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Application of Weighted Empirical Orthogonal Function Analysis
to ship’s datasets

By Pascal Terray

Laboratoire d’Océanographie Dynamique et de Climatologie, Paris, France

1 . Introduction

Marine ship observations over the vast oceanic regions are crucial to studies of climate
variability on timescales from the seasonal to multidecadal. However, any climatic analysis of this
historical record is hampered by two difficult problems, namely:

- The systematic instrumental errors which contaminate the ship observations. For example, it is
well-known that most of the ship-reports before 1940 contain a large majority of uninsulated
bucket Sea Surface Temperature (SST) measurements which are biased low, while the data after
the 1940s are mostly injection or insulated bucket SST measurements which are biased high
(Bottomley et al., 1990).
- The irregular space-time sampling of the ship-reports. For example, Comprehensive Ocean-
Atmosphere Data Set (COADS) summaries provide meteorological variables in the form of
monthly means for 2° × 2° latitude-by-longitude cells (Woodruff et al., 1987). In such datasets,
the number of observations used to compute a particular monthly mean reflects the number of
ships that cross the box that month. Thus, for a particular month, one cell’s mean may be
computed from hundreds of observations, while others may be based on only a few, and there
may be many cells with missing means due to the poor spatial and temporal coverage outside the
main shipping lanes.

The former problem is particularly relevant to studies of multidecadal variability and has led
researchers to design instrumental correction procedures for the meteorological and oceanic fields
derived from ship-reports and used for assessing climatic changes, e.g. SST and wind.

The latter problem attends almost all climate studies from seasonal to multidecadal timescales,
but is particularly relevant to the interannual to multidecadal. The classical solution to cope with this
problem is to use some kind of objective analysis. This technique spatially smoothes the oceanic
fields by filling the data-void areas with reasonable values which are a linear combination of
climatology and anomalies observed in the neighborhood of each grid’s cell. The drawbacks of this
solution are: First, the need for a very good climatology which has to be constructed before the
analysis. Second, the oceanic fields derived from objective analysis are generally over-smoothed
with the undesirable consequence of a decrease in the spatial resolution of the data.

The main objective of this paper is to present a new multivariate statistical method to deal with
this last problem. The method may be termed weighted Empirical Orthogonal Function (EOF)
analysis or weighted Singular Value Decomposition (SVD) analysis and is a generalization of the
traditional EOF analysis, or more precisely, of truncated SVD analysis. This method accounts for
the irregular space-time sampling of the ship-reports by the use of weights (a weight is associated
with each cell-month entry of the data matrix) in approximating the data matrix by a lower rank
matrix in the least squares sense. In contrast, the traditional EOF analysis assumes that all the cells
have equal weights in solving the same optimization problem.

Weighted EOF analysis has a long history and has been studied in applied statistics and
numerical analysis. In applied statistics, weighted EOF analysis is a particular application of the



Nonlinear Iterative PArtial Least Squares (NIPALS) algorithm introduced by Wold (1966).
NIPALS algorithm has been studied by Wold (1966), Wold and Lyttkens (1969) and Gabriel and
Zamir (1979). In the context of numerical analysis, weighted EOF analysis is one possible
application of separable nonlinear least-squares algorithms. Separable nonlinear least-squares
algorithms have been studied extensively, among others, by Golub and Pereyra (1973), Kaufman
(1975) and Ruhe and Wedin (1980).

The organization of this paper is as follows: first, the formalism of the weighted EOF analysis is
presented and its relationships to traditional EOF analysis are outlined. Second, we illustrate with
some examples how weighted EOF analysis is useful for extracting seasonal, interannual and
multidecadal climatic signals from ship’s datasets such as COADS summaries. Finally, we
highlight the utility of the weighted EOF analysis for different common tasks in meteorology and
oceanography.

