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Detecting Climatic Signals from Ship’s Datasets

Pascal Terray
Laboratoire d’Oceanographie Dynamique et de Climatologie, Paris, France

1. Introduction

Marine ship observations over the vast oceanic
regions are crucial to studies of climate variability on
timescales from the seasonal to multidecadal. However,
any climatic analysis of this historical record is
hampered by two difficult problems, namely:

e The systematic instrumental errors which
contaminate the ship observations. For example, it
is well-known that most of the ship-reports before
1940 contain a large majority of uninsulated
bucket Sea Surface Temperature (SST)
measurements which are biased low, while the data
after the 1940s are mostly injection or insulated
bucket SST measurements which are biased high
(Bottomley et al., 1990).

* The irregular space-time sampling of the ship-
reports. For example, COADS summaries provide
meteorological variables in the form of monthly
means for 2° x 2° latitude-by-longitude cells
(Woodruff et al., 1987). In such datasets, the
number of observations used to compute a
particular monthly mean reflects the number of
ships that cross the box that month. Thus, for a
particular month, one cell’s mean may be
computed from hundreds of observations, while
others may be based on only a few, and there may
be many cells with missing means due to the poor
spatial and temporal coverage outside the main
shipping lanes.

The former problem is particularly relevant to
studies of multidecadal variability, and has led
researchers to design instrumental correction procedures
for the meteorological and oceanic fields derived from
ship-reports and used for assessing climatic changes, e.g.
SST and wind.

The latter problem attends almost all climatic
studies from seasonal to multidecadal timescales, but is
particularly relevant to the interannual to multidecadal.
The classical solution to cope with this problem is to use
some kind of objective analysis. This technique spatially
smooths the oceanic fields by filling the data-void areas
with reasonable values which are a linear combination of
climatology and anomalies observed in the
neighborhood of each grid’s cell. The drawbacks of this
solution are: First, the need for a very good climatology
which has to be constructed before the analysis. Second,
the oceanic fields derived from objective analysis are

generally over-smoothed with the undesirable
consequence of a decrease in the spatial resolution of the
data.

The main objective of this work is to present a
new multivariate statistical method to deal with this last
problem. The method may be termed weighted
Empirical Orthogonal Function (EOF) analysis or
weighted Singular Value Decomposition (SVD) analysis
and is a generalization of the traditional EOF analysis, or
more precisely, of truncated SVD analysis. This method
accounts for the irregular space-time sampling of the
ship-reports by the use of weights (a weight is associated
with each cell-month entry of the data matrix) in
approximating the data matrix by a lower rank matrix in
the least squares sense. In contrast, the traditional SVD
analysis assumes that all the cells have equal weights in
solving the same optimization problem.

The organization of this paper is as follows:
first, the formalism of the weighted SVD analysis is
presented and its relationships to traditional SVD
analysis are outlined. Second, we illustrate with some
examples how weighted SVD analyses are useful for
extracting seasonal, interannual and multidecadal
climatic signals from ship’s datasets such as COADS
summaries. Finally, we highlight the utility of the
weighted SVD analysis for different common tasks in
meteorology and oceanography.

2. Theory

The widespread acceptance of EOFs for data
reduction purposes, to aid in determining the variability
of oceanic and atmospheric fields, or to identify coherent
modes of atmospheric parameters suggests that the
adaptation of this method to ship’s datasets can provide
us an improved tool to extract climatic signals from such
noisy data. However, traditional EOF analysis is not
well-adapted to ship’s datasets since the method gives
the same weight to all the data matrix entries without
taking account of the irregular space-time sampling of
the ship’s reports when determining eigenvectors and
principal components. Moreover, it is impossible to
compute EOFs if some data are missing.

By contrast, the new method of analysis we will
develop takes directly into account these uncertainties of
the data while estimating the EOF model. In order to
introduce this new method, it is first useful to review
some of the optimal properties of traditional EOFs



(Kutzbach, 1967). This is a necessary step to understand
the new method.

