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1. INTRODUCTION

This is the second of two papers attempting to
develop robust statistical methods to deal with
gridded ship’s datasets. The earlier study (Terray,
1998) focused on an extension of the traditional
Empirical Orthogonal Function (EOF) analysis
which allows arbitrary positive weights to be
assigned to each entry of the data matrix. If these
weights are constructed in a responsible manner (for
example, as a smooth function of the number of
ship reports used to compute a particular raw
monthly mean in the dataset), it was demonstrated
that this method allows us to analyze the natural
variability exhibited by gridded ship’s datasets by
directly taking into account the irregular space-time
sampling of marine observations. In particular, the
method takes care of missing values by assigning
zero weights to such data entries.

In the current study, we discuss another robust
statistical method to detect « local errors » in
gridded ship’s datasets. More precisely, we attack the
problem of outlying areal averages in gridded ship's
datasets such as Comprehensive Ocean-Atmosphere
Data Set (COADS; Woodruff et al. 1987) 2˚ lat × 2˚
long monthly summaries and how to test the
statistical significance of them. Since the majority
of climate researchers use gridded ship's datasets
instead of individual ship reports, we suggest that
these datasets must be checked for the presence of
doubtful raw monthly means in the same manner as
individual ship reports are quality controlled before
being integrated in ship reports databases. Moreover,
it should be noted that such approach may be a
solution to the trimming problems which are
apparent in COADS monthly summaries (Wolter,
1997).

The rest of this paper is organized as follows:
first, we present some elements of outlier detection
theory and the basic statistical tests we have used.
Next, we discuss how these statistical tests may be
adapted to ship's datasets and integrated as building
blocks in a fully computerized procedure for
detecting many outliers in such datasets. Finally,
this new approach has been experimented on a
marine product in order to show how it works in
practice. As a conclusion, we suggest that the two
procedures, outlier detection and weighted EOF
analysis, may be combined to obtain a truly robust
statistical method particularly well suited to gridded
ship’s datasets.

2. STATISTICAL THEORY OF OUTLIER

DETECTION

In the context of gridded ship's datasets, an
outlying observation, or "outlier", is a raw monthly
mean in a 2˚ lat × 2˚ long box (depending on the
resolution of the dataset) that appears to deviate
markedly from adjacent or neighboring grid-points in
area or/and in time. Outliers in gridded ship's
datasets may be generated by three basic mechanisms
(Wolter, 1997):

• An outlying raw monthly mean may be merely an
extreme manifestation of the sampling inherent in
the data, since some raw monthly means in 2˚ lat
× 2˚ long boxes are computed with very few
marine observations for a given date while adjacent
boxes may be well sampled.

• outlying raw monthly means in some 2˚ lat × 2˚
long boxes may also be the results of potential
biases due to the origin of the "source-decks"
merged into the gridded ship's dataset or processing
errors. For example, biases in Sea Surface
Temperature (SST) associated with different
methods of measurements (bucket or intake) may
well introduce errors in gridded ship's datasets in
particular atmospheric conditions and along some
ship's tracks.

• Finally, an outlying areal average may be the
result of errors relating to instrumental readings or
coding mistakes. But, most of these types of
outliers must be discovered during basic quality
controls which are automatically applied to
individual ship reports merged into any reasonable
marine product.

The problem of detecting outliers in random
sample has been extensively researched by
statisticians in recent years and a number of test
statistics are available for both the single outlier
case and the many outlier case for testing a specified
number k of outliers (Barnett and Lewis, 1978). In
particular, the detection of outliers in normal sample
has received considerable attention. It is far beyond
the scope of this paper to give a review of this vast
subject. Suffice to say here, that the problem of
outlier detection is generally treated as the statistical
testing of a hypothesis. The null hypothesis, as
usually stated, is that all the observations are drawn
from the same (normal) population; the alternative
hypothesis is that at least one of the observations
has been drawn from an other distribution. In order
to discriminate between these two hypotheses, a
sample criterion T which uses the doubtful



observation(s) is calculated. This statistic is then
compared with a critical value λα  based on the
theory of random sampling to determine whether the
doubtful observation is to be retained or rejected.
This critical value is the value of the chosen sample
criterion which would be exceeded by chance with
some specified and small probability α  (say 0.01 or
0.05), the so-called significance level of the test, if
the null hypothesis is true. Intuitively, this
significance level is the risk or erroneously rejecting
a good observation (statistical type I error). More
precisely, statistical tests for outliers are then of the
following form:

1) Find λα  such that Pr(T>λα )=α if the null
hypothesis is true for some statistic T;

2) Reject the null hypothesis and declare an outlier
present if T>λα or accept the null hypothesis
and declare the sample is clean if T≤λα.

In this statistical framework, outlier detection
procedures differ by:

• the form of the underlying parent population
(normal, gamma, ... );

• the form of the test criterion T which has to be
computed on the sample: among these test criteria,
we can distinguish those which clearly identify
particular observations as possible outliers from
those which test the hypothesis that the random
sample as a whole did indeed come from the
specified parent distribution;

• the number of suspected outliers in the sample;
• the fact that the doubtful observations may be to

one side of the bulk of the data or that some are
too large and some are too small.

Several hundreds of statistical tests of this type
are described in the book of Barnett and Lewis
(1978) which is a kind of "bible" on the subject. In
the context of gridded ship's datasets, the problem is
then to decide which tests to apply and how to use
them in order to obtain a fully computerized
procedure for detecting outliers which may be
applied to any ship's dataset. In this way, one can
hope to trap anomalous cases and so ensure the
integrity of most of the ship's datasets currently in
use.

We have used here a simple model, well
documented in the statistical literature: when the data
with the possible exception of any outlier, form a
sample from a normal distribution with unknown

mean μ and unknown variance σ2. We recognize
that this model is certainly not perfect in the context
of samples of adjacent raw monthly means in 2˚ lat
× 2˚ long boxes extracted from gridded ship's
datasets. However, as we will show below, this
model works "reasonably" well as implemented in
our computerized procedure on the basis of the
spatial coherence of neighboring 2˚ lat × 2˚ long
area values for many meteorological parameters.

Several statistical tests exist that are reasonably
powerful to detect one outlier in a normal sample
and our approach involves the following classical
statistical criteria:

Let x1, x2, ... , xn be the observations of a random

sample. Order the observations according to
increasing magnitude and denote the ith largest by
yi; thus, y1≤y2≤ ... ≤yn is the ordered set of
observations. Suppose the largest observation yn is
suspect. In order to test for discordancy this single
upper observation in a normal sample, a reasonable
test statistic is
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calculated with n degrees of freedom.

If y1, the lower observation, rather than yn is the
doubtful value, the criterion is as follows:

T' =
−x y

s
1

and the rest of the statistical procedure will be
unchanged on the basis of the symmetry of the
normal distribution. Finally, when it is not known a
priori whether the contaminant is the lower or the
upper observation in the sample, we should compute

T T T'* max( , )=

But, in this last case, we must use a critical value
corresponding to the α/2 significance level if we
want the true significance level to be 0.05.

The rational behind these tests may be found in
Hawkins (1980) or Barnett and Lewis (1978). The
null hypothesis that we are testing in every cases is
that all the observations in the sample come from
the same normal population. It may be shown that
these statistics are optimal in the sense of
maximizing the probability of correct identification
of an outlier when one is present. It should be noted,
however, that these statistics may produce quite
misleading results in the presence of many outliers,
especially when suspected values are closer to each
other than they are close to the bulk of the other
observations. This inability of a testing procedure to
identify even a single outlier in the presence of
several suspected values is called the masking effect.
We will discuss further this point in the next section



when we describe our computerized procedure for
detecting outliers.