2 . Theory

The widespread acceptance of EOFs for data reduction purposes, to aid in determining the
variability of oceanic and atmospheric fields, or to identify coherent modes of atmospheric
parameters suggests that the adaptation of this method to ship’s datasets can provide us an
improved tool to extract climatic signals from such noisy data. However, traditional EOF analysis
is not well-adapted to ship’s datasets since the method gives the same weight to all the data matrix
entries without taking account of the irregular space-time sampling of the ship’s reports when
determining eigenvectors and principal components. Moreover, EOFs and principal components are
not defined if some data are missing.

By contrast, the new method of analysis we will develop takes directly into account these
uncertainties of the data while estimating the EOF model. In order to introduce this new method, it
is first useful to review some of the optimal properties of traditional EOFs. This is a necessary step
to understand the new method. Principal component or EOF analysis has been derived in a variety
of different ways in the meteorological literature, (see, for example the papers by Kutzbach 1967;
Jalickee and Hamilton 1977; or Richman 1986). As noted by Horel (1981) or Terray (1995), all
these derivations of the method can be shown to be equivalent and differ essentially by the
terminology used and the way the results of the analysis are presented. However, among these
various methods of derivation, one of them can be readily extended to handle missing values in the
data or weights as the others do not.

To demonstrate this, let X denote an p×n data matrix consisting of n time observations (columns
of X) for p grid cells or stations (rows of X ). In the complete case, where X  is a full matrix with
no missing values, the “full EOF model” can be expressed as a matrix product, X U.C=  where
U is an p×p orthogonal matrix (Ut.U=I p) whose columns are the eigenvectors of the p×p
symmetric matrix,

R X.X= ( )1
n

t

If the data are centered in rows, R is simply the covariance matrix between the grid’s cells.
Furthermore, the elements in the ith row of C represent time variations associated with the ith
eigenvector of R (Kutzbach, 1967).

One of the most important optimal properties of EOFs, especially for data reduction purposes, is
that maximum inertia of the data matrix is explained by choosing in order the eigenvectors
associated with the largest eigenvalues of R. More precisely, it can be shown that the fraction of



the total inertia, Vk, explained by the eigenvectors associated with the k largest eigenvalues can be
obtained from
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where λ1≥λ2≥ … ≥λl≥… ≥λp≥0  are the eigenvalues of R

In the application of EOFs to highly correlated fields such as those commonly analyzed in
meteorology or oceanography, this means that a large portion of inertia can be accounted for by
retaining only the first few eigenvectors of R. This leads to define a “restricted k EOF model” to
approximate and to study the data. From a geometrical point of view, this restricted k EOF model
can be thought as a method of splitting the data matrix X in the following way
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In this equation, E is the residual error matrix associated with the restricted k EOF model. In

particular, if X  is centered in lines, Eij
2  can be interpreted as the unexplained (by the restricted k

EOF model) residual inertia for the ith station or grid cell and the jth observation.

The optimal properties of EOFs can be stated directly in terms of this restricted k EOF model as
follows: the k-component EOF model forms an optimal approximation to the data matrix in the
sense of least squares. That is, the minimum of
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 on all A∈ℜp×k and all B∈ℜk×n

is obtained by taking the first k columns of U and the first k rows of C as A and B , respectively.
Moreover, this minimum is equal to

2
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This result is known as the Eckart-Young theorem and it may be derived from the SVD of X  (see,
for a proof, Gabriel 1978; or Golub and Van Loan 1996).

In this unusual presentation of the EOF technique within the climate community, but not within
the statistical one (see, Gabriel 1978), the A and B matrix variables are not constrained to be in
some specific formats. It is not necessary for the column vectors of A or the row vectors of B to be
pairwise orthogonal and normalized to unity in order to define the k-component model. Indeed,
such restrictions on the form of the k-component model are not necessary to adjust this model.
Methods for minimizing directly f ( , )A B  without computing the eigenvectors of R or the SVD of
X are available in the numerical analysis literature (e.g. some variations of the iterative power
method, see Golub and Van Loan 1996). In this framework, the normalization used in the
traditional EOF analysis appears more as a convenient way to summarize efficiently, in a statistical
sense, the results than as a computational need. Moreover, orthonormality constraints on A and B
can be relaxed when rotating the EOFs (see Richman 1986) without changing the global form of the
k-component model and its descriptive power (e.g. the partition of inertia of X between the product
A.B and the residual matrix E).



