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Application of Weighted Empirical Orthogonal Function Analysis
to ship’s datasets

By Pascal Terray

Laboratoire d’Océanographie Dynamique et de Climatologie, Paris, France

1. Introduction

Marine ship observationsover the vast oceanic regions are crucial to studies of climate
variability on timescales frorthe seasonato multidecadalHowever, any climatic analysisof this
historical record is hampered by two difficult problems, namely:

- The systematic instrumental errors which contaminate the ship observatoesample,it is

well-known that mostof the ship-reportsbefore 1940 contain a large majority of uninsulated
bucket Sea Surface Temperature (SST) measurements which are biaseldilbihe dataafter
the 1940sare mostly injection or insulatedbucket SST measurementshich are biasedhigh

(Bottomley et al., 1990).

- Theirregular space-timesamplingof the ship-reports.For example,ComprehensiveéOcean-
AtmosphereData Set (COADS) summariesprovide meteorologicalvariablesin the form of

monthly means for 2R 2° latitude-by-longitudeells (Woodruff et al., 1987). In suchdatasets,
the numberof observationsisedto computea particularmonthly meanreflects the numberof
ships that crossthe box that month. Thus, for a particular month, one cell's mean may be
computed from hundreds observationswhile othersmay be basedon only a few, andthere
may be many cells with missing means due to the poor spatial and tesg@@geoutsidethe
main shipping lanes.

The former problemis particularly relevantto studiesof multidecadalvariability and has led
researcherfo designinstrumentalcorrectionproceduredor the meteorologicabnd oceanicfields
derived from ship-reports and used for assessing climatic changes, e.g. SST and wind.

The latter problemattendsalmostall climate studiesfrom seasonato multidecadaltimescales,
but is particularly relevant to the interannual to multidecadal. The classical solution teitogas
problemis to usesomekind of objectiveanalysis.This techniquespatially smoothesthe oceanic
fields by filing the data-void areaswith reasonablevalueswhich are a linear combination of
climatology and anomalies observed in the neighborhood of each grid’s cetiravileacksof this
solutionare:First, the needfor a very good climatology which hasto be constructedoefore the
analysis.Second the oceanicfields derivedfrom objective analysisare generally over-smoothed
with the undesirable consequence of a decrease in the spatial resolution of the data.

The mainobjectiveof this paperis to presenta new multivariatestatisticalmethodto dealwith
this last problem. The methodmay be termed weighted Empirical Orthogonal Function (EOF)
analysisor weightedSingularValue Decomposition(SVD) analysisandis a generalizatiorof the
traditional EOFanalysis,or more precisely,of truncatedSVD analysis.This methodaccountgor
the irregular space-time samplinfjthe ship-reportsoy the use of weights(a weightis associated
with eachcell-monthentry of the datamatrix) in approximatingthe datamatrix by a lower rank
matrix in the least squares sense. In contrastyddéional EOF analysisassumeshat all the cells
have equal weights in solving the same optimization problem.

Weighted EOF analysishas a long history and has been studied in applied statistics and
numericalanalysis.In appliedstatistics,weighted EOF analysisis a particular applicationof the



Nonlinear Iterative PArtial Least Squares(NIPALS) algorithm introduced by Wold (1966).
NIPALS algorithm has beestudiedby Wold (1966), Wold and Lyttkens (1969) and Gabrieland
Zamir (1979). In the context of numerical analysis, weighted EOF analysisis one possible
application of separablenonlinear least-squareslgorithms. Separablenonlinear least-squares
algorithms have beestudiedextensively,amongothers,by Golub and Pereyra(1973), Kaufman
(1975) and Ruhe and Wedin (1980).

The organization of this paper is as follows: first, the formalism of the weigl@&danalysisis
presentedandits relationshipgo traditional EOF analysisare outlined. Second we illustrate with
some exampleshow weighted EOF analysisis useful for extracting seasonalinterannualand
multidecadal climatic signals from ship’s datasetssuch as COADS summaries.Finally, we
highlight the utility of the weightedEOF analysisfor different commontasksin meteorologyand
oceanography.