Before using these test statistics in outlier
checks, we must know the significance probability
attaching to an observed value t of the statistic T (or
T',T*). That is to say, the probability that, on the
null hypothesis of no contamination, T takes values
more discordant than t. For this purpose, we need to
find the null distribution of T or at least some
fractiles λα  of this distribution corresponding to
specified significance levels α , say 0.01 or 0.05.
The null distribution of T is available as a recursion
relationship (Barnett and Lewis, 1978) or as a
complicated multiple integral (Grubbs, 1950), and
tables containing critical values for some standard
significance levels have been published (Grubbs and
Beck, 1972; Hawkins, 1980). However, we will
show how approximate critical values for a given
significance level α  can be computed since our
computerized procedure may involve number of
observations outside of the range of these published
tables.

Without loss of generality, we consider only the
case of an upper outlier, approximate fractiles for T'
or T* may be derived similarly. We may compute
some fractiles of the test distribution of T as
follows:

Under the null hypothesis of no contamination, x1,
x2, ... , xn are observations of random variables X1,
X2,..., Xn which are independent and identically

distributed as Ν(μ,σ2). In this case, if xi is an
observation selected arbitrarily from the random
sample of n items, it may be shown that if
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is given by the "Student's" t-distribution with n-2
degrees of freedom. This is easily verified because ti
is the test statistic of the classical Student’s two
sample t-test, where one sample consists of xi and
the second sample of the n-1 other observations.
From this result, we are able to find the probability
that an arbitrary observation i will be outlying since
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where λ is an arbitrary value in the range

− − −] [n n1 1, and t(n-2) follows a Student's t-

distribution with n-2 degrees of freedom. However,
this result does not yet give us an exact test for one
outlier, because this probability is different from the
probability that a particular observation (the lowest
or the largest) will be greater than λ . More
precisely, we need the distribution not of an arbitrary
Ti, but of T, the greatest of the quantities Ti for i=1
to n.

Now, note that the event (T>λ) is the union of the n
events (Ti>λ). Thus,
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In words, the probability of the event (T>λ) is the
probability that at least one of the n events (Ti>λ)
is true. Bounds on Pr[T>λ] may then be obtained in
terms of the component events (Ti>λ) through the
use of the so-called Bonferroni inequality (Feller,
1968)
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Since the events (Ti>λ) are equiprobable, and
likewise the events (Ti>λ)∩( (Tj>λ), we have the
following inequality for arbitrary i and j
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Now, by using the fact that for arbitrary i and j
(Doornbos, 1966)
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for an arbitrary i. Thus, if
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is the 1 - (α/n) fractile of the Student's t-distribution
with n-2 degrees of freedom, the last equation shows
that
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A result indicating that λ is a good and conservative
approximation of the true critical value λα  of the
distribution of T under the null hypothesis of no
contamination for any reasonable significance level
α, say 0.01 or 0.05. Moreover, it can be shown that
this method gives the exact critical value λα of T if

λ ≥
n − 1

2

(for example, the 0.05 critical value for any n<15),
since in this case we have

Pr ( ) ( )T Ti j> ∩ >[ ] =λ λ 0

for arbitrary i and j. Following the same procedure,
we may approximate the true critical value λα of T*
on the null hypothesis of no contamination by λ*,
if
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is the 1 - α/(2n) fractile of the Student's t-
distribution with n-2 degrees of freedom.

3. OUTLIER DETECTION IN GRIDDED

SHIP'S DATASETS

Suppose now that we want to check the
« local » consistency of a given ship’s dataset with,
say, a 2˚ lat × 2˚ long resolution. In our approach,
the preceding theoretical results are then used as
follows:

1) First, we specify upper and lower limits for
detecting doubtful raw monthly mean values in
the gridded ship's dataset. These limits may vary
depending on calendar month and area. Any value
which exceeds the upper limit or is less than the
lower limit is considered a priori doubtful and
will be tested for compatibility with raw
monthly mean values in adjacent or neighboring
2˚ lat × 2˚ long boxes.

2) For any date, doubtful raw monthly mean values
identified in step 1 are arranged from the most
outlying to the most inlying compared to the
bulk of the data. For this purpose, absolute
values of residuals of these doubtful values from
the overall mean of the observed data for this date

are sorted in descending order and the doubtful
values are ranked accordingly.

