
c T,v ln

b r r v r b dT



 
  



  

  (21) 

Along the vaporization curve, i.e. when the pure component is in VLE, the 2 phases have the 

same temperature i.e. the same 
2 2d / dT  value and both the liquid and vapor phases res

vc  

calculated from a CEoS have the same sign (the sign of the second derivative of the α-function). 

Extracted from the NIST database, the quantity res
vc  of He and H2 for both the liquid and vapor 

phases are shown in Figure 16 and Figure 17. 

 

One can see that for H2 at a temperature lower than 28.5 K, experimental res
vc  of the liquid 

phase is negative while it is positive for the vapor phase. Therefore, at these low temperatures, 

where fluids are quantic, the second derivative of the α-function should be both positive and 

negative. This contradiction leads us to affirm that the same α-function cannot represent 

simultaneously the liquid and vapor phases. In other words, these fluids do not follow the 3-

parameter law of corresponding states in the low temperature range. It is also possible to 

conclude that res
vc  data in the subcritical temperature range are not relevant data to fit the 

parameters of α-functions. 
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Although the quantum effects cannot be described by a 2-parameter CEoS, it would be valuable 

to accurately represent the behavior of He and H2 in some specific temperature ranges due to 

their use in some chemical process plants. First, it must be noticed that in most applications, the 

operating temperature is far above the respective critical temperatures of these two compounds. 

Therefore, focusing on the subcritical temperature range is not relevant. Secondly, it is expected 

that at reasonably high temperatures the α-function of each of these pure compounds behaves 

like a classical fluid, i.e. it satisfies, all the criteria defined by Eq.(19). 

In order to verify whether or not α-functions of He and H2 at sufficiently high temperatures 

behave conventionally, a regression of the Twu91 parameters was performed on both subcritical 

[  satP T  and  
vapH T ] and supercritical [  res

vc T,P  and  resh T,P ] data. The same weight 

was given to all the properties. Subcritical res
vc  were excluded from the regression procedure 

since values for the liquid and vapor phases are conflicting. The supercritical experimental data 

were generated using the NIST database at pressures of 10, 100 and 1000 bar, for temperatures 

varying between 150 and 750 K with a step of 50 K. For comparison purpose, regression of the 

α-function parameters was also performed on (i) only subcritical data and (ii) only supercritical 

data. Results of these calculations are reported in Figure 18 and Figure 19 and numerical values 

of the MAPE are reported in Table 6. 

 

Results shown in Figure 18 and Figure 19 are in accordance with previous literature studies as 

almost all α-functions are increasing functions of temperature in the low temperature range. 

The single exception is the α-curve of H2 with parameters regressed on supercritical data which 

is a monotonically decreasing, convex function of temperature. This result is highly reassuring 

as at temperatures above 150 K (the smallest temperature of the experimental supercritical data) 

we expect the fluid not to behave as a “quantic fluid” anymore, i.e. to respect the constraints 

defined by Eq. (19). The following conclusions can be drawn from Table 7, Figure 18 and 

Figure 19: 

 When the L, M and N parameters are only regressed on subcritical data, excellent 

representation of the subcritical properties is achieved although an increasing α-function is 

calculated on this temperature range, demonstrating the unusual behavior of fluids in 

“quantic state”. Meanwhile, supercritical properties are poorly represented (see Table 8). 

As seen in Figure 18, in the case of He, the α-function goes to zero at a temperature of 40 K 

(red dashed curve) and, thus, is unable to accurately extrapolate at higher temperatures 

making this α-function unsuitable for most of the actual processes involving this molecule. 
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 When the α-function parameters are regressed on both subcritical and supercritical 

properties, a slight accuracy decrease of prediction is observed for the subcritical properties 

while supercritical ones are largely improved. This enhancement is caused by the shape of 

the α-function at high temperature, which is adjusted to represent the residual heat capacities 

and enthalpies. This improvement is obvious when attention is paid to the change of the He 

α-function with respect to the case when only subcritical data were regressed. Now the α-

function is very different from zero at temperatures above 150 K, dividing by two the error 

over heat capacities while leaving almost unchanged the other properties. An excellent 

improvement of the supercritical properties is also achieved when considering H2. 

 

 Finally, regression on solely supercritical properties is not desirable as errors on saturated 

pressures and vaporization enthalpies skyrocket while the benefit on the prediction accuracy 

of supercritical properties is not significant. More generally, one can observe that on the 

temperature range for which experimental data were generated and used in the regression 

procedure, the α-function is a strictly decreasing, convex function of temperature. A 

graphical representation of the third derivative would show that it is negative. This confirms 

that molecules which behave as “quantic fluids” in the low temperature range do not keep 

this unusual tendency at higher temperature and that the consistency test, defined by Eq.(19)

, is satisfied. 

 

In conclusion, α-functions of quantic fluids: 

- Exhibit a bell shape (increasing and concave functions) below 40 – 50 K. 

- Become decreasing, convex and with a negative third derivative at temperatures higher 

than 50 K (i.e. they satisfy Eq. (19)). 

- Should be regressed on both subcritical and supercritical data to achieve satisfying 

representation accuracy of the thermodynamic properties on the whole temperature 

range. 
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  MAPE (%) 

 

Type of data 

used in the 

regression 

procedure 

satP  vapH  
Supercritical

resh  

Supercritical

res
vc  

He 

Subcritical 0.001 3.68 20.79 100.00 

Supercritical 141.44 78.29 21.30 24.17 

Both 1.75 7.00 18.09 42.77 

H2 

Subcritical 0.02 3.17 54.52 58.91 

Supercritical 38.23 50.23 4.90 44.22 

Both 2.16 4.66 6.08 56.27 

Table 6. MAPE calculated for He and H2 with respect to the type of data used in the 

regression procedure of the Twu91 α-function parameters (subcritical, supercritical or both). 