2. Theory

The widespreadacceptancef EOFsfor data reduction purposes,to aid in determiningthe
variability of oceanic and atmosphericfields, or to identify coherentmodes of atmospheric
parameterssuggeststhat the adaptationof this methodto ship’s datasetscan provide us an
improved tool toextractclimatic signalsfrom suchnoisy data.However, traditional EOF analysis
is not well-adapted to ship’s datasets siti@emethodgivesthe sameweightto all the datamatrix
entrieswithout taking accountof the irregular space-timesampling of the ship’s reports when
determining eigenvectors and principal components. Moreover, EOFs and principal coma@nents
not defined if some data are missing.

By contrast,the new methodof analysiswe will develop takes directly into accountthese
uncertainties of the data while estimating the EOF madedrderto introducethis new method,it
is first useful to review some of the optimal properties of traditional ETks.is a necessangtep
to understand the new method. Principal compooe&OF analysishasbeenderivedin a variety
of different waysin the meteorologicaliterature,(see,for examplethe papersby Kutzbach1967;
Jalickeeand Hamilton 1977; or Richman1986). As notedby Horel (1981) or Terray (1995), all
thesederivationsof the method can be shown to be equivalentand differ essentiallyby the
terminologyusedandthe way the resultsof the analysisare presentedHowever, amongthese
various methods of derivation, one of them can be readily exteadehdlemissingvaluesin the
data or weights as the others do not.

To demonstrate this, &t denote ampxn data matrix consisting @ftime observationgcolumns
of X) for p grid cells or stations (rowsf X). In the completecase ,whereX is a full matrix with

no missing values, théull EOF model” canbe expressedisa matrix product, X = U.C where
U is an pxp orthogonalmatrix (Ut.U=I p) whose columns are the eigenvectorsof the pxp
symmetric matrix,

R =(3)X.X'

If the dataare centeredin rows, R is simply the covariancematrix betweenthe grid’s cells.
Furthermore the elementsin the ith row of C representime variationsassociatedvith the ith
eigenvector oR (Kutzbach, 1967).

One of the most important optimal properties of EOFs, especially foraethiationpurposesjs
that maximum inertia of the data matrix is explained by choosingin order the eigenvectors
associatedvith the largesteigenvalue®f R. More precisely,it canbe shownthat the fraction of



the total inertiaVk, explained by theigenvectoraissociateavith the k largesteigenvaluesanbe
obtained from

min(p,n)

k
V, = Z/\l/ Z)h whereA12Ap2 ... 2\|2... 2Ap20 are the eigenvalues Bf
=1 =1

In the applicationof EOFsto highly correlatedfields such as those commonly analyzedin
meteorologyor oceanographythis meansthat a large portion of inertia can be accountedor by
retainingonly the first few eigenvectorof R. This leadsto definea “restrictedk EOF model” to
approximate and to studiie data.From a geometricalpoint of view, this restrictedk EOF model
can be thought as a method of splitting the data métiixthe following way

Xi' =

j Ui Cyj +E;

TN~

In this equation,E is the residualerror matrix associatedvith the restrictedk EOF model. In

particular,if X is centeredn lines, Eﬁ canbe interpretedas the unexplained by the restrictedk
EOF model) residual inertia for ti station or grid cell and th#h observation.

The optimal properties of EOFs can be stated directigrimsof this restrictedk EOF modelas
follows: the k-componentEOF model forms an optimal approximationto the data matrix in the
sense of least squares. That is, the minimum of

: f
f(A,B)=|X - A-B||2 = %%(ij - glAn B, ] onallA0OP*K and allBOOK*N

is obtained by taking the firktcolumns ofU andthefirst k rows of C asA andB, respectively.
Moreover, this minimum is equal to

min(p,n)

Ef="35

This result is known as the Eckart-Young theorem anthit be derivedfrom the SVD of X (see,
for a proof, Gabriel 1978; or Golub and Van Loan 1996).