3) These doubtful values are then considered
consecutively, from the most outlying to the
most inlying, and a sample is constructed from
adjacent or neighboring 2˚ lat × 2˚ long area
values for any of these possible outliers. The
number of 2˚ lat × 2˚ long boxes in the vicinity
of each doubtful value which are scanned, in
order to construct a sample, may be chosen by
the user before running the procedure. It should
be noted that the number of items in this sample
may vary depending on the date and the area.
However, the significance level α of the test will
be the same for any suspected raw monthly mean
value, as we will see below.

4) At this stage, several different possibilities exist :

• a) First, we need to consider the case when it is
not possible to pick up a sample to test the
doubtful value because none surrounding boxes
contain data. Frequently, this means that the
doubtful raw monthly mean is calculated from
very few ship reports. In such case, the user may
decide, before running the procedure, to flag or to
reject all these unrepresentative values.

• b) Second, suppose that there is only one
doubtful value in the collected sample, the one
we want to test. If this value is at the upper end
of the sample, we use T as a test criterion; if it
is at the lower end of the sample, the statistic T'
is considered instead. In both cases, the doubtful
value is declared as an outlier if the statistic
exceeds the critical value λα  corresponding to a
specified significance level α . In this case, the
suspected value is rejected or flagged (a user
choice) and the next most outlying doubtful
value is processed.

• c) Finally, imagine there is more than one
doubtful value in the constructed sample of n
items, according to the upper and lower limits
specified in step 1. Let K be the number of such
doubtful values and x the suspected value we are
currently processing. In order to take into
account the possibility that the sample contains
more than one outlier, a consecutive procedure is
applied. One naive approach is to use repeated
applications of the single outlier statistical test
T* described above, deleting the "outlier" detected
at each step and applying the test again to the
reduced sample until an insignificant result is
obtained or the suspected value x is tested for
compatibility with the remaining observations.
However, this "forward selection" approach may
be quite misleading in practice (Hawkins, 1980).
The problem is the so-called masking effect
discussed in the preceding section: the presence
of two or more outliers may produce an
insignificant result in the initial single outlier



test. In view of this defect, the following variant
is recommended :  remove the K most extreme
values of the sample (absolute values of residuals
from the sample mean of the successively
reduced sample are used to rank the
observations). If the current doubtful value x is
not thrown away in this process, declare x has
« clean » and process the next most outlying
doubtful value for the current date. Otherwise,
apply the following "backward selection"
algorithm: starting with the n-K « clean »
observations, test the most inlying of the K
extreme values for compatibility with the clean
observations by the statistic T* at a nominal
significance level α . If it is compatible, then
include it with the clean observations and repeat
the procedure with the next most outlying
suspected value in the sample until the current
doubtful value x is processed and is declared as
compatible. This sequence of tests is
immediately stopped when an observation is
rejected by the statistical test T* since all the
subsequent outlying raw monthly means,
including x, are then incompatible with the clean
observations. In this case, the 2˚ lat × 2˚ long
area mean value corresponding to x is rejected or
flagged, and the next doubtful value for the
current date is processed. Note, however, that the
other rejected values in the sample are not set to
missing at this stage.

It is fair to say that, while the backward
consecutive algorithm described in 4.c is immune to
masking (providing that the actual number of
outliers in the sample does not exceed the number of
suspected values K in the test procedure), it provides
important distributional difficulties associated with
finding suitable fractiles λα if we require (as we do)
an actual significance level α  for each of the

successive null hypotheses which are tested in the
backward selection algorithm. A comprehensive
discussion of this problem is given by Hawkins
(1980) and we omit the details due to the lack of
space and difficulty of the problem. Suffice to say
here, that it is necessary to resort to simulation if
we require exact fractiles, but that there is little error
by approximating these fractiles as outlined in the
preceding section excepted for small n, say n<15.
The latter solution was adopted in this study. The
consequence of this is that the sequence of tests used
in the backward consecutive algorithm described in
4.c may have actual significance levels in excess of
25% of the specified nominal significance level α
according to Hawkins (1980). We will try to correct
this deficiency in a future version of our outlier
detection procedure by doing the required
simulations.

