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Abstract: In this research, a simple, yet, efficient calibration procedure is presented in order to 
improve the accuracy of the Scalable-SPIDAR haptic device. The two-stage procedure aims to 
reduce discrepancies between measured and actual values. First, we propose a new semi-
automatic procedure for the initialization of the haptic device. To perform this initialization 
with a high level of accuracy, an infrared optical tracking device was used. Furthermore, audio 
and haptic cues were used to guide the user during the initialization process. Second, we 
developed two calibration methods based on regression techniques that effectively compensate 
for the errors in tracked position. Both Neural Network (NN) and Support Vector Regression 
(SVR) methods were applied to calibrate the position errors present in the haptic device 
readings. A comparison between these two regression methods was carried out to show the 
underlying algorithm and to indicate the inherent advantages and limitations for each method. 
Initial evaluation of the proposed procedure indicated that it is possible to improve accuracy by 
reducing the Scalable-SPIDAR’s average absolute position error to about 6 mm within a 1m x 
1m x 1m workspace. 
Keywords: Scalable-SPIDAR, Virtual reality, Tracking, Calibration, Neural Network, 
Support Vector Regression. 

1. Introduction 

Haptic feedback is a natural part of our daily experience when we manipulate objects in our 
surroundings. With advances in haptic technology, virtual reality (VR) systems with integrated 
haptic devices are becoming increasingly popular in assembly training (Xia et al. 2012), virtual 
machining (Fletcher et al. 2013) and virtual biology training (Faroque et al. 2015). Being able 
to touch, feel and manipulate virtual objects improves the realism of virtual environments and 
,therefore, intensifies the user’s feeling of immersion and presence (Srinivasan & Basdogan 
1997; Ramsamy et al. 2006). Various studies have addressed  the development of haptic devices 
in virtual reality, for instance Burdea (1996), Hayward et al. (2004) and Fuchs et al. (2011). 
Unfortunately, most of the current devices are either bulky, intrusive, expensive or only work 
within a limited space (Srinivasan 1995), (Ikits et al. 2000).  

To alleviate the mentioned shortcomings, Buoguila et al. (2000) proposed a human-scale 
haptic device named Scalable-SPIDAR for SPace Interface Device for Artificial Reality. The 
device is derived from the original desktop SPIDAR device which was developed by Hirata and 
Sato (1992). According to the state-of-the-art haptic interface technology given by Kunzler and 
Runde (2005), Scalable-SPIDAR is transparent, unbulky and suitable for large-scale haptic 
immersion. However, it has certain limitations in interacting with virtual environment, 
especially manipulation difficulties. In fact, the Scalable-SPIDAR is a single-point interface 
and, thus, is not well suited to perform specific two-handed tasks such as the bimanual 
exploration of large virtual environments and grasping of virtual objects. The device uses 
tensioned string techniques to track and measure the motion of the user’s hands as well as to 
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display force feedback sensations. Nevertheless, due to various limitations, Scalable-SPIDAR 
is subject to tracking inaccuracies and, thus, cannot always provide faithful data rendering. The 
question, then, is whether any discrepancy caused by tracking inaccuracies matters to the user’s 
experience or performance in virtual environments. Several studies have shown that large 
tracking inaccuracies lead to inconsistency between physical and virtual working environments 
which may contribute to detracting from the sense of presence, causing sickness or degrading 
the task performance (Meyer et al. 1992; Welch and Foxlin 2002; Jayaram and Repp 2002). 