Now let X be a typical ship’s dataset such as COADS 2°lat × 2°long trimmed monthly means for
some area and historical period. In order to take into account the sampling properties of this ship’s
dataset while estimating a k-component model, we may correspondingly seek a minimum of

f ij ij il lj
l

k

ij

* A,B W X A B( ) = −



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2

on all A∈ℜp×k and all B∈ℜk×n

Here, W is an p×n positive weight matrix constructed in such a way that the resulting A and B
matrix variables of the k-component model are defined to emphasize the better-observed aspects of
the data. In particular, for the extreme case of zero sample size, an entry of the data matrix should
play no role in fitting the model; this can be done by assigning zero weights to such cells.

There are several ways to determine this weight matrix in order to take into account that the
monthly means for each grid cell are based on samples of widely varying sizes:

a) The simplest method is to set

Wij  = 1 if Xij  is present

Wij  = 0 if Xij  is missing

This will take care of missing values, but gives the same weight to all non-missing cells in the
data matrix.

b) Another choice is to fit the k-component model with weights proportional to size samples

W ij  = α.Nij

where Nij  is the number of ship observations contributing to the cell’s monthly mean Xij .

c) A more elaborate strategy is to use some smooth function of the number of observations

Wij  = 1 - exp(-Nij  / 6)

where again Nij  is the number of ship observations used in computing X ij . For this particular
weight function, Wij  is in the neighborhood of 1 if Nij>10 and near 0.5 if Nij  equals 6.

d) Still another strategy for constructing the weight matrix is to use the inverse of the variance
or standard error associated with each grid’s cell and month. This information is, for example,
available in the distribution files of COADS (Woodruff et al., 1987).

After the weight matrix is constructed, we have to minimize the least-squares problem stated
above in order to estimate the k-component model. Note that this cannot be done by solving some
eigensystem as in the traditional EOF analysis, and we have to use non-linear least-squares
techniques (Gauss-Newton or Marquardt-Levenberg algorithms) to obtain a solution to our
problem. The only one restriction we imposed on X  for this problem to be solved numerically is
that this matrix must have at least one nonmissing element (Wij  ≠0) in each line and column. The



algorithms used here to minimize f * A,B( )  are a generalization of the techniques described in
Terray (1995).

We first show that the minimization of f * A,B( )  on all A ∈ℜp×k and all B ∈ℜk×n is a
separable nonlinear least-squares problem (Ruhe and Wedin, 1980). This means that the

minimization of f * A,B( )  is a mixed linear-nonlinear least-squares problem where the associated

residual function in ℜp.n is linear in some variables and nonlinear in others. In order to

demonstrate this result, we first define V∈ℜp×n, as V Wij ij= . Then
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Let us now introduce some notations:

- For all α∈ℜm, the symbol diag(α ) is used to represent a diagonal m×m matrix with
diagonal elements, diag(α ) jj , equal to α j .

- For any U matrix, the symbol U.j is used to represent the jth column vector of the U matrix.
- For any U matrix, the symbol Uj. is used to represent the jth row vector of the U matrix.

- For any U matrix, the symbol U+ represents the pseudo-inverse of U (see Golub and Van
Loan, 1996).

- For any U and V matrices, the symbol U#V  is used to mean the element by element product
of the U and V matrices: [U#V]ij =Uij .Vij  .