In this unusual presentation of tB®F techniquewithin the climate community,but not within
the statisticalone (see,Gabriel 1978), the A and B matrix variablesare not constrainedo be in
some specific formats. It is not necessary for the column vectér®othe row vectors d@ to be
pairwiseorthogonaland normalizedto unity in order to define the k-componentmodel. Indeed,
suchrestrictionson the form of the k-componentmodel are not necessaryto adjustthis model.

Methods for minimizing directlyf (A, B) without computing the eigenvectorsRfor the SVD of

X are availablein the numericalanalysisliterature (e.g. somevariationsof the iterative power
method, see Golub and Van Loan 1996). In this framework, the normalization used in the
traditional EOF analysis appears more as@venientway to summarizeefficiently, in a statistical
sense, the results than ascnputationaheed.Moreover,orthonormalityconstraintson A and B

can be relaxed when rotating the EOFs (see Richman 1986) without changing the globattierm of
k-component model and its descriptive power (e.g. the partition of ineiidefweernhe product

A.B and the residual matri).



Now letX be a typical ship’s dataset such as COADS 2°Efiong trimmedmonthly meansfor
some area and historical period. In order to takeaccountthe samplingpropertiesof this ship’s
dataset while estimatingkecomponent model, we may correspondingly seek a minimum of

7

K
f (A’ B) = Z\Nij §<ij - ZAiIBIj E on allAOOP*K and allBOOk*n
1 =1

Here, W is an pxn positive weight matrix constructedn sucha way that the resultingA and B

matrix variables of thk-component model aefinedto emphasizehe better-observedspectof
the data. In particular, for the extrermaseof zero samplesize, an entry of the datamatrix should
play no role in fitting the model; this can be done by assigning zero weights to such cells.

Thereare severalways to determinethis weight matrix in order to take into accountthat the
monthly means for each grid cell are based on samples of widely varying sizes:

a) The simplest method is to set
Wij = 1if Xjj is present
Wij = 0 if Xjj is missing

This will take careof missingvalues,but givesthe sameweight to all non-missingcellsin the
data matrix.

b) Another choice is to fit thk-component model with weights proportional to size samples
Wij = a.Nij
WhereNij is the number of ship observations contributing to the cell’s monthly Kigan

c) A more elaborate strategy is to use some smooth function of the number of observations
Wijj=1- exp(Nij / 6)

WhereagainNij is the numberof ship observationsisedin computingX ij- For this particular
weight function Wij; is in the neighborhood of 1 Nj;>10 and near 0.5 Nijj equals 6.

d) Still anotherstrategyfor constructingthe weight matrix is to usethe inverseof the variance
or standard erroassociatedvith eachgrid’s cell and month. This informationis, for example,
available in the distribution files of COADS (Woodruff et al., 1987).

After the weight matrix is constructedwe haveto minimize the least-squaregroblem stated
above in order to estimate tkecomponenimodel. Note that this cannotbe doneby solving some
eigensystemas in the traditional EOF analysis,and we have to use non-linear least-squares
techniques(Gauss-Newtonor Marquardt-Levenbergalgorithms) to obtain a solution to our
problem.The only onerestrictionwe imposedon X for this problemto be solvednumericallyis

that this matrix mushaveat leastone nonmissingelement(Wijj #0) in eachline and column.The



algorithmsusedhereto minimize f*(A, B) are a generalizationof the techniquesdescribedin
Terray (1995).

