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Résumé — As the use of multiscale and multiphysics models spreads out, the need to use stochas-
tic models increases. However the numerical costs associated with the resolution of such models
is usually much larger than that of their deterministic counterpart. We present here a method, set
in the Arlequin framework, to couple a probabilistic model with a deterministic one, therefore in-
troducing randomness only where necessary to improve the reliability of our quantities of interest.

Mots clés — Multiscale modeling, Stochastic modeling, Coupling method, Arlequin method, Ho-
mogenization.

1 Introduction

Classical deterministic models provide global predictions that are satisfactory for many in-
dustrial applications. However, when one is interested in a very localized behavior or quantity,
or when multiscale phenomena come into play, these models may not be sufficient. For instance,
the limited heterogeneity of a material modeled as a continuum might have no influence on its
behavior on a large scale, while the study of a local stress intensity factor would strongly depend
on the local heterogeneity of the mechanical parameters. Likewise, the prediction of the outbreak
of a fracture in a structure might be performed with homogeneous models, while the incorporation
of atomic modeling would be necessary to follow the exact path of that fracture. Unfortunately,
for these problems, the information necessary to parameterize the relevant, very complex, mo-
dels is usually not available. Stochastic methods have therefore been proposed and now appear
unavoidable in multiscale modeling.

Although the use of stochastic models and methods has expanded rapidly in the last decades,
the related numerical costs are still often prohibitive. Hence, the application of these methods in a
complex or industrial context remains limited. An important field of research is therefore concer-
ned with the reduction of the costs associated with the use of stochastic methods, for example
by using iterative methods specially adapted to the structure of the matrices arising in the Sto-
chastic Finite Element (FE) method [8, 11], using reduced bases for the representation of random
fields [6], or using special domain decomposition techniques for parallel resolution on clusters of
computers [12].

The present paper proposes an alternative to these purely mathematical/numerical approaches
through the coupling of two models : one deterministic and one stochastic. The general goal is that
of modeling a global problem in a mean or homogeneous way where it yields sufficient accuracy,
while retaining a stochastic model where needed. Hence, additional complexity is added in the
model only where required, and the general approach is both more elegant and numerically cheaper
than a global all-over stochastic model would be. Further, the cuts on computational costs mean
that industrial applications come within reach.
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More specifically, we discuss here the interaction and coupling of a classical continuum model
with another continuum model with random parameters. The former model, deterministic, aims at
representing a part of the domain where the local fluctuations of the parameters, such as Young’s
modulus, do not influence the output of interest in a significant manner, and where a homogenized
model is sufficient to predict this output. The latter model, stochastic, stands for the part of the
domain where the local behavior is of interest and the fluctuations of the parameters cannot be
considered only in a homogenized way. The coupling of these models is performed in the Arlequin
framework [1, 3, 2]. Note that the choice of two continuous models is by no means a restriction
of the contents of this paper, and that the Arlequin method can accomodate different models [5].
However, considering corresponding models allows us to concentrate more particularly on the
specific aspects of the coupling of a deterministic model with a stochastic one.

The framework of this paper is very different from that of classical micromechanics [19, 4]
and homogenization [10]. In these, the objective is to find a mean, or homogenized, behavior for a
material, that will allow its study on a higher scale. In our case, we wish to study the local behavior
of a small subdomain of that material, while the influence of the rest of the domain is taken into
account in some homogenized way. Even when homogenization techniques are embedded within
a stochastic FE framework, with both scales actually represented, the coupling does not go both
ways, and only the low scale influences the high one (see for instance [16]). This type of one-way
coupling approach is also very classical in climate modeling [17], where the influence of the small,
unresolved, details at the global scale are taken into account through stochastic models more or
less tuned on a lower scale. Nevertheless, we will re-use some notions explored extensively in
homogenization techniques. In particular the notion of size of a Representative Volume Element,
with respect to the correlation length of the parameters of the medium and/or the number of reali-
zations of that medium (see in particular [9, 10, 15, 18]) will be discussed in relation with the size
of the coupling zone between our two models.