Let X denote an p x n data matrix consisting of
n time observations (columns of X) for p grid cells or
stations (rows of X). In the complete case, where X is a
full matrix with no missing values, the “full EOF model”
can be expressed as a matrix product, X = E * C where
E is an p x p orthogonal matrix, E'“E = I, whose
columns are the eigenvectors of the p x p symmetric
matrix,

- (0 0)

If the data are centered in rows, this last matrix
is simply the covariance matrix between the grid’s cells.
Furthermore, the elements in the i’th row of C represent
time variations associated with the i’th eigenvector.

One of the most important optimal properties of
EOFs, especially for data reduction purposes, is that
maximum inertia of the data matrix is explained by
choosing in order the eigenvectors associated with the
largest eigenvalues of R.

More precisely, it can be shown that the fraction
of the total inertia, V;, explained by the eigenvectors
associated with the & largest eigenvalues can be obtained
from

k min(p, n)
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In the application of EOFs to highly correlated
fields such as those commonly analyzed in meteorology,
this means that a large portion of inertia can be accounted
for by retaining only the first few eigenvectors. This
leads to define a “restricted k& EOF model” to
approximate and to study the data: X = E , C, where
E ;. stands for the first £ columns of E, and similarly C;.
designates the first k rows of C.

The optimal properties of EOFs can be stated
directly in terms of this restricted EOF model as follows:
the k-component model forms an optimal approximation
to the original matrix in the sense of least squares. That
is, the minimum of

k 2
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on all p by k matrix A and all k by n matrix B is obtained
by taking E ; and C;_as A and B, respectively. Moreover,
this minimum is equal to

min(p, n)
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Now let X denote a typical ship’s dataset such
as COADS 2° lat x 2° long trimmed monthly means for
some area and historical period. In order to take into
account the sampling properties of this ship’s dataset
while estimating a restricted &k EOF model, we may
correspondingly seek a minimum of
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on all p by k matrix A and all k by n matrix B.

Here, W is an p by n positive weight matrix
constructed in such a way that the resulting EOFs and
principal components are defined to emphasize the
better-observed aspects of the data. In particular, for the
extreme case of zero sample size, an entry of the data
matrix should play no role in fitting the model; this can
be done by assigning zero weights to such cells.

There are several ways to determine this weight
matrix in order to take into account that the monthly
means for each grid cell are based on samples of widely
varying sizes:

a) The simplest method is to set
W,; =1if X;; is present
W,;; =0if X;; is missing
This will take care of missing values, but gives the
same weight to all non-missing cells in the data
matrix.

b) Another choice is to fit the k¥ EOF model with
weights  proportional to  size  samples
W,; = aN;; where N;; is the number of ship

L
observations contributing to the cell’s monthly

mean X,-j.

¢) A more elaborate strategy is to use some smooth
function of the number of observations W, =1 -
exp(-N;;/6) where again N;; is the number of
ship observations used in computing X;; . For this
particular weight function, W;; is in the
neighborhood of 1 if N;;>10 and near 0.5 if
N;; equals 6.

d) Still another strategy for constructing the weight
matrix is to use the inverse of the variance or
standard error associated with each grid’s cell and
month. This information is, for example, available
in the distribution files of COADS (Woodruff et
al., 1987).

After the weight matrix is constructed, we have
to minimize the least-squares problem stated above in
order to estimate the EOFs and their associated principal
components. Note that this cannot be done by solving
some eigensystem as in the traditional EOF analysis, and
we have to use non-linear least-squares techniques
(Gauss-Newton or Marquardt-Levenberg algorithms) to
obtain a solution to our problem. The algorithms used



here to minimize f*(A,B) are a generalization of the
techniques described in Terray (1995). Once this is done,

the last step is to compute the SVD of the A * B product
in order to normalize the solution as in the traditional
EOF approach. This new method will be referred to as
weighted EOF analysis in the rest of this paper.