We first show that the minimization of f*(A, B) onall A OOP*K andall B O0OK*N s a
separablenonlinear least-squaresproblem (Ruhe and Wedin, 1980). This means that the

minimization of f (A, B) is a mixed linear-nonlinedeast-squareproblemwherethe associated
residual function in OP-N s linear in some variables and nonlinear in others. In order to

demonstrate this result, we first defii@P*n, asV; = W, . Then
: : f
F(AB)=Y OV (X, - ZA” By)H
1 =1
: f
= X = V.A.).B,
2 @4] ij ZL ( ijr il ) lj )E

Let us now introduce some notations:

- For all aOM, the symbol diag(a) is usedto representa diagonal mxm matrix with
diagonal elementgliag(a);, equal toQ;.

- For anyU matrix, the symbol j is used to represent tfte column vector of th& matrix.

- For anyU matrix, the symboUj. is used to represent tfte row vector of thé&) matrix.

- For any U matrix, the symbolU™ representshe pseudo-inversef U (seeGolub and Van
Loan, 1996).

- For anyU andV matrices, thesymbolU#V is usedto meanthe elementby elementproduct
of theU andV matrices: D#V]jj =Ujj.Vjj .

Now, if we write the matri/#X as arp.ndimensional vector, we have
f'(A.B) =|e(A,B)| =&(A,B)'e(A,B)

where the residual functiafA,B) in OP-Nis

Ov,#X ;0 Ciag(V)A 0O 0 0 o OB,CL
B/ a#X 15 Miag(Vy) o
o . E E 0 . 0 0 0 1. E
eAB) =2V #X ;35 0 0 dagvj)A 0 0 EB;L
0 0 E 0 0 0 . o, C
V#X,0H 0 0 0 0 dagV)ARh,F

In this residual function, we first note that all the lines corresportdiagzeroweight (Wij =0)

can be eliminated when evaluating this residual function ircegaputationsThe sameis true for
all the equations of this section. Then,



f'(A,B)=|y - F(A)b|

where
V. #X T diag(V,)A O 0 0 0 C B.C
O . C oo . 0 0 o =k 0. C
C 0 . L C
y:%/_j#x,j[, F(A)=O 0 0 diag(V,)A 0 0 L b=%.j[
0O, C U9 0 0 . 0 0. C
O C 0 , C 0 C
OV, #X C H O 0 0 0 diag(V,)AE B,LC

From this formulation of our nonlinear least-squareproblem, it is clear that we have a
separable minimization problem since &fixed A matrix we haveto solve a linear least-squares
problem to determinbk. The solution of this linear least-squares problem for a #ixethtrix is

b=F(A)"y
More precisely,if we takeinto accountthe block structureof F(A), we observethat the best

choice of B for a given A matrix is obtainedby solving n independentinear least-squares
problems and j , forj=1,...n, can be calculated by

B, = [A‘diag(W_j )A]_lAtdiag(W_j X, if diag(V j)A is a regular matrix
or

B, = [diag(V. j )A]+(V. H#X ) if diag(V j)A is a rank deficient matrix

Inserting now b inf (A, B), we obtain a new nonlinear functional involving only genatrix

W) =y~ FRFR' Y =[{1,. - FAFA) ]

This modified functional can be termeda variable projection functional since the matrix in
braces is an orthogonal projector involving only Aheariable (Golub anéereyra, 1973). Again,
if we takeinto accountthe block structureof F(A), we obtain an alternativeformulation of this
nonlinear functional which is more useful for computational purposes

2

W(A) = ZH{| : —[diag(V.j)A][diag(V.j)A]+}(V.j#X_J.)

This formulation of our nonlinear least-squaregproblem shows that the minimization of
f (A, B) can be separatedn two steps.Oncea A matrix has beenobtainedby minimizing
W(A), the B matrix canbe obtainedby solving n independentinear least-squareproblems.The

rationalfor employingthis separatiorof variablesto minimize f (A, B) is given by atheorem
proved by Golub and Pereyra (1973). This theosimwsundersomedifferentiability conditions



O
that if E\ is a critical point (or a global minimizer) of Y(A), and B is calculatedby solving n
independentinear least-squareproblemsas above, then (E\ , Lg,) is a critical point (or a global
minimizer) of f*(A, B).