Now, if we write the matrix V#X as an p.n dimensional vector, we have

f e e et* ( , ) ( , ) ( , ) ( , )A B A B A B A B= =2

where the residual function e(A,B) in ℜp.n is
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In this residual function, we first note that all the lines corresponding to a zero weight (Wij  =0)
can be eliminated when evaluating this residual function in real computations. The same is true for
all the equations of this section. Then,
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From this formulation of our nonlinear least-squares problem, it is clear that we have a
separable minimization problem since for a fixed A matrix we have to solve a linear least-squares
problem to determine b. The solution of this linear least-squares problem for a fixed A matrix is

b F y= +( )A

More precisely, if we take into account the block structure of F(A), we observe that the best
choice of B for a given A matrix is obtained by solving n independent linear least-squares
problems and B.j , for j=1,...,n, can be calculated by

B A W A A W X. . . .( ) ( )j
t

j
t

j jdiag diag= [ ]−1
if diag(V.j)A is a regular matrix

or

B V A V X. . . .( ) ( # )j j j jdiag= [ ]+
if diag(V.j)A is a rank deficient matrix

Inserting now b in f * A,B( ) , we obtain a new nonlinear functional involving only the A matrix

ψ ( ) ( ) ( ) ( ) ( ).A A A I A A= − = −{ }+ +y F F y F F yp n

2 2

This modified functional can be termed a variable projection functional since the matrix in
braces is an orthogonal projector involving only the A variable (Golub and Pereyra, 1973). Again,
if we take into account the block structure of F(A), we obtain an alternative formulation of this
nonlinear functional which is more useful for computational purposes

ψ ( ) ( ) ( ) ( # ). . . .A I V A V A V X= − [ ][ ]{ }+

=
∑ p j j j j
j

n

diag diag
1

2

This formulation of our nonlinear least-squares problem shows that the minimization of

f * A,B( )  can be separated in two steps. Once a A matrix has been obtained by minimizing

ψ(A), the B matrix can be obtained by solving n independent linear least-squares problems. The

rational for employing this separation of variables to minimize f * A,B( )  is given by a theorem
proved by Golub and Pereyra (1973). This theorem shows under some differentiability conditions



that if 
∧
A  is a critical point (or a global minimizer) of ψ(A), and B

∧
 is calculated by solving n

independent linear least-squares problems as above, then (
∧
A ,

∧
B) is a critical point (or a global

minimizer) of f * A,B( ) .

Methods for minimizing ψ(A) are termed variable projection algorithms and are given by Golub
and Pereyra (1973), Kaufman (1975), and Ruhe and Wedin (1980). Their advantages are that they

usually solve mixed linear-nonlinear least-squares problems like f * A,B( )  in less time and fewer
function evaluations than standard nonlinear least-squares codes, and that no starting estimate of
the linear variable B is required. In the context of weighted EOF analysis, they offer also other
advantages as we will see below. Our implementation codes are more akin to the Gauss-Newton
algorithms of Ruhe and Wedin (1980) with some important adaptations due to space memory
limitations and for taking advantage of the sparse and structured derivatives of the functional ψ(A)
to reduce the CPU time. For more details about the difficult numerical problem involved, the
reader is referred to the above publications.

Now let us consider in some details how to compute the derivative of f * A,B( )  efficiently. It

is also possible to compute the derivative of ψ(A) (Golub and Pereyra, 1973; Ruhe and Wedin,
1980), however in our application this derivative is not used directly and its computational cost is
much higher. We first state some well-known results:

Suppose that we have a (non)linear least-squares problem

ϕ( ) ( ) ( ) ( )x e x e x e xt= =2

The derivative of the object function ϕ is

ϕ' ( ) ' ( ) ( )x e x e xt= 2

where ϕ’  and e’ are the derivatives of ϕ and e, respectively. Now, if the residual function e
is of the form

e x y F x( ) ( )= −

where y∈ℜq is a constant vector and F a function of x∈ℜm. We have
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e x F x' ( ) ' ( )= −

where F’(x) is the q×m matrix of partial derivatives of F and
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ϕ ' ( ) ' ( ) ( ) ( )x F x F x F x yt t= −[ ]2 '



where ϕ’(x) is a m dimensional vector and is simply the gradient of ϕ. In the simple case of
a linear least-squares problem, we have
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F x x( ) = G and
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e x' ( ) = −G