 

After this debate on the particular behavior of quantic fluids, the next section aims at discussing 

which α-functions, published in the open literature, pass the proposed consistency test (see Eq. 

(19)). 
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Figure 16. Residual heat capacities of vapor and liquid phases of saturated H2.
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Figure 17. Residual heat capacities of vapor and liquid phases of saturated He. 
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Figure 18. Optimized α-functions of He. Small dashed curve is regressed on subcritical data, 

large dashed curve is regressed on supercritical data, full curve is regressed on both subcritical 

and supercritical data. 
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Figure 19. Optimized α-functions of H2. Small dashed curve is regressed on subcritical data, 

large dashed curve is regressed on supercritical data, full curve is regressed on both subcritical 

and supercritical data. 
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9 Do current α-functions available in the open literature pass the proposed 

consistency test? 

 

Mathematical conditions on the α-function and its successive derivatives aimed at ensuring 

consistent and accurate calculations of thermodynamic properties in both subcritical and 

supercritical domains have been identified along the previous part of this paper (see Eq. (19)). 

This section evaluates which of the mostly used α-functions of the literature fulfil all these 

conditions. Mathematical derivations are detailed in Appendices A to L and only main results 

are reported in Table 7. 

The twelve selected α-functions are those which are generally available in process simulation 

software. We selected: 

 

1- Soave 1972 

2- Soave 1984 

3- Gibbons-Laughton 

4- Stryjek-Vera 

5- Mathias-Copeman 

6- Mathias 

7- Twu 1995 

8- Boston-Mathias 

9- Trebble-Bishnoi 

10- Melhem-Saini-Goodwin 

11- Twu 1988 

12- Twu 1991 

 

As highlighted in Table 7, eight over twelve of these well-known α-functions (Soave 1972, 

Soave 1984, Gibbons-Laughton, Stryjek-Vera, Boston-Mathias, Mathias-Copeman, Mathias, 

Twu 1995) fail the proposed consistency test whatever the values of the parameters are. The 

four remaining α-functions (Trebble-Bishnoi, Melhem-Saini-Goodwin, Twu 1988, Twu 1991) 

pass the test but only if constraints (sometimes drastic) are added to the parameters. 

We can thus conclude that, presently, it is impossible to find an α-function which passes our 

consistency test for any values of the parameters. 
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From a practical point of view: 

1- All α-functions which derive from the Soave α-function, the so-called “polynomial α-

functions”, are not monotonically decreasing functions of temperature; therefore, special 

caution should be taken when those are applied to light supercritical compounds at reduced 

temperatures above the temperature at which the minimum of these α-functions occurs. 

2- The higher the number of adjustable parameters in α-functions, the harder the optimization 

procedure will be since more constraints on the parameters will have to be added, to ensure 

that the function passes the consistency test. Two-parameter α-functions appear as a good 

trade-off between complexity and flexibility of the α-function formulation. 

3- Piecewise α-functions should at least have 2 parameters in the subcritical and supercritical 

temperature domains. Application of the continuity constraint of the first and second 

derivatives of an α-function permits to establish relations between subcritical and 

supercritical parameters. As a consequence, thermodynamic properties, such as h  and 
vc , 

would be kept continuous at the critical temperature. 

4- It should be noticed that, among the two generalized α-functions studied in this paper (Soave 

and Twu 1995), none of them satisfies all the constraints of the proposed consistency test. 

For molecules with an acentric factor out of the range  0 ;1  or for the prediction of heat 

capacities just above the critical temperature, the Soave α-function should be preferred. 

 

10 Conclusion 

 

 The main conclusion of this article is that α-functions must: 

1. Be of class C², i.e., their first  d dT  and second  2 2d dT  derivatives must exist 

and must be continuous for any temperature value, 

2. Be positive for any temperature value   T 0  , 

3. Be monotonically decreasing for any temperature value  d dT 0  , 

4. Be convex for any temperature value  2 2d dT 0  , 

5. Also verify 
3 3d dT 0   for any temperature value. 

All these requirements are absolutely necessary to get accurate and physically meaningful 

behaviors in both the subcritical and supercritical domains. Other key conclusions follow. 

 The role of the α-function is at least as important as the role of mixing rules. As highlighted 

with the CO2-argon binary system, even with the most elaborated mixing rules, an 
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inconsistent α-function will always lead to poor results if at least one component is 

supercritical. The reverse is also true: a consistent α-function coupled with unsuitable 

mixing rules cannot lead to accurate results. 

 When the parameters of component-specific α-functions are fitted in order to pass our 

consistency test [Eq. (19)], pure component properties in the supercritical region are highly 

improved without deteriorating the accuracy of the calculated subcritical properties. 

 The parameter-optimization procedure, aimed at determining the parameters of a given α-

function by minimizing the deviations between calculated and experimental vapor-liquid 

equilibrium data, can generate many sets of parameters leading to similar objective function 

values (meaning that the same behavior is observed when temperature is below the critical 

temperature of the pure compound) but inducing totally different behaviors in the 

supercritical domain. The constraints proposed in this paper make it possible to select the 

best set of parameters. It is believed that similar constraints should be developed for SAFT-

type EoS [41]. It is indeed well-known that the fitting of the three parameters m ,   and  

on saturation pressures and liquid densities leads to many triplets of solutions for which the 

objective function is the same. 