Methods for minimizingp(A) are termed variable projection algorithms andgiaven by Golub
and Pereyra (1973), Kaufman (1975), and Ruhe and Wedin (1980). Their advantdgatthey

usually solve mixed linear-nonlinear least-squares problemsflil(é\, B) in less timeandfewer

function evaluationghan standardnonlinearleast-squaresodes,andthat no starting estimateof
the linear variableB is required.In the contextof weighted EOF analysis,they offer also other
advantagesswe will seebelow. Our implementationcodesare more akin to the Gauss-Newton
algorithmsof Ruhe and Wedin (1980) with someimportantadaptationdue to spacememory

limitations and for taking advantage of the sparse and strualeredtivesof the functional (A)

to reducethe CPU time. For more details about the difficult numerical problem involved, the
reader is referred to the above publications.

Now let us consider in some details how to complgederivative of f (A, B) efficiently. It

is alsopossibleto computethe derivativeof Y(A) (Golub andPereyra,1973; Ruhe and Wedin,

1980), however in our application thderivativeis not useddirectly andits computationakostis
much higher. We first state some well-known results:

Suppose that we have a (non)linear least-squares problem

B(x) = (3| = e(x)'e(x)
The derivative of the object functignis
¢' (x) = 2€ (x)"&(x)

where¢’ ande’ are the derivatives a@f ande, respectively. Now, if the residual functien
is of the form

&(x) =y - F(x)

where Y104 is a constant vector aida function of XxJJ™M. We have
e(x)=-F'(x)

whereF’(x) is thegxm matrix of partial derivatives d¥ and

¢ ()= F ()'F)-F (4)'y]



where¢’(x) is amdimensional vector and is simply the gradienp.oih the simple case of
a linear least-squares problem, we have

F(X)=GX  and

whereG is agxm matrix and the derivative @fis simply

¢ (x) = 2/G'Gx - G'y|

Now, we have

f'(A,B) = |e(A,B)|* =|ly - F(A)b|’

e(xX)=-G

and the matrix of derivatives of the residual funce(h,B) with respect td is simply —F(A) and

is very sparse with only elements in each row. Finally, tderivativeof f (A, B) with respect
to b is easy to compute with the above results

" (A,B)

=2[F(A)'F(A)b~F(A)'Y]

For computingthe derivativeof f (A, B) with respecto A, we first notethat the role of A

andB in f (A, B) are interchangeable. Consequently WotndB occurlinearlyin f™ (A, B)
and this functional may also be written as follows:

f'(A,B) =|z- G(B)a)’

where

V. #X, ) C [diag(V, )B' 0
g( L H#X, ) - L 9(01,)
o - C 0

z=0(V,#X, )L, G&®=0 o

U L R 0
O C O
E(vp,#xp)E H o 0

0 diag(V,)B!

0
0
0

0

0 diagV,)B"

Now the derivative off (A, B) with respect ta is also easy to compute

" (A,B)
da

=2[G(B)'G(B)a~-G(B)'Z]

C A )L
C E(l')[
NI
, a=[A
c %(")[
C O - C
- HaE



In any of the weighted EOF analyses presented in this flagEuclideannorm of the gradient
of f (A, B) hasbeenreducedby manyordersof magnitude therebysuggestinghat at leasta

local minimum of the functionaf (A, B) has been obtained in each case.