This work is closely related to previous works in the literature [13, 5]. However, in [13], the
theoretical basis, different from the Arlequin formulation, is less general. In particular, it is only
aimed at coupling a deterministic Boundary Element method with a stochastic FE method. In
the recent work [5], the authors aim at coupling two stochastic models, one continuous, and one
atomistic. However, many theoretical questions are left out. In particular, the coupling is performed
between realizations of the stochastic operators, while we try to describe here the coupling at the
level of the stochastic operators.

2 Description of the problem

Let us consider a domain Ω0 of Rd , with smooth boundary ∂Ω0 separated into Dirichlet and
Neumann boundaries ΓD and ΓN , such that ΓD∪ΓN = ∂Ω0, ΓD∩ΓN = /0, and ΓD 6= /0 (figure 1).
A bulk loading field f (xx) is defined on Ω0 and a subdomain Ωs of Ω0 is selected, supposing for
simplicity that ∂Ωs∩ΓD = /0 and ff (xx ∈ Ωs) = 00.

We then introduce the field of mechanical parameter K. We will concurrently consider two
models of that parameter, namely a deterministic one, K0, supposed constant on the domain, and
a stochastic one, KK(x), modeled as a random field on Ωs. We further suppose that KK(x) is per-
fectly known, and that E[KKK(xxx)] = K0, with E[·] the mathematical expectation. For the purpose of
the applications, we will use the model developed by Soize [14], that ensures solvability of the
associated weak formulation of the mechanical problem.
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Figure 1 – Description of the model problem (left), and example of application (right), with the
outermost square indicating the limit of Ωs

3 The continuous Arlequin formulation

We first introduce a functional space for the functions corresponding to the deterministic mo-
del :

V0 = {v ∈ H 1(Ω),v|ΓN = 0},

equipped with the inner product (v,w)0 =
R

Ω
(∇xv,∇xxw)dΩ, and norm ‖v‖0 = (v,v)1/2

0 , v,w ∈ V0.
We then define a complete probability space (Θ,T ,P), where Θ is a set of outcomes, T is a σ-
algebra of events, and P is a probability mesure (P : T → [0,1]). The functions corresponding to
the stochastic model are defined in

Vs = L2(Θ,V0),

the tensor Hilbert space of the second-order random variables defined on the probability space
(Θ,T ,P), and with values in V0. That space is equipped with the inner product (vvv,ww)s = E[(vvv,ww)0],
and corresponding norm ‖v‖s = (v,vv)1/2

s . Note that ∀v ∈ Vs, E[v] ∈ V0.
We define the Arlequin problem as : find (u0,uus,Φ) ∈ V0×Vs×V0

a0(u0,v)+C(Φ,v) = `0(v), ∀v ∈ V0

As(us, v)−C(Φ,E[vv]) = 0, ∀v ∈ Vs

C(Ψ,u0−E[us]) = 0, ∀Ψ ∈ V0

. (1)

The bilinear operators a0,C : V0×V0 → R and As : Vs×Vs → R, are defined by

a0(u,v) =
Z

Ω

α0K0∇xxu ·∇xv dΩ,

As(u,vv) = E
[Z

Ωs

αsKK ∇xxuu ·∇xxv dΩ

]
,

and
C(u,v) =

Z
Ω0∩Ωs

(κ0uv+κ1∇xxxu ·∇xxv)dΩ,

where the fields α0(xx) and αs(xx) are defined on Ω0, such that α0(xx)+αs(xx) = 1 and αs(xxx /∈Ωs) =
0, and κ0 and κ1 are normalization constants.

4 The discretized Arlequin formulation

The general idea here is to use a classical FE approach to discretize the first and third equations
of the Arlequin system (1) and a stochastic FE method for the second one. It should be noted that
a Monte Carlo resolution of this formulation is not straightforward because the coupling equation
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(the third one) works on the mean of uus, which is not available when one considers only one
realization of that random field.