 None of the α-functions currently published in the open literature passes the proposed 

consistency test. Researches in this area thus need to be intensified. 
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Soave (1972) 

[3] 

  
 

 

2

r

2
RK

2
PR

m 0.480 1.574

m 0.37464

1 m 1 T

0.176

0.269921.54226




  

  

      

  

  

       m 1 m 0   

Soave (1984) 

[24] 
 r

r

b
1 1 T a

T

 
     

 

  

a ≥ 0 

  b 0  
  

a ≤ 0 

  

Gibbons-

Laughton 

[25] 
   r r1 X T Y T 11           

 

X 0

2X 2 X Y min 0; 2X 2 X



     

 

Stryjek-Vera 

[11] 

 

  

 

 

2

r

0 1 r r

2 3
0

1 c

1 c

1 T 0.7 T

0.378893 1.4897153 0.0196554

T 0.7T 0

T 0.7T 0

1 1 T

0.17131848

      

   

 

  

  

  

  










       1 0     

Mathias-

Copeman 

[10] 

       

    

2
2 3

SUB r 1 r r r

2

SU r r

2 3

P

1 T 1 T 1 T

1

T 1 1 c c c

T 1 1 m T

 
        

    

   

  

       

Mathias [28] 

       

   

2

SUB r r r r

2

SUP r r

1

1

T 1 m 1 T p 1 T 0.7 T

T exp L 1 T

m
L 1

L

0.3p
2

1

L



          

         

 

 

 














       
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α-function 
Class 

C2(*) 
0   

r

d
0

dT


  

2

2
r

d
0

dT


  

3

3
r

d
0

dT


  Condition(s) 

Twu (1995) 

[16,17] 

     

             
             

0 0 0 0

1 1 1 1

0 1 0

0 N M 1 0 M N
r r

1 N M 1 1 M N
r r

T exp L 1 T

T exp L 1 T





        

  
    


    

 

(see coefficients in Appendix C) 

      0;1  

Boston-

Mathias [19] 

    

   

2

SUB r SOAVE r

SUP r r

1 m 1 T

T

T 1

exp L 1 T

2m
L

1

1

m

1 m

2



    

     


 


 

     

 







 

     0 m 3   

Trebble-

Bishnoi [26] 
 rexp L 1 T    

      L 0  

Melhem-

Saini-

Goodwin 

[27] 

   
2

r rexp m 1 T n 1 T
 

             m n 0   

Twu (1988) 

[14] 

   2 M 1 2M
r rT exp L 1 T    

 
      

LM 0

M 0.8909





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α-function 
Class 

C2(*) 
0   

r

d
0

dT


  

2

2
r

d
0

dT


  

3

3
r

d
0

dT


  Condition(s) 

Twu (1991) 

[15] 
       

 

 

3 3 2 2 2

2 2

2

L

or

L

4Y 4ZX 27Z 18XYZ X Y 0

with

X

0

0

1

0

3

Y 3 6

Z

0

1 2 2 1

1

3

3 3 2

2














    

 

 

 

   

 

 

       

   
         

  




   

 

Table 7. Mathematical analysis of the mostly used α-functions. 

 

(*) α function is said to be of class C² if the function, its first derivative and its second derivative are all continuous. 

 

 exp 1r rT L T    
 
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Appendices 

Appendix A: mathematical study of the Twu91 α-function [15] 

Although classically expressed by introducing 3 adjustable parameters denoted L, M and N (see 

Eq. (A.1)), the Twu91 α-function can be alternatively written under a simpler form involving 

three different adjustable parameters denoted L,  and  (this form appears more convenient to 

perform a mathematical analysis of the function and its derivatives): 

 
   N M 1 MN

r r r(T ) T exp L 1 T        (A.1) 

  r r r(T ) T exp L 1 T        (A.2) 

where δ and γ are related to M and N following: 

 

 
N

N M 1

MNM

  
   

  
    

  (A.3) 

 Is the α-function of class C²? Yes. 

It is recalled that a given function is said to be of class C2 if its first and second derivatives exist 

and are continuous. 

 Is the α-function always positive? Yes. 

 Is the first derivative of the α-function always negative? 

The first derivative of this α-function is 

 
 

 
 

 

r r

r

r
r r

r

Td
T P T

dT T

P L TT 



 


 




 

  (A.4) 

The quantity  
r

r

d
T

dT

  is positive provided  rP T  is positive itself. 

Study of the sign of  rP T  (reported in Table A.1): rT  is positive so P is a monotonic function 

of rT . Therefore,  rP T  is positive for any value of rT 0  if the limits of P are both positive 

when rT  tends to 0 or to  . 
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r

r

r
T 0

r
T

lim T 0

0
lim T









 


   
 



  
r

r

r
T 0

r
T

lim T

0
lim T 0









  


   




 

 L 0  L 0  L 0  L 0  

 
r

r
T 0
lim P T


         

 
r

r
T

lim P T


 
        

Acceptable 

solution?  

Yes, if 

0   
No No 

Yes, if 

0   

Table A.1. Limit of P at the infinite temperature limit with respect to the signs of L and γ. 

 

Summary:  rP T  is positive for any positive value of rT  if: 

 
0

0

L 

 





  (A.5) 

 Is the second derivative of the α-function always positive?  