After the nonlinearleast-squareproblem, minimizing f (A, B), is solved,it is an easytask

to obtain suitable orthonormalizationtbie A and B matricesof the weightedk-componenimodel
similar to the traditional onesin the restrictedk EOF model by computingthe SVD of the A.B

product. Note that there is no needctimputethe A.B productin this final computationsincethe
SVD of this productcan be easily deducedrom the two smallestSVD of A andB, respectively.
Let

— 11 < st
be the SVD ofA.B. Where

~

Ukis the matrix formed by the fir&teigenvectors ofAB).(AB)! stored columnwise;

~

Vk is the matrix formed by the firkteigenvectors ofAB)L.( AB) stored columnwise;

Zk is akxk diagonal matrixwhosediagonalelementsare the singularvalues,e.g. the square
roots of the first k eigenvaluesof (AB).(AB)t and (AB)L.( AB) arrangedin decreasing
order.

Note that this SVD has no more tHaterms with a singular value distinct frararosinceA.B
is of rank <k. With thesenotations,the first k “principal components”of the weighted EOF

. : s \t , : , Y :
analysisarejust 2V andthe first k “eigenvectors”’may be defined as Uk if the lines and
columns ofX referred to stations and time observations, respectively.

Finally, to get some estimate of the percentage of inexp#inedby eachprincipal component
of the weighted EOF model from the singular valpo]s,of theA.B product, we carromputethe

statistics
(e [n n N
Iy = (ug/n)/EZl Ezlwuxﬁ/glwij % for 1<=g<=k

The numerator in the right hand side of this equation represents the variancetlofetstenated
principal component, while the denominator is the sum of the weighted variancepofahables.
The mutual consistency of thdsendividual statistical estimates can be checked wittidhewing
statistic

2 2
Lot =|[V#AB||“/|[V#X]|

This last ratio gives the true percentageof the weighted inertia of X explainedby the k-

component model in the weighted EOF analysis. This important geometrical property holdts since

is readily observed that we have the equalities



v x| =|v | v #(x -AB_J-)HZforj=1 ton

when a separable nonlinear least-squalgsrithmis usedto minimize f (A, B). By summing
all these equalities fgr1 ton, we obtain

[vax|?=[v#aB|* +|v#(x - AB)|”

The left-hand side of this equation is the weighted inert¥, efhile the first termin the right-
handsideis the weightedinertiaof X explainedby the k-componentmodel. Consequently)iot

gives the true fraction of the weighted inerti&Xoflescribed byhe weightedEOF analysiswith k
components.

3. Examples

In order to illustrate thapplicationof this techniqueandto show that this methodallows us to
analyzethe naturalvariability exhibitedby dataof varying reliability, two classicalship’s datasets
were analyzed using the weighted EOF technique.

a. Example 1

The first example is aeightedEOF analysisof the Januaryl993versionof the Global Ocean
Surface Temperature Atlas (GOSTA, Bottomley et al., 1990). The data in this ajmesmetedhs

monthly anomalieson a 5° latitude x 5° longitude grid whereverdata existed. The data were
extractedfor the periodfrom 1900to 1991. The weight function usedin this analysisis simply:
Wij = 1if Xjj is presenandWijj = 0 if Xijj is missing.Note thatthis is not a very good choice
sincethis will give the sameweight to all non-missingdata, but thereis no information on the
number of ship-reportsusedto compute monthly anomaliesfor individual grid cells in the
distribution files of GOSTA.

Figure 1: GOSTA global SST weighted EOF analysis (rank=2). Estimated SST EOF1 amplitude.
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With this weight function, a two-components model wasmatedAt the end of the iterations,
the two-components modekplainsa little lessthan16% of the total weightedinertia of the data.
Note that the norm of the gradient of the objective function hasdexrpasedby severalordersof
magnitude from the initialization to the end of the algorithm.

The first estimated principal component is showed in Figure 1. Thisstimesas presentechas
unit variance.The associatedeigenvectoris shown in Figure 2. This eigenvectorhas been
multiplied by the square root of its associated eigenvalubidmway, the spatialloadingsdepicted
in Figure 2 can be interpreted as covariance coefficients betwegridtsecells andthe time series
plotted in Figure 1.