where G is a q×m matrix and the derivative of ϕ is simply

ϕ' ( )x x yt t= −[ ]2 G G G

Now, we have

f e y F b* ( , ) ( , ) ( )A B A B A= = −2 2

and the matrix of derivatives of the residual function e(A,B) with respect to b is simply –F(A) and

is very sparse with only k elements in each row. Finally, the derivative of f * A,B( )  with respect
to b is easy to compute with the above results
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For computing the derivative of f * A,B( )  with respect to A , we first note that the role of A

and B in f * A,B( )  are interchangeable. Consequently both A and B occur linearly in f * A,B( )
and this functional may also be written as follows:
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Now the derivative of f * A,B( )  with respect to a is also easy to compute
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In any of the weighted EOF analyses presented in this paper the Euclidean norm of the gradient

of f * A,B( )  has been reduced by many orders of magnitude, thereby suggesting that at least a

local minimum of the functional f * A,B( )  has been obtained in each case.

After the nonlinear least-squares problem, minimizing f * A,B( ) , is solved, it is an easy task
to obtain suitable orthonormalization of the A and B matrices of the weighted k-component model
similar to the traditional ones in the restricted k EOF model by computing the SVD of the A.B
product. Note that there is no need to compute the A.B  product in this final computation since the
SVD of this product can be easily deduced from the two smallest SVD of A and B , respectively.
Let

A.B U V= ˆ ˆ ˆ
k k k

tΣ
be the SVD of A.B. Where

Ûk is the matrix formed by the first k eigenvectors of (AB).(AB)t  stored columnwise;

V̂k  is the matrix formed by the first k eigenvectors of (AB)t.( AB) stored columnwise;

Σ̂k  is a k×k diagonal matrix whose diagonal elements are the singular values, e.g. the square

roots of the first k eigenvalues of (AB).(AB)t and (AB )t.( AB) arranged in decreasing
order.

Note that this SVD has no more than k terms with a singular value distinct from zero since A.B
is of rank ≤k. With these notations, the first k “principal components” of the weighted EOF

analysis are just 
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ˆ ˆΣk k
tV  and the first k “eigenvectors” may be defined as Ûk  if the lines and

columns of X referred to stations and time observations, respectively.

Finally, to get some estimate of the percentage of inertia explained by each principal component
of the weighted EOF model from the singular values, µq, of the A.B product, we can compute the
statistics
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The numerator in the right hand side of this equation represents the variance of the qth estimated
principal component, while the denominator is the sum of the weighted variance of the p variables.
The mutual consistency of these k individual statistical estimates can be checked with the following
statistic
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I tot = 2 2
V AB V X# / #

This last ratio gives the true percentage of the weighted inertia of X  explained by the k-
component model in the weighted EOF analysis. This important geometrical property holds since it
is readily observed that we have the equalities
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2 2 2
V X V AB V X AB. . . . . . .# # #j j j j j j j= + -( ) for j=1 to n

when a separable nonlinear least-squares algorithm is used to minimize f * A,B( ) . By summing
all these equalities for j=1 to n, we obtain
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2 2 2
V X V AB V X AB# # #= + -( )

The left-hand side of this equation is the weighted inertia of X, while the first term in the right-
hand side is the weighted inertia of X  explained by the k-component model. Consequently, Itot
gives the true fraction of the weighted inertia of X described by the weighted EOF analysis with k
components.

3 . Examples

In order to illustrate the application of this technique and to show that this method allows us to
analyze the natural variability exhibited by data of varying reliability, two classical ship’s datasets
were analyzed using the weighted EOF technique.

a. Example 1

The first example is a weighted EOF analysis of the January 1993 version of the Global Ocean
Surface Temperature Atlas (GOSTA, Bottomley et al., 1990). The data in this atlas are presented as
monthly anomalies on a 5° latitude × 5° longitude grid wherever data existed. The data were
extracted for the period from 1900 to 1991. The weight function used in this analysis is simply:
Wij  = 1 if X ij  is present and Wij  = 0 if X ij  is missing. Note that this is not a very good choice
since this will give the same weight to all non-missing data, but there is no information on the
number of ship-reports used to compute monthly anomalies for individual grid cells in the
distribution files of GOSTA.
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Figure 1: GOSTA global SST weighted EOF analysis (rank=2). Estimated SST EOF1 amplitude.



