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FULL-REFERENCE SALIENCY-BASED 3D MESH QUALITY ASSESSMENT INDEX

Anass Nouri, Christophe Charrier, Olivier Lézoray

Normandie Université, UNICAEN, ENSICAEN, GREYC UMR CNRS 6072, Caen, France

ABSTRACT

We propose in this paper a novel perceptual viewpoint-
independent metric for the quality assessment of 3D meshes.
This full-reference objective metric relies on the method
proposed by Wang et al.[1] that compares the structural in-
formations between an original signal and a distorted one.
In order to extract the structural informations of a 3D mesh,
we use a multi-scale visual saliency map on which we com-
pute the local statistics. The experimental results attest the
strong correlation between the objective scores provided by
our metric and the human judgments. Also, comparisons with
the state-of-the-art prove that our metric is very competitive.

Index Terms— Objective quality assessment, 3D mesh,
Visual Saliency, graph.

1. INTRODUCTION

With the development of 3D acquisition techniques, a large
quantities of 3D objects are represented mostly in the form
of triangular 3D meshes and are used in several human cen-
tered applications. This progress, coupled with the fact that
humain being are strongly based on their vision, require that
the 3D meshes representing the targets to analyse are of high
quality. A 3D mesh may undergo various processing steps
before being presented to a human observer like compres-
sion, watermarking, noise acquisition, etc. Thenceforth, as-
suming that one or more of the degradations cited above are
applied to a 3D mesh, an assessment of the quality is nec-
essary to quantify the visual impact of these distorsions on
the mesh geometry. A first approach for assessing the qual-
ity of 3D meshes is to perform subjective evaluations when
seeking human opinions. The problem is that this method is
slow, tedious and inadequate for real applications. An alterna-
tive approach falls within the objective assessment of quality
and aims at predicting the quality in an automatic manner.
The goal is to design quality metrics that are correlated with
subjective scores provided by humans observers. In the liter-
ature, such quality assessment approaches are classified into
3 categories: full reference (the original version of the dis-
torted content is fully available for the comparison), reduced
reference (partial informations about the original content are
available) and no reference (no information is available about
the reference content) metrics. Perceptual metrics can play
a significant role in several computers graphics applications

like benchmarking 3D mesh processing algorithms, optimiz-
ing and assessing performances of compression and restaura-
tion approaches, etc. In this context, we propose a metric for
3D mesh quality assessment based on visual saliency called
SMQI (Saliency-based Mesh Quality Index). Indeed, visual
saliency captures perceptually important regions on which the
human visual attention is focalized. Thereby, if perceptually
important regions on the mesh surface are distorted, then the
global perceived quality is affected and vice-versa (see fig-
ure 1). The paper is organized as follows. Section 2 presents
the state-of-the-art approaches. Section 3 describes the link
between visual saliency and quality assessment. In the same
section, we present the proposed metric with an overview of
the pipeline and the associated details: multi-scale saliency
detection method, roughness map, and definition of the per-
ceptual distance. In section 4, we present experiments on two
subjective databases and compare our metric with state-of-
the-art approaches.

2. RELATED WORK

Whereas 2D image metrics are extremely developed, the liter-
ature is much less important in the field of computer graphics.
However, as demonstrated by Rogowitz and Rushmeir [2], 2D
metrics aren’t effective for 3D meshes since they don’t take
into account the depth and motion informations. Thus, we
quote here only viewpoint-independent metrics that perform
directly on the 3D mesh surface. In [3], Corsini et al. pro-
pose a metric based on the variation of the global roughness
measure. The roughness is computed through the variance of
the dihedral angles. Lavoué et al. [4] propose an extension of
the SSIM index proposed for 2D images to the quality assess-
ment of 3D meshes (called Mesh Structural Distorsion Mea-
sure: MSDM). Difference of statistics are computed on the
curvature maps of the two meshes being compared instead of
the pixels intensities that the SSIM index uses. In [5], Lavoué
proposes an improvement of MSDM called MSDM2. This
time, the metric takes into account the multi-scale aspect and
can perform on 3D meshes with different connectivities. Re-
cenlty, Wang et al. [6] proposed a metric based on the varia-
tion of local roughness that is derived from the Laplacian of
the discrete Gaussian curvature. To the best of our knowl-
edge, there is no metric in the state-of-the-art that considers
the visual saliency as basis for 3D mesh quality assessment.



3. THE PROPOSED METRIC

3.1. Visual attention and IQA

Given a 3D object, our visual attention is attracted by particu-
lar regions on the surface that are distinct from their surround-
ing zones. These striking areas, essentially prominent in the
field of 3D objects, are content dependent. However, they are
not dependent of the behavior or the experience relative to
the human observer [1]. This has been proved by a series of
subjective experiments where the outcome confirmed that a
perceived degradation is highest when the distorsion affects a
salient region in the content [7]. The same result can be seen
in figure 1. Two most outstanding metrics (MSDM2[5] and
FMPD[8]) were tested in this example and failed in assess-
ing a content distorted in perceptual salient areas just because
they ignore the human visual attention mechanism.