Interdecadal changes 8IST are particularly evidentin this first principal componentThe time
seriessuggestsa cold startof the twentiethcenturywith a suddenwarming betweenabout 1920
and 1940. After World War 11, the time series suggastbght cooling until 1976. After this date,
a slow but regularwarming took place. Indeed,this first estimatedprincipal components very
similar to the time series of global and hemispheric temperature anomalies presented by &larker €
(1994). However, an importantdiscrepancybetweenour time componentand the estimatesof
Parker et al. (1994) ithat recentdecadesare not substantiallywarmerthanthe precedingoneson
Figure 1. Note also that the fingaurt of this time seriesis much more noisy thanthe last part; this
may be due t@ur choiceof the weight function sincewe gavethe sameweightto all dataentries
with non-missing values the atlaswithout taking accountof the numberof ship-reportsusedto
construct the anomalies. the samefashion,the strongly negativetime coefficientsduring World
War Il aredueto high andisolatedpositive monthly anomaliesin the centraland easternPacific
which were likely computed usingery few ship observationsWe hypothesizehat a much better
job can be done about these two problems if we use a more appropriate weight function.

Figure 2: GOSTA global SST estimated EOF1 (10.6%, rank=2).
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The spatial pattern associated with this time series suggests thatehadalSST variationsare
well-markedin the midlatitudeNorth Pacificandin partsof the middle-to high-latitude Southern
Ocean (Figure 2). By contrast, the areas in the cemtichéasterrequatorialPacificandalsoin the

South IndianOceanare negativelycorrelatedto this time series.It may be pointedthat this fact is



also evidentin the global fields of decadalannual surfacetemperatureanomaliespresentedoy
Parker et al. (1994).

The secondestimatedprincipal componentis shownin Figure 3. A strong interannualsignal
seems to be preseint this time serieswith a time-scaleof about3 to 4 years,especiallyin recent

decades. A sudden warming may also be noticed after 1976. The estimates during Worlar&Var I
again unreliable.

Figure 3: GOSTA global SST weighted EOF analysis (rank=2). Estimated SST EOF2 amplitude.
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Figure 4: GOSTA global SST estimated EOF2 (6.9%, rank=2)
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The spatial loadingsassociatedvith this time seriesexhibit the well-known ENSO signature
with a warmtonguein the centraland easternPacific, and with smalleramplitudesand opposite
phasein the middle latitude North and South Pacific (Figure 4). Some positive areasalso are
noticeablein the Indian Ocean.Thus, this secondprincipal componentand its associatedspatial
pattern suggest that recent warmings may have some connectioEN8®and a suddenchange
of the climate mean state which took place in the pacific regions during 1976.

b. Example 2

The second example is taken from the COAD@med monthly meansummariegWoodruff et
al. 1987). SSTsover the Indian Ocean(41°S-31°Nand 29°-121°E)were extractedfor the period
1900to 1992. Note that thesedataare not anomaliedut estimateof monthly meanSSTon a 2°

latitudex 2° longitude grid.

The weight matrix used in this analysis was constructed with the sriupatiion of the number
of observationsontributingto eachcell’s monthly meanvalue discussedn Section2. Again, a
two-componentnodelwas estimatedfrom the databy the weighted EOF technique.Thesetwo
components explain more than 99.8% of the total weighted inertia.

The first principal components, to a very good approximation,sinusoidalwith an annual
period (Figure 5). An interdecadal tresdemsalsoto be presentin this time serieswith a sudden
warming after 1976. The same results rbaybtainedby averagingthe datafor the whole Indian
Ocean(Terray, 1994). The associatedspatial patternexhibits a north to south gradientof SST
(Figure 6). Note also that SST is colder off the African coast.

Figure 5: COADS Indian Ocean SST weighted EOF analysis (rank=2). Estimated SST EOF1 amplitude.
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Figure 6: Indian Ocean SST estimated EOF1 (98.6%, rank=2).
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The secondprincipal componen{Figure 7) is still markedby an annualperiod but its spatial
pattern (Figure 8) shows a characteristic phase diffefegtweeenNorth and Southwhich addsan
annual modulation to the first principal component and its associated eigenvector.