With this weight function, a two-components model was estimated. At the end of the iterations,
the two-components model explains a little less than 16% of the total weighted inertia of the data.
Note that the norm of the gradient of the objective function has been decreased by several orders of
magnitude from the initialization to the end of the algorithm.

The first estimated principal component is showed in Figure 1. This time series as presented has
unit variance. The associated eigenvector is shown in Figure 2. This eigenvector has been
multiplied by the square root of its associated eigenvalue. In this way, the spatial loadings depicted
in Figure 2 can be interpreted as covariance coefficients between the grid’s cells and the time series
plotted in Figure 1.

Interdecadal changes of SST are particularly evident in this first principal component. The time
series suggests a cold start of the twentieth century with a sudden warming between about 1920
and 1940. After World War II, the time series suggests a slight cooling until 1976. After this date,
a slow but regular warming took place. Indeed, this first estimated principal component is very
similar to the time series of global and hemispheric temperature anomalies presented by Parker et al.
(1994). However, an important discrepancy between our time component and the estimates of
Parker et al. (1994) is that recent decades are not substantially warmer than the preceding ones on
Figure 1. Note also that the first part of this time series is much more noisy than the last part; this
may be due to our choice of the weight function since we gave the same weight to all data entries
with non-missing values in the atlas without taking account of the number of ship-reports used to
construct the anomalies. In the same fashion, the strongly negative time coefficients during World
War II are due to high and isolated positive monthly anomalies in the central and eastern Pacific
which were likely computed using very few ship observations. We hypothesize that a much better
job can be done about these two problems if we use a more appropriate weight function.
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Figure 2: GOSTA global SST estimated EOF1 (10.6%, rank=2).

The spatial pattern associated with this time series suggests that these decadal SST variations are
well-marked in the midlatitude North Pacific and in parts of the middle-to high-latitude Southern
Ocean (Figure 2). By contrast, the areas in the central and eastern equatorial Pacific and also in the
South Indian Ocean are negatively correlated to this time series. It may be pointed that this fact is



also evident in the global fields of decadal annual surface temperature anomalies presented by
Parker et al. (1994).

The second estimated principal component is shown in Figure 3. A strong interannual signal
seems to be present in this time series with a time-scale of about 3 to 4 years, especially in recent
decades. A sudden warming may also be noticed after 1976. The estimates during World War II are
again unreliable.
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Figure 3: GOSTA global SST weighted EOF analysis (rank=2). Estimated SST EOF2 amplitude.
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Figure 4: GOSTA global SST estimated EOF2 (6.9%, rank=2)



The spatial loadings associated with this time series exhibit the well-known ENSO signature
with a warm tongue in the central and eastern Pacific, and with smaller amplitudes and opposite
phase in the middle latitude North and South Pacific (Figure 4). Some positive areas also are
noticeable in the Indian Ocean. Thus, this second principal component and its associated spatial
pattern suggest that recent warmings may have some connections with ENSO and a sudden change
of the climate mean state which took place in the pacific regions during 1976.

b. Example 2

The second example is taken from the COADS trimmed monthly mean summaries (Woodruff et
al. 1987). SSTs over the Indian Ocean (41°S-31°N and 29°-121°E) were extracted for the period
1900 to 1992. Note that these data are not anomalies but estimates of monthly mean SST on a 2°
latitude × 2° longitude grid.

The weight matrix used in this analysis was constructed with the smooth function of the number
of observations contributing to each cell’s monthly mean value discussed in Section 2. Again, a
two-component model was estimated from the data by the weighted EOF technique. These two
components explain more than 99.8% of the total weighted inertia.