 Therefore, it is important to improve the tracking accuracy of the Scalable-SPIDAR haptic 
device. To this end, accurate calibration is indispensable. In this work, we focus on the 
development of a comprehensive calibration procedure for improving the accuracy of the 
Scalable-SPIDAR haptic device. As a design goal, the procedure needs to be robust and flexible 
enough to be applied to other similar systems. In the next section, we provide an overview of 
related works regarding methods used to improve tracking accuracy in virtual and augmented 
reality environments. Thereafter, we introduce our visual-haptic VR setup, followed by a brief 
description of its main components. In section 4, we detail the developed calibration procedure. 
We present some of the key aspects concerning the characterization and calibration of the 
Scalable- SPIDAR haptic device. Finally, we conclude by evaluating the performance of the 
proposed calibration techniques. 
2. Related work 

Before launching in a further discussion, it is important to grasp what is meant by the term 
"accuracy". In fact, the accuracy of a measurement system refers to the degree of closeness of 
measurements of a quantity to its actual value (ISO 5725-1 1994). Similarly, tracking accuracy 
refers to the closeness of position tracker measurements to the actual position value. 
Unfortunately, tracking devices are often inaccurate and imperfect. Distortions are introduced 
into the tracking data so that the data reported by the tracker only loosely corresponds to the 
actual data. If this distortion is repeatable, it can be characterized and then the actual data can 
be inferred from the distorted data. This will be called calibrating the tracking device.  

In the following section, we provide an overview of related activities regarding methods 
used to calibrate tracking devices in virtual and augmented reality environments. The majority 
of previous works has focused on calibration issues for electromagnetic trackers. It has been 
reported that these trackers have an inherent accuracy problem due to the dependence of their 
reports on the local electromagnetic field that can be easily distorted by conductive or ferrous 
materials. To overcome this issue, various calibration methods have been proposed. survey 
Kindratenko (2000) conducted a detailed survey of these methods . In each of the reviewed 
methods, measurement data was collected to determine the relationship between actual and 
distorted data. Several error correction methods were, then, applied so that distorted 
measurement data can be effectively compensated. 

 Ghazisaedy et al. (1995) used a local correction technique based on trilinear interpolation 
to correct errors in the position reported by the tracker. Calibration data was collected using an 
ultrasonic tracking system and a regular grid and a look up table of corrections were built. The 
technique compensated large errors in position readings but did not significantly improve on 
small errors. Similarly, Livingston and State (1997) applied trilinear interpolation to 
compensate for errors in the reported position and a sequence of spherical linear interpolations 
between quaternions representing the reported orientation to correct errors in orientation. A 
look up table was built by collecting a very large irregular distributed set of samples and re-
sampling it into a rectilinear grid to form calibration cells. The authors determined that position 
accuracy could be improved by roughly 80% although they had difficulty with orientation 
compensation.  

Bryson (1992) developed a weighted look up table technique with two different weight 
functions (one with linear interpolation and one with a Gaussian-weighted look up table). He 
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measured errors in the tracked position on a rectilinear grid defined by a pegboard and found 
that the Gaussian-weighted look up table performed best. Kindratenko and Bennett (2000) 
extended this technique to calibrate both the position and orientation reports. The authors built 
a look up table by placing the tracker at regularly spaced locations and with a known constant 
orientation and then recording both the true position/orientation and the reported by the tracker. 
They conclude that weighted look up table technique could also significantly reduce the errors 
in the reported orientation. Ellis et al. (1999) proposed to correct errors in the reported position 
by using an adaptation of an algorithm developed by Kenwright and Lane (1996). The proposed 
technique used a local interpolation based on a simple form of shape function derived for 
tetrahedrons. Similarly, Briggs (1999) used a weighted look up table technique to correct 
position errors. This technique is similar to the one presented by Livingston and State (1997), 
however, it differs in the way the look up tables are re-sampled from data taken on an irregular 
grid. In addition, Jayaram an Repp (2002) used various inverse weighting interpolation methods 
to obtain correct values from the distorted electromagnetic tracker readings. The authors 
mentioned that the look up table based correction method dramatically improves tracking 
system accuracy but that the improvement varied based on the applied interpolation method. 