4. EXAMPLE

The outlier detection algorithm has been applied
to several ship’s datasets and various examples will
be presented during the workshop. In particular, an
experiment was undertaken on a pre-COADS marine
product with known systematic errors, in order to
show the benefit of this type of procedure in the
context of marine climatology.

An extensive description of the ship’s dataset used in
this experiment may be found in Terray (1994).
Briefly, SST data are presented as raw monthly
means in 2˚ lat × 2˚ long boxes in a domain
extending from 30° to 100°E Longitude and from
30°S to 30°N Latitude. The period of analysis
extends from 1900 to 1986. Figure 1 documents the
irregular space-time sampling associated with this
gridded ship’s dataset.



Many well-known deficiencies were observed in
this dataset before and around World War II (Terray,
1994). In addition, a suspicious warming trend is
apparent on the SST time series during 1954-1976
and it was anticipated that this trend may be linked
to important changes in the origin of “ source-
decks ” merged into this marine product or to the
presence of an huge amount of erroneous ship-
reports which were not rejected during basic quality
control of the ship reports. Suspect raw monthly
means were mainly confined along the shipping
routes from Madagascar to Sumatra and from
Sumatra to the Northern Arabian Sea for the period
1968-1974.

In view of this, the outlier detection algorithm of
the preceding section has been applied to this SST
gridded ship’s dataset in a two steps procedure :

• First, the algorithm was applied to all the raw
monthly SST fields with 15°C as a lower limit
and 35°C as an upper limit to identify doubtful
2˚ lat × 2˚ long monthly means which must be
tested by the algorithm. A nominal significance
level of 0.05 was chosen for all the tests. This
first step was only intended as a check on
“ evident ” outliers far away from the bulk of
the data. 481 raw monthly values were tested in
this first step for all the monthly fields of 1900-
1986 and, among them, 361 were identified as
outliers by the statistical tests (this number
includes isolated monthly mean values) and were
rejected.
• The second step is designed to remove outliers
with respect to anomaly fields. For this purpose,
the raw monthly mean SST fields were expressed
as monthly anomaly fields by using a monthly
climatology obtained from a weighted EOF
analysis on COADS SST data (Terray, 1998).
The outlier detection algorithm was applied to
these anomaly fields with -3°C as a lower limit
and 3°C as an upper limit. Again, a nominal
significance level of 0.05 was chosen for all the
tests. 10917 anomaly values were tested in this
second step; among them, 2826 were identified
as outliers and the corresponding raw monthly
means values were rejected.

In order to investigate the impacts of the outlier
detection algorithm, the following computations
were undertaken on the SST ship’s dataset both
before and after the “ cleaning ” of the data:

 (i) First, the 1954-1976 interval was used as a
reference period for calculating a climatology for

each calendar month and each 2° box, provided that
data for at least 10 years with more than 5
observations per month were available in the period.
The monthly means for each i grid point and j
month were computed as a weighted average

Xij = WijkXijk
k=1954

1976

∑ Wijk
k=1954

1976

∑

where         Wijk = 1− exp(−Nijk / 5)

Here Xijk is the value computed for the ith box,
jth month and kth year. Nijk is the number of ship-
observations used in computing Xijk. Wijk is in
the neighborhood of 1 if Nijk>10 and near 0.5 if
Nijk equals 5.

(ii) After this first step, time monthly anomaly

series for each 2o box during the 1900-1986 period
were computed by simply subtracting from each
value this climatology, provided that neither the
datum nor the climatology was missing. These
anomalies were then subsequently spatially averaged
over the whole Indian Ocean with the same
weighting scheme (e.g., Wijk) as used in the
computation of the climatology.