The first principal component is, to a very good approximation, sinusoidal with an annual
period (Figure 5). An interdecadal trend seems also to be present in this time series with a sudden
warming after 1976. The same results may be obtained by averaging the data for the whole Indian
Ocean (Terray, 1994). The associated spatial pattern exhibits a north to south gradient of SST
(Figure 6). Note also that SST is colder off the African coast.
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Figure 5: COADS Indian Ocean SST weighted EOF analysis (rank=2). Estimated SST EOF1 amplitude.
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Figure 6: Indian Ocean SST estimated EOF1 (98.6%, rank=2).

The second principal component (Figure 7) is still marked by an annual period but its spatial
pattern (Figure 8) shows a characteristic phase difference between North and South which adds an
annual modulation to the first principal component and its associated eigenvector.
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Figure 7: COADS Indian Ocean SST weighted EOF analysis (rank=2). Estimated SST EOF2 amplitude.
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Figure 8: Indian Ocean SST estimated EOF2 (1%, rank=2).

In order to present in a more traditional manner the annual signal described by these two time
series and their associated spatial loadings, a climatology of Indian Ocean SSTs was computed
from the rank 2 weighted approximation of the data given by the two-component model. This
climatology may then be compared to a traditional climatology obtained from an objective analysis
in order to show the coherence of the results.

The mean SST fields for January and July obtained from the rank 2 weighted approximation of
the data are shown in Figures 9 and 10.

SST patterns in the January mean field are dominated by highest temperatures (28°C) in the
eastern Indian Ocean between the equator and about 15°S and also near Madagascar. Strong SST
gradients are evident over the higher latitudes of the southern Indian Ocean.

The July mean SST fields show the effect of upwelling and monsoon cooling near the African
coast associated with the Somali jet and to the south of Peninsular India while other parts of the
North Indian Ocean are still dominated by warmer SST. All these patterns are found in classical
atlases (Hastenrath and Lamb, 1979; Bottomley et al., 1990).
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Figure 9: SST mean (COADS) January.
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Figure 10: SST mean (COADS) July.



4 . Conclusions

EOF analysis has been widely used to explore the spatial and temporal relationships within large
geophysical datasets. This success can be explained by the ability of EOFs to compress the main
modes of variability in the original dataset into a few time series and associated spatial patterns.
Indeed, the EOF technique can be thought of mathematically as a method for approximating data
matrices by matrices of lower rank since conventional EOFs provide the best approximation of a
data matrix in the sense of least-squares under the assumption that all the data entries have the same
weight equal to one.

This paper presents an extension of conventional EOFs when weights are assigned to data
entries in the original dataset. The new method which may be termed weighted EOF analysis is
designed to fit a lower rank least-squares approximation to a data matrix with a general choice of
positive weights. If the weight matrix is carefully constructed, this new tool allows us to analyze
the natural variability exhibited by data of varying reliability. It must also be emphasized that the
proposed method directly takes care of missing values by assigning zero weights to such data
entries.

Indeed, there are many situations in which weighted EOF analysis is more appropriate than
conventional EOFs. In particular, weighted EOF analysis is shown to be a useful tool for extracting
climatic signals from ship’s datasets which are characterized by a strong irregular space-time
sampling.

In the context of ship datasets with irregular space-time sampling, weighted EOF analysis can be
particularly useful for the following purposes:

- accurate and robust detection of climate signals (annual, interannual and multidecadal) on a
grid-mesh, directly from the ship observations;
 - blended analysis of marine and land datasets;
- interpolation of missing values;
- derivation of climatologies and smooth oceanic fields;
- sensitivity experiments (e.g. by using various weight matrices with the same dataset).

With this new technique, it is also possible to design robust versions of many multivariate
analysis procedures used for climate studies, including:

- Principal Component Analysis (PCA);
- Singular Spectrum Analysis (SSA) and Multi-channel Singular Spectrum Analysis (MSSA);
- Canonical Correlation Analysis (CCA);
- Singular Value Decomposition Analysis (SVD).

Finally, it is possible to derive powerful nonlinear statistical prediction algorithms from
weighted EOF analysis as well as new algorithms for estimating missing values. These other
applications of weighted EOF analysis will be reported in detail elsewhere.
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