Figure 7: COADS Indian Ocean SST weighted EOF analysis (rank=2). Estimated SST EOF2 amplitude.
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Figure 8: Indian Ocean SST estimated EOF2 (1%, rank=2).
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In orderto presentin a more traditional mannerthe annualsignal describedby thesetwo time
seriesand their associatedspatial loadings, a climatology of Indian OceanSSTswas computed
from the rank 2 weightedapproximationof the datagiven by the two-componentmodel. This
climatology may then beomparedo a traditional climatology obtainedfrom an objectiveanalysis
in order to show the coherence of the results.

The mean SST fields for January ahdy obtainedfrom the rank 2 weightedapproximationof
the data are shown in Figures 9 and 10.

SST patternsin the Januarymeanfield are dominatedby highesttemperature¢28°C) in the
easterrindian Oceanbetweenthe equatorand about15°Sand also nearMadagascarStrong SST
gradients are evident over the higher latitudes of the southern Indian Ocean.

The JulymeanSST fields show the effect of upwelling and monsooncooling nearthe African
coastassociatedvith the Somalijet andto the southof Peninsulaindia while other parts of the
North Indian Oceanare still dominatedoy warmerSST. All thesepatternsare found in classical
atlases (Hastenrath and Lamb, 1979; Bottomley et al., 1990).



Figure 9: SST mean (COADS) January.
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Figure 10: SST mean (COADS) July.
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4 . Conclusions

EOF analysis has been widely used to explore the spatig¢anpbralrelationshipswithin large
geophysicadatasetsThis successanbe explainedby the ability of EOFsto compressthe main
modesof variability in the original dataseinto a few time seriesand associatedspatial patterns.
Indeed,the EOF techniquecanbe thoughtof mathematicallyasa methodfor approximatingdata
matricesby matricesof lower rank sinceconventionaEOFsprovide the best approximationof a
data matrix in the sense of least-squares under the assumption that all drergetiaavethe same
weight equal to one.

This paperpresentsan extensionof conventionalEOFs when weights are assignedto data
entriesin the original dataset.The new methodwhich may be termedweighted EOF analysisis
designedo fit alower rank least-squareapproximationto a datamatrix with a generalchoice of
positive weights. If the weight matrix is carefully constructedthis new tool allows us to analyze
the naturalvariability exhibitedby dataof varying reliability. It mustalso be emphasizedhat the
proposedmethoddirectly takescare of missingvaluesby assigningzero weights to such data
entries.

Indeed,there are many situationsin which weighted EOF analysisis more appropriatethan
conventional EOFs. In particular, weighted EOF analysis is shown to be a usefat extracting
climatic signals from ship’s datasetswhich are characterizedoy a strong irregular space-time
sampling.

In the context of ship datasets with irregular space-time sampling, weighted EOF arzaiy&is
particularly useful for the following purposes:

- accurateandrobust detectionof climate signals(annual,interannualand multidecadal)on a
grid-mesh, directly from the ship observations;

- blended analysis of marine and land datasets;

- interpolation of missing values;

- derivation of climatologies and smooth oceanic fields;

- sensitivity experiments (e.g. by using various weight matrices with the same dataset).

With this new technique,it is also possibleto designrobust versionsof many multivariate
analysis procedures used for climate studies, including:

- Principal Component Analysis (PCA);

- Singular Spectrum Analysis (SSA) and Multi-channel Singular Spectrum Analysis (MSSA);
- Canonical Correlation Analysis (CCA);

- Singular Value Decomposition Analysis (SVD).

Finally, it is possibleto derive powerful nonlinear statistical prediction algorithms from
weighted EOF analysisas well as new algorithms for estimating missing values. These other
applications of weighted EOF analysis will be reported in detail elsewhere.
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