The two SST anomaly time series computed,
respectively, before and after the « cleaning » of the
data, were then subjected to the X11 monthly
additive scheme (Terray, 1994), a powerful technique
for describing a time series, in order to assess their
consistency. In the X11 procedure, the analyzed Xt
monthly time series is decomposed into three terms

Xt = Tt +At + It

The Tt term is used to quantify the trend and
low-frequency variations in the time series. The At
term describes the annual cycle and the It can be
used to assess the level of noise in the data, though
this term can also contain some signal in a
climatological sense. All the terms are estimated
with specific moving averages of various lengths.
Figures 2 and 3 give the results of the analysis for
the SST time series computed before and after
outliers were rejected, respectively. The monthly
number of observations is also plotted on the
bottom of each figure as an aid for interpreting the
results and detecting accurately any change in the
composition of the "source-decks" contributing to
the time series. While the two series and their
associated X11 components are similar in many
aspects, an important discrepancy may be noted
during 1968-1974: the unlikely warm anomalies
observed on the data before running the outlier
detection procedure (Figure 2) are considerably
reduced on the time series computed after outliers
were rejected (Figure 3). As a consequence, the trend
components of the two series are different during
1968-1974. This difference is consistent with the
hypothesis of the artificial nature of the warming
trend observed during 1968-1974 over the Indian
Ocean. Finally, it may be noted that the « clean »
series is less noisy as demonstrated by the irregular
components.





5. CONCLUSIONS

A recurring problem in the creation and
maintenance of large gridded ship’s datasets is the
accuracy of the information entering these products.
The fact that large volumes of data are involved
suggests that, as far as possible, the reliability of
such datasets should be assessed through a
computerized screening procedure. For this purpose,
a new method for detecting outliers in gridded ship’s
datasets has been proposed. It is our hope that this
approach will aid climate scientists in determining
which, if any, of the raw monthly area values
included in a particular ship’s dataset may be
outliers.

Once potential outliers have been identified, it is
suggested that these values may be flagged or, more
drastically, rejected. In any case, the impact of these
doubtful values in a particular data analysis may be
easily assessed by comparing the results obtained
before and after these potential outliers are rejected.
In this way, it may be possible to obtain more
reliable results in marine climatology.

The proposed approach may also be considered as
a valuable alternative to trimming procedures which
are applied to ship reports before computing
monthly mean summaries for 2˚ lat × 2˚ long boxes
in order to reduce erroneous data losses.

REFERENCES

Barnett, V., and T. Lewis, 1978: Outliers in
Statistical Data. John Wiley & Sons,  Inc.,
New York.

Doornbos, R., 1966: Slippage Tests. 1nd edn.
Mathematical Centre Tracts, no 15,
Mathematisch Centrum, Amsterdam.

Feller, W., 1968: An Introduction to Probability
Theory and Its Applications. vol. 1, 3d ed.,
John Wiley & Sons, Inc., New York.

Grubbs, F. E., 1950 : Sample criteria for testing
outlying observations. Ann. Math. Statist.,
21, 27-58.

Grubbs, F. E., and G. Beck, 1972: Extension of
sample sizes and percentage points for
significance tests of outlying observations.
Technometrics, 14, 847-854.

Hawkins, D.M., 1980: Identification of Outliers.
Chapman and Hall, London.

Terray, P., 1994: An evaluation of climatological
data in the Indian Ocean area. J. Meteor. Soc.
Japan. 72, 359-386.

Terray, P., 1998: Detecting Climatic Signals from
Ship's Datasets. Proceedings of International
Workshop on Digitization and Preparation of
Historical Surface Marine Data and Metadata,
15-17 September 1997, Toledo, Spain.  H.F.
Diaz and S.D. Woodruff Eds., WMO
publication (in press).

Wolter, K., 1997: Trimming problems and remedies
in COADS. J. Climate, 10, 1980-1997.

Woodruff, S.D., R.J. Slutz, R.L. Jenne, and P.M.
Steurer, 1987: A Comprehensive Ocean-
Atmosphere Data Set. Bull. Amer. Meteor.
Soc., 68, 1239-1250.