We therefore associate to the domain Ω a mesh T , composed of elements E, and look for
approximate functions of the elements of V0 in the functional space

V H
0 = {v ∈ P1(E),v|ΓN = 0},

composed of linear functions on each of the elements of the mesh. We then choose a basis
{v`(x)}1≤`≤m for the functions in V H

0 , for example the classical linear FE basis, and we intro-
duce the matrices A0 and C, with elements

A0,i j =
Z

Ω0

α0K0∇xxvi ·∇xv j dΩ,

and
Ci j =

Z
Ω0

(κ0viv j +κ1∇xvi ·∇xxv j) dΩ.

For the space Vs, we choose an approximating space as the span of the polynomial chaos basis [7],
of order n and degree p, in conjunction with the previous basis for the spatial dimension. We denote
this space V H,n,p

s and the elements of its basis {w`(xx)}1≤`≤mN , where N is the number of elements
in the polynomial chaos basis, which depends both on n and p. We expand both the parameter field
KK(x), and the solution us(x) in that basis, and finally obtain the matrix A for the stochastic part of
the Arlequin system as

A j`,JL =
N

∑
i=1

ci jJ

Z
Ωs

αs(xx)ki(xxx)∇xw`(xxx) ·∇xxwL(xx) dΩ,

where ci jJ = E
[
Γ̂i[ξξ]Γ̂ j[ξ]Γ̂J[ξ]

]
, ki(x) = E[K(xx)Γ̂i(ξξ)]. Note that the double indices ( j, `) and

(J,L) each correspond to only one index in the matrix form of the system. We further denote

A = A0`,0L =
Z

Ω0

αsK0∇xxwi ·∇xxw j dΩ,

and Ac = A0`,JL the sub-matrices that correspond to the mean part of the unknown field, and
As = A j 6=0 `,JL that corresponding to the fluctuating part. We finally get the form of the matrix
system for the Arlequin problem (1) :

A0 0 0 C
0 A Ac −C
0 AT

c As 0
CT −CT 0 0




U0
U
Us

Φ

 =


F
0
0
0

 , (2)

where the coordinates of the vector F are defined by Fi = `0(vi), and U0, U, Us, and Φ are the
vectors of coordinates of u0, E[uuus], uus −E[uus], and Φ, in the bases of V H

0 , V H
0 , V H,n,p

s \V H
0 , and

V H
0 , respectively. Note that the controlling parameters for the size of that matrix are n and p, and

that in most cases, As will be a very large matrix, much larger than the other ones appearing in
the equation (2). However, it is much smaller than the matrix that would be obtained by applying
directly a stochastic FE approach to the entire model.

5 Example of application

For illustrative purposes, we consider the indented plate of figure 1, with −3 < x < 3 and
−1 < y < 1, with a neck in the zone around x = 0, f (x,y) = 1 in the zone 2 < x < 3 (right side
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of the plate), and homogeneous Dirichlet boundary conditions on the left side of the plate. The
boundary conditions read : {

u = 0, x =−3
∇xxu = 00, on ∂Ω\{x =−3}

We plot on figure 2 the stress field |K∇u|, along the line y = 0, corresponding to the solution of
the Arlequin system (1) for these boundary conditions The stresses corresponding to u0 and E[uus]
are both plotted, showing the fact that the coupling works well, and we also plot three realizations
of the stresses corresponding to uus.

Figure 2 – Stresses |K∇u| corresponding to the displacement fields u0 (solid line), E[us] (dashed
line), and three realizations corresponding to uus (dotted lines)

6 Conclusion

We have shown here a method for coupling a probabilistic model of continuum mechanics with
a deterministic one. The numerical costs associated with the resolution of a probabilistic model
are heavily lowered, which renders its use in an industrial setting reasonable. The framework that
was described here can very easily be extended to other problems, be it with different physics
(continuum mechanics, molecular dynamics, nonlinear constitutive relation), using the available
literature on the Arlequin method, or involving two probabilistic models. During the talk, we will
discuss further the particularities of the method, and in particular the definition of the size of the
coupling zone with respect to the definition of representative volume elements in homogenization
techniques [9, 10, 15, 18].
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