3. Examples

In order to illustrate the application of this
technique and to show that this method allows us to
analyze the natural variability exhibited by data of
varying reliability, two classical ship’s datasets were
analyzed using the weighted EOF technique.

Example 1

The first example is a weighted EOF analysis of
the January 1993 version of the Global Ocean Surface
Temperature Atlas (GOSTA; Bottomley et al., 1990).
The data in this atlas are presented as monthly anomalies
on a 5° latitude x 5° longitude grid wherever data
existed. The data were extracted for the period from 1900
to 1991. The weight function used in this analysis is
simply: W,; = 1if X;; is present and W;; =0 if X; is
missing. Note that this is not a very good choice since
this will give the same weight to all non-missing data,
but there is no information on the number of ship-reports
used to compute monthly anomalies for individual grid
cells in the distribution files of GOSTA.

With this weight function, a two-component
model was estimated. At the end of the iterations, the
two-component model explains a little less than 16% of
the total weighted inertia of the data. Note that the norm
of the gradient of the objective function has been
decreased by several orders of magnitude from the
initialization to the end of the algorithm.

The first estimated principal component is
shown in Figure 1. This time series as presented has unit
variance. The associated eigenvector is shown in Figure
2. This eigenvector has been multiplied by the square
root of its associated eigenvalue. In this way, the spatial
loadings depicted in Figure 2 can be interpreted as
covariance coefficients between the grid’s cells and the
time series plotted in Figure 1.

Interdecadal changes of SST are particularly
evident in this first principal component. The time series
suggests a cold start of the twentieth century with a
sudden warming between about 1920 and 1940. After
World War II, the time series suggests a slight cooling
until 1976. After this date, a slow but regular warming
took place. Indeed, this first estimated principal
component is very similar to the time series of global and

hemispheric temperature anomalies presented by Parker
et al. (1994). However, an important discrepancy
between our time component and the estimates of Parker
et al. is that recent decades are not substantially warmer
than the preceding ones on Figure 1.

Note also that the first part of this time series is
much more noisy than the last part; this may be due to
our choice of the weight function since we gave the same
weight to all data entries with non-missing values in the
atlas without taking account of the number of ship-
reports used to construct the anomalies. In the same
fashion, the strongly negative time coefficients during
World War II are due to high and isolated positive
monthly anomalies in the central and eastern Pacific
which were likely computed using very few ship
observations. We hypothesize that a much better job can
be done about these two problems if we use a more
appropriate weight function.

The spatial pattern associated with this time
series suggests that these decadal SST variations are
well-marked in the midlatitude North Pacific and in parts
of the middle-to high-latitude Southern Ocean (Figure
2). By contrast, the areas in the central and eastern
equatorial Pacific and also in the South Indian Ocean are
negatively correlated to this time series. It may be
pointed that this fact is also evident in the global fields of
decadal annual surface temperature anomalies presented
by Parker et al. (1994).

The second estimated principal component is
shown in Figure 3. A strong interannual signal seems to
be present in this time series with a time-scale of about 3
to 4 years, especially in recent decades. A sudden
warming may also be noticed after 1976. The estimates
during World War II are again unreliable.

The spatial loadings associated with this time
series exhibit the well-known ENSO signature with a
warm tongue in the central and eastern Pacific, and with
smaller amplitudes and opposite phase in the middle
latitude North and South Pacific (Figure 4). Some
positive areas also are noticeable in the Indian Ocean.
Thus, this second principal component and its associated
spatial pattern suggest that recent warmings may have
some connections with ENSO and a sudden change of
the climate mean state which took place in the pacific
regions during 1976.
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Figure 1: GOSTA global SST missing SVD analysis (rank=2). Estimated SST EOF1 amplitude.
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Figure 2: GOSTA global SST estimated EOF1 (10.6%, rank = 2).
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Figure 3: GOSTA global SST missing SVD analysis (rank=2). Estimated SST EOF2 amplitude.
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Figure 4: GOSTA global SST estimated EOF2 (6.9%, rank=2).