Following Eq. (A.5), it is now assumed that L 0   and 0  . The second derivative of the 

Twu91 α-function writes 

 

 

     

r
r2 2

r

2

2

r

r

(T )d
(T ) Q

dT T

Q 2 1

TL

1









 




       

 





  (A.6) 

rT  and L  being positive, the variable   is also positive. Polynomial  Q   is positive if [41]: 

 

   

 

2 1 2 1

and

1 0

       


  


  (A.7) 

Since 0  , the second condition of Eq. (A.7) is already true and can be left aside. Finally, Eq. 

(A.7) leads to a single inequality: 

  1 2 2 1        (A.8) 

 Is the third derivative of the α-function always negative?  

Inequalities (A.5) and (A.8) are now assumed to be true. The third derivative of the Twu91 α-

function is: 
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 

       

3
r

r3 3
r r

2 2 2 23

r

(T )d
(T ) R

dT T

R 3 31 3 3 3 2

T

6

L

2






                

 


 




      




  (A.9) 

with 0  . The quantities X, Y and Z are defined as 

 

 

    

2 2

2

1

3 3 2

2 1 2

X 3

Y 3 6

Z 3

  



  


 

  

      

       

 (A.10) 

Polynomial  R   is positive if [41]: 

 
3 3 2 2 2

 or 
H 4Y 4ZX 27

X 0
Z 0

Y
Z 18XY

0

Z
Z

0
X Y 0


 

 
     










  (A.11) 

Since 0   (see Eq. (A.5)), the condition Z 0  (where Z  is defined by Eq. (A.10)) is always 

verified. According to Eqs. (A.9) and (A.11), it can be concluded that 
3

r3
r

d
(T )

dT


 is negative 

provided: 

 
3 3 2 2 2   or   H 4Y 4Z

X 0
X 27Z 18XYZ X

0
Y 0

Y


    

 



 (A.12) 

A graphical representation of the constraints Y 0  (red area) and X 0  (yellow area) is 

proposed in Figure A.1. Colored areas are forbidden to parameters γ and δ, only the white area 

is permitted. The concavity constraint of the α-function is also represented (the blue area is an 

area wherein the condition r2
r

2d
(T ) 0

dT


  is not satisfied). An analysis of the graphic shows that 

if the constraint X 0  is satisfied then the convexity constraint and the Y 0  constraint are 

automatically satisfied.  
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-0.4 -0.2 0.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0




 
2

2
Region where 0,  i.e. 1 2 2 1    

r

d

dT


   

Region where X<0, i.e. 1  

Allowedarea for set of constraints defined by Eq.(A.11)

2 2Region where Y<0, i.e. 3 3 3 6 2 0         

Figure A.1. Representation of the set of constraints defined by Eq. (A.11). 

 

 Conclusion: 

Therefore, the Twu91 α-function is a positive decreasing convex function of temperature with 

a negative third derivative if one of the two following sets of constraints is verified 

 
 

3 3 2 2 2

L

0
0

0
0L  or 

4Y 4Z

1 2

X 27Z 18XY

1
1

Z X Y 0

2

 
 

 
 

     
  




 
 
 
      

  (A.13) 

Where the quantities X, Y and Z are defined by Eq. (A.10). 
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Appendix B: mathematical study of the Twu88 α-function [14] 

This α-function writes 

 
   2 M 1 2M

r r r(T ) T exp L 1 T    
 

  (B.1) 

This α-function is a particular case of the Twu91 α-function with N set to 2. Therefore, results 

derived in Appendix A for the Twu91 α-function can be used to determine the conditions on 

the L and M parameters that lead to a consistent Twu88 α-function. 

For this α-function, the relations between parameters M, N and δ, γ are 

 

 2 M 1

2M

N 2

  

 
 

  (B.2) 

 Is the α-function of class C²? Yes. 

 Is the α-function always positive? Yes. 

 Is the first derivative of the α-function always negative?  

By combining Eqs. (A.5) and (B.2), one obtains: 

 
L M 1

LM

0

0 0

 
 



 

 
 (B.3) 

 Is the second derivative of the α-function always positive?  

It is now assumed that M 1  and LM 0 . By combining Eqs. (A.8) and (B.2), one obtains: 

     1 2 2 1 6M 5 2 2 M 1 2M 3             (B.4) 

A mathematical study of inequality (B.4) makes it possible to demonstrate that the only 

acceptable values of M are such that: 

 
1 1

M 0.947
2 5

     (B.5) 

Note that the combination of inequalities M 1  and (B.5) results in the single inequality (B.5)

. 

 Is the third derivative of the α-function always negative?  

One assumes that LM 0 and 
1 1

M
2 5

  . According to Eqs. (A.10), (A.12) and (B.2), two 

possible sets of conditions ensure the negativity of 
3

r3
r

d
(T )

dT


: 

1. Either X 0   and   Y 0  : 

As for the Twu91 α-function, the constraint X 0  entails the convexity of the Twu88 

α-function and the inequality Y 0 . 
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 X 0 0.751 M        (B.6) 

2. Or 
3 3 2 2 2H 4Y 4ZX 27Z 18XYZ X Y 0      : 

In the case of the Twu88 -function, this inequality writes: 

 
6 5 4 3 216448M 55296M 64416M 29376M 4020M 216M 4 0          (B.7) 

By solving numerically this inequality, one obtains: 

    M 0.0448,0.8909 1,1.2902    (B.8) 

Combining inequalities (B.5) and (B.8) leads to: 

  M 0.0448,0.8909   (B.9) 

As previous, it can be proved that choosing the M parameter in this range ensures also 

the convexity of the Twu88 α-function. 