(a) (b)

(c) (d)

Fig. 1: Comparison of 3D meshes with different perceptual quali-
ties. (a) Original Gorilla 3D mesh. (b) Saliency map of (a) with [9].
(c) Gorilla 3D mesh noised in visual attention areas. FMPD=0.15,
MSDM2=0.36, SMQI=0.49. (d) Gorilla 3D mesh noised in less
visual attention areas. FMPD=0.54, MSDM2=0.414, SMQI=0.41.
(Note that a higher objective quality score denotes a poor quality
and vice versa). SMQI is our proposed index.

3.2. Overview of the pipeline

The proposed metric is inspired from the well-known 2D
image SSIM [1] index and the MSDM [4] metric for 3D
meshes. However, instead of computing local statistics re-
flecting the structure informations on the image pixels inten-
sities as SSIM-index performs, or on the curvature map as
MSDM, we propose to compute a multi-scale saliency map
that is used as a basis for computing the statistics over local
neighborhoods on 3D meshes. Indeed, we make the assump-

tion that the perceived quality of a mesh is strongly related
to the modification of local and global saliency of the mesh
surface. Additionally, for the two compared 3D meshes, we
use a roughness map on which we compute the differences
of mean local roughness of each node. This allows us to
capture the visual masking effect that may occur while a
rough region is able to hide a geometric distorsion. Then we
introduce four comparisons functions between corresponding
local neighborhoods from two meshes to capture the struc-
ture’s differences. Finally we combine them via a weighted
Minkowski sum to obtain the final quality score.

3.3. Multi-scale saliency map

In order to detect perceptually important regions on 3D mesh
surfaces, we use our multi-scale visual saliency detection ap-
proach proposed in [9]. This is a novel multi-scale measure
of visual saliency based on an important characteristic of the
human visual system (HVS) which is the sensibility to strong
fluctuations and discontinuities. We describe here the princi-
pal steps of this visual saliency measure. First, we represent
a 3D mesh M by a non-oriented graph G = (V,E) where
V = {v1, . . . , vN} is the set of N vertices and E ⊂ V × V

the set of edges. The set of edges is deduced from the mesh
faces that connect vertices. To each vertex vi are associated
its 3D coordinates pi = (xi, yi, zi)

T ∈ R3. For a target ver-
tex on the surface mesh, we estimate a 2D tangent plan. Next
we consider a spherical neighborhood of radius ε centered on
the target vertex and project the neighboring vertices located
in the sphere on the 2D plan defined above. Then we define
the size of the patch related to the target vertex by comput-
ing the maximum distances between 2D projections along the
x-axis and the y-axis. Afterwards, we divide the patch into
cells and increment them with the neighborhood projection
height field. The next step consist of computing the similari-
ties between the patch of a target vertex and the patches of its
neighboring vertices that are affected to the weights of edges
vertices they belong to:

wP(vi, vj) = exp
[
− κ(vj) · ||P(vi)−P(vj)||22
σP(vi) · σP(vj) · ||pi − pj ||22

]
(1)

where P(vi) ∈ Rl×l is the vector of accumulated heights into
the cells of the patch, κ(vj) is the curvature at the vertex vj ,
and ||pi−pj ||22 represents the Euclidean distance between the
points of vertices vi and vj . We propose to locally compute
the scale parameters σP(vi). The scale parameter is defined
as σP(vi) = max

vk∼vi
(||pi − pk||2). As a result, we obtain a

single-scale saliency value of the target vertex defined by the
mean of its degree:

ss-saliencyP(vi) =
1

|vj ∼ vi|
∑
vi∼vj

wP(vi, vj) (2)

To enhance the quality of the measured saliency, we
compute it at 3 scales by varying the radius ε of the spheri-
cal neighborhood while constructing the local patches. The



multi-scale saliency value of a vertex denoted MS(vi) is
defined as the average of single-scale saliencies weighted by
their respective entropies. Figure 1(b) presents an example of
saliency computation.