 Another way of calibrating errors for electromagnetic tracking systems is to use the high-
order polynomial fit method. In fact, Bryson (1992) computed polynomials of the order 1 
through 8 for each reported position from the calibration table via the least-square fit method. 
He found via the correlation analysis that the fourth-order polynomials were the most suited. 
Kindratenko (1999) and  Ikits et al. (2001) extended this technique to compensate the errors in 
the reported orientation. Kindratenko (1999) used Euler angles, while,  Ikits et al. (2001) used 
quaternionial representation to compute corrected orientations. Furthermore, Zachmann (1997) 
introduced a scattered data interpolation using Hardy’s Multi-Quadric method with LU matrix 
decomposition to solve the interpolation equation. The motivation for using this method is that 
Hardy’s Multi-Quadric polynomials tend not to oscillate as polynomial interpolations like 
Newton or Lagrange interpolation, since the degree of interpolating function does not depend 
of the number of samples. So far, the majority of reported calibration methods are based either 
on local interpolation or polynomial function methods. Local interpolation method requires a 
look up table of the closest points or the enclosing cell, which needs some additional data, 
structures if the look up is to be faithful and fast. Polynomial calibration works very well when 
distortion is smoothly spread through the tracking workspace but is not that effective when an 
abrupt, localized nonlinearity occurs in the mapped space. Hence, an alternative error correction 
approach with a multi-layer feed-forward neural network was proposed by Kindratenko and 
Sherman (2005). The calibration procedure in this method is both to obtain a calibration table 
and to train the network until a certain accuracy level is reached. Recently, Moreira et al. (2014) 
tested three calibration methods (linear interpolation, higher-order polynomial and Hardy’s 
Multi-Quadric) in order to implement a suitable strategy for the evaluation of new dental 
impression techniques.  

With regard to mechanical tracking system, only some attempts have been made to increase 
the accuracy of tracking. Most of these attempts examined the positioning accuracy and the 
calibration of the Phantom haptic device. A planar grid calibration was suggested by Reinig 
and Tracy (1997) to correct the haptic position and then extend this correction to the entire 
haptic workspace by extrapolation. Unfortunately, the results show that the position errors 
increase as the tip moves away from the grid. Ikits et al. (2003) proposed an enhancement of 
the grid approach by placing two perpendicular planar grids in the haptic volume. More 
recently, Knoerlein and Harders (2011) presented a comparison of tracker based to tracker-less 
haptic device calibration. They compare previously developed technique by Harders et al. 
(2009) using external optical tracking system to a new approach not relying on external 
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metrology. Prior approaches focusing on the Phanthom haptic device calibration are based on 
model methods. However, important to these methods is the development of an accurate 
kinematic model. On the other hand, only few attempts have been made to explore the potential 
of model-less calibration method in haptic devices. Model-less method does not need any 
kinematic model. Boudoin et al. (2010) developed a neural network-based method to improve 
the position accuracy of the Scalable-SPIDAR haptic device. They used a two layered feed-
forward neural network to correct non-linear position errors.  

3. System overview 

In order to immerse the user into the virtual environment, changes in the user’s location have 
to be incorporated into the system. We used the infrared (IR) optical 6-DoF tracking system 
"Artrack1/Dtrack" from Advanced Realtime Tracking GmbH to get marker pose estimates. In 
fact, the "ARTrack1/Dtrack" system is based on two IR intelligent cameras that are able to 
recognize retroreflective markers and compute the marker pose in image coordinates (2D) with 
high precision. These data are transferred via Ethernet to the central Drack PC. The PC with 
the "Dtrack" software samples the 2D data coming from the two IR cameras and computes the 
6-DoF pose targets, which are located in the measurement volume. Unfortunately, IR optical 
trackers are prone to occlusions (Welch and Foxlin 2002), which leads to significant loss of 
tracking.  