 

Finally, according to Eqs. (B.6) and (B.9), one deduces that the third derivative of the Twu88 

α-function is negative provided: 

 M 0.8909   (B.10) 

 

 Conclusion: 

To summarize, the Twu88 α-function is a positive decreasing convex function of temperature 

with a negative third derivative if the following set of constraints is verified (resulting from the 

combination of Eqs. (B.3) and (B.10)): 

 
LM 0

M 0.8909





  (B.11) 
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Appendix C: mathematical analysis of the Twu95 α-function [16,17] 

This α-function is said generalized since it does not involve adjustable parameters. The sole 

knowledge of an experimental value of the acentric factor () makes it possible to evaluate 

r(T ) . 

 

     

             
            

0 0 0 0

1 1 1 1

0 1 0
r r r r

0 N M 1 0 M N
r r r

1 N M 1 1 M N
r r r

(T ) (T ) (T ) (T )

(T ) T exp L 1 T

(T ) T exp L 1 T



  

        
  
    


    

  (C.1) 

The universal parameters ( (k)L , (k)M ,
(k)N  for k 0  and k 1 ) involved in this α-function are 

reported in Table C.1. 

 

  Tr ≤ 1 Tr > 1 

  α(0) α(1) α(0) α(1) 

Redlich-Kwong 

L 0.141599 0.500315 0.441411 0.032580 

M 0.919422 0.799457 6.500018 1.289098 

N 2.496441 3.291790 -0.200000 -8.000000 

Peng-Robinson 

L 0.125283 0.511614 0.401219 0.024955 

M 0.911807 0.784054 4.963070 1.248089 

N 1.948150 2.812520 -0.200000 -8.000000 

Table C.1. Universal parameters regressed for the Twu95 α-function. 

 

Different sets of parameters are used in the subcritical and supercritical domains. These 

parameters were regressed to obtain an α-function of class C². 

 Is the α-function of class C²? Yes, due to the addition of this constraint during the 

regression procedure of the universal parameters (see Figure C.1) 

The presence of salient points on the second derivative curves of this α-function can 

however be noticed (which is the consequence of a non-continuous third derivative of the 

α-function). 

 Is the α-function always positive? No (see α-function curves plotted for negative or high 

positive values of   in Figure C.1(a)). 

 Is the first derivative of the α-function always negative? No (see Figure C.1(b)). 

 Is the second derivative of the α-function always positive? No (see Figure C.1(c)). 

 Is the third derivative of the α-function always negative? No (see Figure C.1(d)). 



A consistency test for α-functions of cubic equations of state 

- 53 - 

 Conclusion: 

To conclude, Figure C.1 shows that the consistency test proposed in this article (see Eq.(19)) 

is passed by molecules having an acentric factor ranging between 0 and 1. For molecules having 

a higher acentric factor, the first and second derivatives of the Twu95 α-function fail the 

proposed consistency test (this is for instance the case of n-alkanes heavier than n-C22). 

Let us note also that regardless of the ω-value, the sign of the third derivative of the Twu95 α-

function is not constant on the whole temperature range (see Figure C.1(d)). Inevitably, poor 

predictions of heat capacities are obtained in the temperature domain where the third derivative 

of the α-function is positive. For all molecules, this temperature domain is located in the vicinity 

of the critical temperature, i.e., it can be reached in many practical cases. Predictions of heat 

capacities with the Twu95 α-function could thus be less accurate than those calculated with 

other simpler α-functions. 
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Figure C.1. The Twu95 α-function (a) and its first (b), second (c) and third derivatives (d) 

(case of the RK EoS). 
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Appendix D: mathematical study of the Trebble and Bishnoi α-function [26] 

This α-function contains only one adjustable parameter (L): 

  r r(T ) exp L 1 T       (D.1) 

This α-function can be seen as a particular case of the Twu91 α-function with N set to 1 and M 

set to 1.  

 Is the α-function of class C²? Yes. 

 Is the α-function always positive? Yes. 

 Is the first derivative of the α-function always negative?  

The first derivative of this α-function writes 

 
r

r
r(T ) (T

d

T
)L

d


     (D.2) 

As a consequence, dα/dTr is negative provided L is positive. 

 Is the second derivative of the α-function always positive? Yes. 

The second derivative of this α-function indeed writes 

 
2

2 r
2

r

r

(T ) (
d

)L
dT

T


    (D.3) 

 Is the third derivative of the α-function always negative? 

The third derivative of the Trebble-Bishnoi α-function is: 

 
3

3 r
3

r

r

(T ) (
d

T )L
dT




    (D.4) 

It is assumed that L 0 . Doing so, 0   and 
3

3
r

r(
d

0
T

T
d

)


 . 

 Conclusion: 

To conclude, the Trebble and Bishnoi α-function passes the proposed consistency test provided 

L 0 . 
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Appendix E: mathematical study of the Melhem-Saini-Goodwin α-function [27] 

This α-function involves 2 adjustable parameters (m and n): 

    
2

r r r(T ) exp m 1 T n 1 T
 

         (E.1) 

 Is the α-function of class C²? Yes. 

 Is the α-function always positive? Yes. 

 Is the first derivative of the α-function always negative?  

The first derivative of the α-function is: 

 

 

   

r
r

r

r r

r

r

d
P T

dT T

P T

(T
(T

m n

)

n T

)
 




  

  (E.2) 

The quantity  rP T  is positive if: 

 
m n 0

m n 0
n 0

 
  


  (E.3) 

 Is the second derivative of the α-function always positive? Yes. 