3.4. Roughness map and perceptual distance

To compute the local statisticsthat reflect the structural infor-
mation of a 3D mesh, we use our multi-scale saliency map as
a basis. For a local neighborhood N(vi) representing the set
of adjacent vertices of vi on the mesh surface, we define the
local mean saliency and standard deviation saliency respec-
tively denoted µN(vi) and σN(vi) as :

µN(vi) =
1

|N(vi)|
∑

vj∈N(vi)

MS(vj) (3)

σN(vi) =

√√√√ 1

|N(vi)|
∑

vj∈N(vi)

(MS(vj)− µN(vi))
2 (4)

where |N(vi)| is the cardinality of N(vi). For two cor-
responding local neighborhoods x = NM1(vi) and y =
NM2

(vi) from two 3D meshes M1 and M2, we define the
covariance σxy as follows:

σxy =
1

|x|
∑
vj∈x,y

(MSM1(vj)− µx)(MSM2(vj)− µy) (5)

where MSM1
and MSM2

respectively represent the multi-
scale saliency maps of the two compared meshes M1 and M2.

Then, similarly to [4], we define 3 comparisons functions
between two corresponding neighborhoods x and y for quan-
tifying the deformation that affect the structural informations
of the distorted 3D mesh :

L(x, y) =
||µx − µy||22
max(µx, µy)

(6)

C(x, y) =
||σx − σy||22
max(σx, σy)

(7)

S(x, y) =
||σxσy − σxy||22

σxσy
(8)

where L, C and S respectively refer to the saliency compar-
ison, the contrast comparison and the structure comparison.
Having these 3 comparison functions, we noticed that the vi-
sual masking effect on the 3D meshes isn’t captured well by
these functions when a rough region is present on the refer-
ence surface mesh. Indeed, given a rough and a smooth re-
gion, a distortion will be much more visible on the smooth
region than on the rough one. To deal with this problem, we
implemented the work of [8] that provides a roughness map
of a 3D mesh based on the Laplacian of the Gaussian curva-
ture. Consequently, we introduced a fourth function based on
the comparison of the mean local roughness. The aim of this
function is to induce a large difference when a smooth region
becomes a rough region and is defined as follows:

R(x, y) =
||δx − δy||22
max(δx, δy)

(9)

with δx = 1
|x|

∑
vj∈xRoughnessMap(vj). It is important

to note that a saliency map is different from a roughness map,
since only novel and non-redondant informations are pointed
on a saliency map. Finally our Saliency-based Mesh Quaity
Index (SMQI) between two 3D meshes M1 and M2 is defined
by a weighted Minkowsky sum of their local distances:

SMQI(M1,M2) = 1

|V |

|V |∑
L(x, y)

α

+

 1

|V |

|V |∑
C(x, y)

β

+

 1

|V |

|V |∑
S(x, y)

γ

+

 1

|V |

|V |∑
R(x, y)

δ

(10)

where α, β, γ and δ are obtained from an optimization based
on genetic algorithms. Details on the genetic optimization
will be given in the experiments section.

4. EXPERIMENTAL RESULTS

4.1. Datasets

To compare our proposed full reference metric with the state-
of-the-art methods, two publicly available databases are used:
1) The Liris/Epfl General-Purpose Database [4] and 2) the
Liris-Masking database [11]. The first database contains 4
reference 3D meshes. They are affected by two types of dis-
torsions: Noise addition and Smoothing. These distorsions
are applied in 3 different strengths either uniformly over the
3D mesh surface, specifically to rough or smooth regions (for
simulating the masking effect) and to transitional areas be-
tween rough and smooths regions. In total, 22 distorted 3D
meshes of each reference mesh are generated and evaluated
by 12 human observers. The Liris Masking Database consists
of 4 reference 3D meshes which are distorted by adding noise
of three different strengths in either rough and smooth areas to
generate 6 distorted versions of each 3D mesh. 12 observers
have evaluated the database. The performance of our method
is measured by the Spearman Rank Ordered cOrrelation Co-
efficient (SROOC).

4.2. Results

Before measuring the performance of our proposed metric
and since our perceptual distance includes 4 independent
parameters(α, β, γ and δ) of which the manual optimiza-
tion may be ineffective, we choose to use a genetic op-
timization for tuning these parameters. It’s important to
note that the number of 3D meshes contained in the two
datasets described above is small in comparison with avail-
able datasets of 2D images. Consequently, to deal with this
weakness, we opted for a Leave-One-Out training on both
databases. The goal of this approach is to perform the learn-
ing of the model on k − 1 observations and to validate it
on the kth one. This process is repeated k × 999 times.