Example 2

The second example is taken from the COADS
trimmed monthly mean summaries (Woodruff et al.

1987). SSTs over the Indian Ocean (41°S-31°N and 29°-
121°E) were extracted for the period 1900 to 1992. Note
that these data are not anomalies but estimates of
monthly mean SST on a 2° latitude x 2° longitude grid.

The weight matrix used in this analysis was
constructed with the smooth function of the number of
observations contributing to each cell’s monthly mean
value discussed in Section 2. Again, a two-component
model was estimated from the data by the weighted EOF
technique. These two components explain more than
99.8% of the total weighted inertia.

The first principal component is, to a very good
approximation, sinusoidal with an annual period (Figure
5). An interdecadal trend seems also to be present in this
time series with a sudden warming after 1976. The same
results may be obtained by averaging the data for the
whole Indian Ocean (Terray, 1994). The associated
spatial pattern exhibits a north to south gradient of SST
(Figure 6). Note also that SST is colder off the African
coast.

The second principal component (not shown) is
still marked by an annual period but its spatial pattern
shows a characteristic phase difference between North

and South which adds an annual modulation to the first
principal component and its associated eigenvector.

In order to present in a more traditional manner
the annual signal described by these two time series and
their associated spatial loadings, a climatology of Indian
Ocean SSTs was computed from the rank 2 weighted
approximation of the data given by the two-component
model. This climatology may then be compared to a
traditional climatology obtained from an objective
analysis in order to show the coherence of the results.

The mean SST fields for January and July
obtained from the rank 2 weighted approximation of the
data are shown in Figures 7 and 8.

SST patterns in the January mean field are
dominated by highest temperatures (28°C) in the eastern
Indian Ocean between the equator and about 15°S and
also near Madagascar. Strong SST gradients are evident
over the higher latitudes of the southern Indian Ocean.

The July mean SST fields show the effect of
upwelling and monsoon cooling near the African coast
associated with the Somali jet and to the south of
Peninsular India while other parts of the North Indian
Ocean are still dominated by warmer SST. All these
patterns are found in classical atlases (Hastenrath and
Lamb, 1979; Bottomley et al., 1990).
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Figure 5: COADS Indian Ocean SST weighted SVD analysis (rank=2). Estimated SST EOF1 amplitude.
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Figure 8: SST mean (COADS) July.

4. Conclusions

EOF analysis has been widely used to explore
the spatial and temporal relationships within large
geophysical datasets. This success can be explained by
the ability of EOFs to compress the main modes of
variability in the original dataset into a few time series
and associated spatial patterns. Indeed, the EOF
technique can be thought of mathematically as a method
for approximating data matrices by matrices of lower
rank since conventional EOFs provide the best
approximation of a data matrix in the sense of least
squares under the assumption that all the data entries
have the same weight equal to one.

This paper presents an extension of
conventional EOFs when weights are assigned to data
entries in the original dataset. The new method which
may be termed weighted EOF analysis is designed to fit
a lower rank least squares approximation to a data matrix
with a general choice of positive weights. If the weight
matrix is carefully constructed, this new tool allows us to
analyze the natural variability exhibited by data of
varying reliability. It must also be emphasized that the

proposed method directly takes care of missing values by
assigning zero weights to such data entries.

Indeed, there are many situations in which
weighted EOF analysis is more appropriate than
conventional EOFs. In particular, weighted EOF
analysis is shown to be a useful tool for extracting
climatic signals from ship’s datasets which are
characterized by a strong irregular space-time sampling.

In the context of ship datasets with irregular
space-time sampling, weighted EOF analysis can be
particularly useful for the following purposes:

e accurate and robust detection of climate signals
(annual, interannual and multidecadal) on a grid-
mesh, directly from the ship observations;

* blended analysis of marine and land datasets;

* interpolation of missing values;

e derivation of climatologies and smooth oceanic
fields;

* sensitivity experiments (e.g. by using various
weight matrices with the same dataset).

Other applications of weighted EOF analysis
will be reported in detail elsewhere.
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