The second derivative of the Melhem-Saini-Goodwin α-function is: 

 

 

          

2

r
r

2 3/2
r r

32 2
r r r r

00

r

2

00

d
Q T

dT 2T

Q T 2 m n T T T

(T )
(T )

4 n 2 nn m n
 

  

 




   



  (E.4) 

Under assumption (E.3), all the coefficients of the polynomial Q are positive, therefore, Q is 

always positive. 

 Is the third derivative of the α-function always negative?  

The third derivative of this α-function is: 

 

 

            
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d
R T

dT 4T

R T 4 m n
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  

 






   


     



 

    (E.5) 

By noting that: 

  2 3 2m n 0 6mn 6n 4n 6mn 6n 0          (E.6) 
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it can be claimed that under assumption (E.3), all the coefficients of the polynomial R are 

positive and thus  rR T 0 . Consequently, the third derivative of the Melhem-Saini-

Goodwin α-function is always negative. 

 

 Conclusion: 

The Melhem-Saini-Goodwin α-function is consistent (i.e., positive, decreasing, convex with a 

negative third derivative) provided m n 0  . 
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Appendix F: mathematical study of the Soave72 α-function [24] 

The Soave72 α-function involved a generalized parameter (m) correlated to the acentric factor 

(): 

 

  
 

 

2

r r

2

2

m 0.480 1.574 for the RK EoS

m 0.37464 1.5422

(T ) 1 m 1 T

0.176

6 for the P0.26992 R EoS

      

  

 




 

 



 

  (F.1) 

The Soave72 function is certainly the most employed α-function in the oil and gas industries. 

It is in particular used in the PPR78 [42–44] and PR2SRK predictive models [45]. 

 Is the α-function of class C²? Yes. 

 Is the α-function always positive? Yes. 

 Is the first derivative of the α-function always negative?  

The first derivative of the Soave72 α-function is: 

 
 

    r
rr

r

r
r

m (T )d
(T ) 1 m 1 T m

dT TT

       


   (F.2) 

The limit of the first derivative of the α-function when the temperature tends to   is: 

  
r

2

r
T r

d
lim (T ) m 0

dT
    


  (F.3) 

It appears that the first derivative of the Soave72 α-function is not always negative. 

Due to its polynomial expression in rT , the Soave72 α-function can only exhibit two types 

of behavior, depending on the -value: 

- either the function is decreasing then increasing for increasing values of rT , 

- or, the function is monotonically increasing. 

To discriminate between these two scenarios, the limit of the first derivative of the α-function 

when the temperature tends to 0 is now studied: 

   
r

r
T 0 r

d
lim (T ) sign m 1 m

dT


      (F.4) 

Case 1:  m 1 m 0   

If  m 1 m  is positive (what is the case for more than 99% of the compounds), one has 

r

r
T 0 r

d
lim (T )

dT


   and the Soave72 α-function exhibits a minimum at a reduced temperature 

denoted 
r,minT . For r,mir nT 0 ; T   , α is a decreasing function while it is an increasing 
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function for 
rr ,minT T . Such a behavior is observed for the following values of the acentric 

factor: 

      1; 0.8580 0.2952;9.2384 9.8012; for the RK EoS         (F.5) 

      1; 0.7838 0.2334;5.9472 6.4976; for the PR EoS         (F.6) 

To understand whether the irregular behavior of the Soave72 α-function (i.e., increasing of α 

for 
rr ,minT T ) may affect practical applications, the relation between 

r,minT  and   is now 

investigated. 
r,minT  is obtained by solving: 

     

 

 

r

r,min

2

r

r

,min

,min

d
(T ) 0

dT

m 1 m 1 T 0

1 m
T

m



    




 







 
   

 

  (F.7) 

Note that at 
r,minT , the Soave72 α-function cancels:  r,minT 0  . 

The evolution of 
r,minT  with respect to the acentric factor is reported in Figure F.1. 

-1 0 4 6 8 10 12

0.001

0.01

0.1

1

10

100

1000

T
r,

m
in



 Redlich-Kwong

 Peng-Robinson

 

Figure F.1. 
r,minT  as a function of ω. 

To complete the analysis, some values of 
r,minT  and minT  are reported in Table F.1 for a series 

of real compounds of various sizes (i.e., a large range of acentric-factor values is covered). It is 
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observed that in practice, minT  is often higher than 1500 K, largely above common 

temperatures encountered in practical applications. 

 

Component 
Acentric 

factor ω 
Tc / K 

RK CEoS PR CEoS 

r,minT  
minT K  r,minT  

minT K  

Methane 0.012 190.564 9.045 1723.566 12.591 2399.325 

n-decane 0.492 617.700 3.330 2057.108 3.748 2314.913 

n-eicosane 0.907 768.000 2.456 1886.582 2.705 2077.277 

n-triacontane 1.307 844.000 2.094 1767.355 2.305 1945.584 

Water 0.345 647.096 3.992 2583.530 4.595 2973.520 

CO2 0.224 304.21 4.905 1492.258 5.839 1776.253 

Argon 0.000 150.860 9.507 1434.218 13.463 2031.065 

Ethanol 0.644 514.000 2.904 1492.795 3.228 1659.020 

Ammonia 0.253 405.650 4.641 1882.512 5.469 2218.676 

Table F.1. Values of Tmin for some chemical compounds using either the PR or RK CEoS 

 

Case 2:  m 1 m 0   

This case is observed for the following values of the acentric factor: 

    0.8580; 0.2952 9.2384;9.8012 for the RK EoS      (F.8) 

    0.7838; 0.2334 5.9472;6.4976 for the PR EoS      (F.9) 

In practice, this instance arises for molecules having negative acentric factors (e.g., helium, 

aluminum and arsenic). In such a case: 
r

r
T 0 r

d
lim (T )

dT


   and the Soave72 α-function is an 

increasing function of temperature for any positive value of rT . This behavior is not desirable 

and therefore, the Soave72 α-function should be used only for molecules having an acentric 

factor ω in the ranges defined by Eq.(F.5) or Eq.(F.6). 