Liris/Epfl General Purpose HD [12][13] RMS [12][13] 3DWPM1 [3] 3DWPM2 [3] MSDM2 [5] FMPD [8] SMQI
Armadillo 69.5 62.7 65.8 74.1 81.6 75.4 77.5

Venus 1.6 90.1 71.6 34.8 89.3 87.5 91.6
Dinosaur 30.9 0.3 62.7 52.4 85.9 89.6 84.8

RockerArm 18.1 7.3 87.5 37.8 89.6 88.8 91.8
Entire database 13.8 26.8 69.3 49.0 80.4 81.9 84.6

Table 1: SROOC values (%) of different viewpoint-independent metrics on the LIRIS/EPFL Genaral Purpose database

Liris Masking HD [12][13] RMS [12][13] 3DWPM1 [3] 3DWPM2 [3] MSDM2 [5] FMPD [8] SMQI
Armadillo 48.6 65.7 58.0 48.6 88.6 88.6 88.6
Lion-vase 71.4 71.4 20.0 38.3 94.3 94.3 83.0

Bimba 25.7 71.4 20.0 37.1 100.0 100.0 100.0
Dinosaur 48.6 71.4 66.7 71.4 100.0 94.3 100.0

Entire database 26.6 48.8 29.4 37.4 89.6 80.2 81.0

Table 2: SROOC values (%) of different viewpoint-independent metrics on the Liris-Masking database

In our case, an observation refers to the MOS values of a
reference 3D mesh and its distorted versions. The fitness
function used to perform the genetic optimization is defined

as: f(α, β, γ, δ) =
√∑k−1

i=0 (MOSi − SMQIi(M1,M2))2

whereMOSi is the vector ofMOS values of the observation
i and SMQIi(M1,M2) is the perceptual distance computed
with the equation 10. After genetic optimization, we obtain:
α = 23.63, β = 3.26, γ = 5.04 and δ = 0.77. Note that in
figure 1, the Gorilla 3D mesh was assessed with these param-
eters. Table 1 presents the performance of our metric and the
state-of-the-art metrics in term of the Spearman correlation
with the subjective scores provided by the Liris/Epfl Gen-
eral Purpose. We can notice that SMQI produces important
correlation values for all the 3D meshes and particularly for
the RockerArm and Venus 3D meshes where the SROOC
values are the highest among the reminder values. More-
over, our perceptual metric SMQI outperforms the 2 best
metrics so far MSDM2 and FMPD over the entire database
(the SROOC values are 84.6% for SMQI, 81.9% for FMPD
and 80.4% for MSDM2). We have also tested and compared
our proposed metric with the state-of-the-art metrics on on
the Liris-Masking database. Table 2 provides the Spearman
correlation values of the different metrics on this database.
The choice of the Spearman correlation is motivated by we
do not need to verify the normality of the objective scores to
compute the correlation with the subjective ones. From these
results, three main observations can be made. The first one
is that SMQI is very competitive with MSDM2 and FMPD
and succeed in capturing the masking effect. The second
observation deals with the correlation value associated to the
Lion-vase 3D mesh that is slightly lower in comparison with
the values of FMPD and MSDM2. This can be explained
by the fact that the multi-scale saliency map of the distorted
3D mesh on which are computed the statistics doesn’t re-
flect well the distorted salient areas. Indeed, the reference
and the distorted 3D meshes use the same radius (defined

manually) associated to the spherical neighborhoods for the
computation of the local adaptive patches for the estimation
of the multi-scale saliency. We expect that an automatic
method defining the radius will lead to a better estimation
of saliency for the distorted 3D mesh. This constitutes a
perspective of our future work. The third observation con-
cerns the correlation values on the entire database. We can
notice that the correlation values of SMQI and FMPD are
lower than the MSDM2 correlation. However in this context
and in the contrary of Liris/Epfl General Purpose database,
the subjective evaluation protocol used while designing the
Liris-Masking database have established the referential range
for the rating separately for each 3D mesh and therefore the
correlation values over the whole set of 3D meshes are not
really meaningful [14]. From the above results and compar-
isons, it appears that the SMQI metric is strongly correlated
to the human perception because of the integration of visual
saliency. Additionally, SMQI outperforms the state-of-the-art
metrics on the Liris/Epfl General Purpose Database and is
very competitive on the Liris-Masking database.

5. CONCLUSION

We have proposed in this paper a new objective metric, called
SMQI, for the assessment of 3D mesh visual quality. This
perceptual metric compares structural informations of a ref-
erence 3D mesh and a distorted one. For this, we use a
multi-scale visual saliency map as a basis for computing the
local statistics. In order to take into account the masking
effect, a roughness map is used to measure the difference
of local mean roughness between a pair of meshes. Con-
sequently, four comparison functions are combined via a
weighted Minkowski sum to provide an objective score that
quantify the visual similarity between two meshes. Experi-
mental results as well as comparisons with the state-of-the-art
demonstrate the strong correlation of our approach with the
subjective results and its high competitivity.
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mesh saliency with local adaptive patches for viewpoint
selection,” Signal Processing: Image Communication,
vol. 38, pp. 151–166, 2015.

[10] S. Coren, L. M. Ward, and J. T. Enns, Sensation and
perception, Wiley, 2003.
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