 Is the second derivative of the α-function always positive?  

It is now assumed that  m 1 m 0   (which is obtained for acentric factor values lying in the 

ranges defined by Eq.(F.5) or Eq.(F.6)). The second derivative of the Soave72 α-function is: 

 
 

r2 3/2
r r

2 m( ) m( ) 1d
(T )

dT 2T

  



  (F.10) 

Since  m 1 m 0  , the convexity constraint is verified. 
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 Is the third derivative of the α-function always negative?  

The third derivative of the Soave72 α-function is: 

 
 3

r3 5/2
r r

m( ) m( ) 1d 3
(T )

4dT T

  
 


 (F.11) 

As previous, assuming  m 1 m 0  , the negativity of the third derivative is ensured. 

 

 Conclusion: 

When the quantity  m 1 m  is positive (i.e., for acentric-factor values lying in the ranges 

defined by Eq.(F.5) or Eq.(F.6), which is verified in practice for more than 99% of real 

components), the Soave α-function is consistent up to the temperature defined by Eq.(F.7), 

which is generally higher than 1500 K (it can thus be claimed that the Soave 72 α-function is 

consistent on temperature ranges of practical interest).  

Such an α-function can thus be considered as fully consistent in most cases explaining why it 

has achieved great success in the industry. 
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Appendix G: mathematical study of the Soave84 α-function [24] 

This α-function involves two adjustable parameters a and b: 

  r r
r

b
(T ) 1 1 T a

T

 
     

 
  (G.1) 

 Is the α-function of class C²? Yes. 

 Is the α-function always positive? Yes. 

The Soave84 α-function can be written as a second order polynomial of the reduced temperature 

 
   

   

r r
r

2
r r rT

1
T F

1 a

T
T

F T bT ba  


 

   

  (G.2) 

Polynomial  rF T  is positive provided [41]: 

 

a 0

b 0

1 a b 2 ab

 




    

  (G.3) 

 Is the first derivative of the α-function always negative?  

The first derivative of the Soave84 α-function is: 

 

 

 

r

2
r r

2
r r

r

P Td
(T )

dT T

P T aT b


 




 



  (G.4) 

Polynomial  rP T  is positive provided: 

 

a 0

b 0

0 2 ab

 





 

  (G.5) 

Note that the last condition is automatically satisfied. It appears that constraints (G.3) and (G.5) 

are contradictory and cannot be satisfied simultaneously. 

Therefore, if a is positive: 

-  rT  is negative, at least, on a certain temperature range 

- 
r

r

d
(T )

dT


 is negative for any (positive) temperature value 

 

On the other hand, if a is negative: 

-  rT  is positive for any (positive) temperature value 



A consistency test for α-functions of cubic equations of state 

- 64 - 

- 
r

r

d
(T )

dT

  is positive, at least, on a certain temperature range 

 Is the second derivative of the α-function always positive?  

The second derivative of the Soave84 α-function is: 

 r2 3
r r

2d 2b
(T )

dT T



 (G.6) 

It appears that r2
r

2d
(T )

dT


 is positive provided b is positive. 

 Is the third derivative of the α-function always negative?  

The third derivative of the α-function writes 

 
3

r3 4
r r

d 6b
(T )

dT T
 


 (G.7) 

It appears that r3
r

3d
(T )

dT


 is negative provided b is positive. 

 Conclusion: 

The only possibility for satisfying both the positivity condition for the Soave84 α-function and 

the negativity condition for its first derivative would be to set:  

 a 0   (G.8) 

This would lead to modify the mathematical expression of the Soave84 α-function. As a 

conclusion, the Soave84 α-function cannot pass the proposed consistency test. 

  



A consistency test for α-functions of cubic equations of state 

- 65 - 

Appendix H: mathematical analysis of the Stryjek-Vera α-function [11] 

The Stryjek-Vera α-function involves one adjustable parameter ( 1 ) and one universal 

parameter ( 0( )  ): 

 

   

  

 

 

2

r r r

r 0 1 r r

r

2 3
0

1

1 r

( ) 1 T 0.7 T

( ) 0.378893 1

T 1 (T ) 1 T

(T )

0.17131.4897153 0.0196554

T 0.

848

7 0

T 0.7 0

       

   



   

    

 


 

 





  (H.1) 

The Stryjek-Vera α-function is identical to the Soave α-function for reduced temperatures above 

0.7. Therefore, it suffers from all the identified defects of the Soave α-function described in 

Appendix F. In addition, the Stryjek-Vera α-function exhibits a discontinuous behavior in 

rT 0.7  which is prejudicial to all derived EoS-properties (enthalpy, entropy, heat capacity 

etc.). 
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Appendix I: mathematical study of the Mathias-Copeman α-function [10] 

This α-function uses two different expressions depending on the temperature domain 

considered (sub- or super-critical) and involves three adjustable parameters ( 1c , 2c , 3c ) 
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 (I.1) 

 Is the α-function of class C²? 

The first derivatives of the Mathias-Copeman α-function are: 
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It appears that: 
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The Mathias-Copeman α-function is thus at least of class C1. 

The second derivatives of the Mathias-Copeman α-function are: 
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Therefore, one has: 
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As a consequence, the Mathias-Copeman α-function is of class C² provided c2 is set equal 

to 0. Doing so, this α-function would loose one of its three adjustable parameters. 

 Conclusion: 

At this step, there is no need to pursue the study: it is obvious that the Mathias-Copeman α-

function cannot pass the consistency test since the C2-class condition requires to annihilate 

coefficient 2c  and consequently to modify the α-function expression. 

 

In addition, it is remarkable that the Mathias-Copeman α-function is similar to the Soave 

72 α-function for rT 1  except that the universal m( )  parameter of the Soave function is 

replaced by an adjustable parameter 1c .  

If, as often seen in practice, the parameter 1c  is set to m( ) , the Mathias-Copeman α-

function would loose a second adjustable parameter ( 1c ). It would result that the Mathias-

Copeman α-function would only contain one adjustable parameter ( 3c ). 

Furthermore, similarly to the Soave 72 α-function, the Mathias-Copeman α-function 

exhibits an unphysical behavior at infinite temperature: 

 
r r
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Appendix J: mathematical study of the Boston-Mathias α-function [19] 

The Boston-Mathias α-function contains one universal parameter m( ) :  
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The relations between parameters L, γ and m( )  were derived by Boston and Mathias 

assuming that 

- The first derivatives of SUB  and SUP  are equal at the critical temperature, 

- The second derivative of SUP  has to be equal to zero at the critical temperature. 

A priori, these assumptions do not guaranty for the function to be of class C2 and more 

generally, to pass the proposed consistency test for α-functions. 

 Is the α-function of class C²? 

The first derivatives of the Boston-Mathias α-function are: 
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At rT 1 , one has: 
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This proves that the Boston-Mathias α-function is at least of class C1. 

The second derivatives of the Boston-Mathias α-function are: 
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At rT 1 , one has: 
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Since 
2 2

SUB SUP
2 2
r r

r r(T 1
d d

dT d
) T

T
( 1)  

 
, the Boston-Mathias α-function is thus not of class 

C2. 

 Conclusion: 

At this step, there is no need to pursue the study. Not being of class C2, the Boston-Mathias α-

function does not pass the proposed consistency test. 
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Appendix K: mathematical study of the Mathias α-function [28] 

The Mathias α-function contains one universal parameter (  m  ) and one (component-

dependent) adjustable parameter (p). 
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The expressions of parameters L and γ were derived by Mathias by assuming that: 

- The first derivatives of SUB  and SUP  are equal at the critical temperature, 

- The second derivative of SUP  is equal to zero at the critical temperature. 

A priori, these assumptions do not guaranty for the function to be of class C2 and more 

generally, to pass the proposed consistency test for α-functions. 

 Is the α-function of class C²? 

The first derivatives of the Mathias α-function are: 
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At rT 1 : 
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This proves that the Mathias α-function is at least of class C1. 

The second derivatives of the Mathias α-function are: 
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At rT 1 , one has: 
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Since 
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T
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, the Boston-Mathias α-function is thus not of class 

C2. 

 Conclusion: 

At this step, there is no need to pursue the study. Not being of class C2, the Mathias α-function 

does not pass the proposed consistency test. 
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Appendix L: mathematical study of the Gibbons and Laughton α-function [25] 

The α-function involved two adjustable parameters denoted X and Y: 

    r r r(T ) 1 X T Y T 11       (L.1) 

 Is the α-function of class C²? Yes. 

 Is the α-function always positive?  

Eq.(L.1) can be alternatively written : 

    
2

r r r(T ) X T 1 XY T Y       (L.2) 

Which is a second-order polynomial of the square root of the reduced temperature. Therefore, 

this polynomial is positive if [41] 
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As will be shown below, the parameter Y  is necessarily negative to ensure that the α-function 

is decreasing at low temperature. The third inequality of Eq. (L.3) can be squared, both sides of 

the equation being negative, in order to solve this inequality with respect to Y. The resolution 

of the inequality provides the following existence interval for parameter Y 

  2X 2 X Y 2X 2 X        (L.4) 

One can demonstrate that 2X 2 X 1 X    . Therefore, positivity condition of the α-function 

is, reminding that Y has to be negative: 
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 Is the first derivative of the α-function always negative? 

The first derivative of the Gibbons and Laughton α-function is: 

 r
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When rT  tends to 0, the limit of Eq.(L.6) is: 
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Therefore, Y has to be negative 

When rT  tends to  , the limit of Eq.(L.6) is: 
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Therefore, X has to be negative. This condition is contradictory with condition (L.3). The 

reason of this contradiction is that the Gibbons and Laughton α-function exhibits a minimum 

when 
X 0

Y 0





 (this behavior is similar to the one of the Soave 72 α-function). As a conclusion, 

the Gibbons and Laughton α-function can only be decreasing on a limited temperature range 

r,min0 ; T   . As illustrated in Figure L.1, the minimum of the α-function is found at  
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Figure L.1. Changes of Tr,min with respect to the change of Y for different values of X. 

 

Note that the value of the α-function at r,minT  is not equal to zero.  
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 Is the second derivative of the α-function always positive? 

The second derivative of the Gibbons and Laughton α-function is: 
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As a consequence, 
r2

r

2d
(T )

dT


 is positive provided Y is negative. 

 Is the third derivative of the α-function always negative?  

The third derivative of the Gibbons and Laughton α-function is: 
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As a consequence, r3
r

3d
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dT


 is negative provided Y is negative. 

 Conclusion:  

The Gibbons and Laughton α-function behaves as a consistent α-function, up to a certain 

reduced temperature Tr,min defined by Eq.(L.9) if 
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