To overcome the problem of tracking-loss, we combine the IR optical tracker with a haptic-
based tracking approach. In fact, a string based haptic system called Scalable-SPIDAR has been 
integrated into our setup in order to provide stable tracking and to enable haptic interaction with 
virtual objects in the virtual environment. As well, haptic sensations are known to impart users 
with realistic feeling about physical interactions. Scalable-SPIDAR is composed of a cubic 
frame, which encloses a cave-like space, where the user can move around to perform large-
scale movements. Within this space, various aspects of haptic feedback sensations associated 
mainly with weight, contact and inertia can be displayed to the user’s hands by means of 
tensioned strings. The front side of the device holds a large screen where a computer generated 
virtual world is displayed. Providing such combination of haptic and visual feedback cues may 
strongly improve interaction with virtual objects in manner similar to those in real world. This 
combination is essential to let the user’s eyes and hands work in concert to discover and 
manipulate objects populating the virtual environment (Bouguila et al. 2000). The device uses 
tensioned string techniques to track hands position as well as to provide force feedback 
sensation. The technique consists in applying appropriate tensions to the eight strings 
supporting each the end-effector worn by the user Kim et al. ( 2002). In order to control the 
tension and the length of each string, one extremity is attached to the end-effector and the other 
extremity wound around a pulley, which is driven by a DC motor. An encoder is fixed to the 
DC motor to detect the string length variation. The set of DC motor, pulley and encoder 
controlling each string are mounted in the corners of the frame. A general overview of the 
system’s components is shown in Figure 1. 
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4. Calibration procedure 

The driving force of our current research is the development of a simple, yet, efficient 
calibration procedure for improving the accuracy of the Scalable-SPIDAR haptic device. 
Therefore, we developed a hybrid tracking approach using the IR optical tracker available 
within our setup. Accuracy and robustness of the calibration procedure is greatly influenced by 
the quality of the optical tracker’s calibration. To this end, two types of calibration have to be 
performed with the software DTrack before tracking is started: room calibration and body 
calibration. During room calibration, the axes and the origin of camera coordinate system are 
defined. For this procedure a "wand kit "is put into the field of the IR cameras. Following the 
process described in the ARTrack1/Dtrack manual (A.R.T. GmbH 2003), a valid room 
calibration can be performed. As shown in figure 2, the calibration angle defines the origin and 
the axes of the coordinate system: 

 The center of the marker lying in the crossing point of the two sides of the angle defines 
the origin of the coordinate system. 

 The long side of the calibration angle defines the +X direction 
 The short side of the calibration angle defines the +Y direction. 
 The Z-axis corresponds to the right-handed coordinate system.  

 
 

 

 

 

 

 

 

 

 

Fig. 2 Optical tracking system calibration (Room Calibration) 

IR Optical tracking 

Scalable-SPIDAR 

End-effector 

Fig. 1 Components of the visual-haptic VR setup 

YZ

X

Calibration Angle
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During body calibration, DTrack fixes a local coordinate system (body coordinate system) 

for each rigid body. Therefore, the position and orientation of a target are expressed by a 
transformation ( , )


x R that transforms a vector x


from body coordinate system to room coordinate 

system 
   

  
room bodyx R x s  (1) 

Where the coordinate x


 gives the position of the origin of the body coordinate system, 
measured in room coordinate and R is the 3x3-rotation matrix describing the rotational part of 
the transformation. The next step focuses on the calibration of the haptic interface. Scalable-
SPIDAR is a human-scale haptic device, based on tensioned string techniques, to display force 
feedback sensation in a large space, while allowing smooth movement and keeping the space 
transparent. However, it provides only a low tracking accuracy. This problem is mainly caused 
by two reasons. First, scalable SPIDAR has a built-in initialization procedure that is based on 
manually moving the end-effector to home position, then calling some particular API functions 
(Group 2005). Figure 3 shows the discrepancy between the position provided by the built-in 
initialization procedure and the true initialization position that has to be reached. As revealed 
by picture 3, the built-in procedure is unable to accomplish and repeat the initialization of the 
Scalable-SPIDAR in a precise manner. Therefore, a custom initialization procedure that allows 
the user to accurately place the end-effector to a fixed known location within the workspace of 
the haptic device is needed.  

                                                  

 

 

The position and force computations within the High Definition Haptic Controller HDHC 
firmware (figure 4) are based on the nominal kinematic model of the Scalable-SPIDAR haptic 
device, which is different from the actual model. In fact, inaccuracies between nominal and 
actual kinematic models arise mainly form shortcomings in the mechanical design of the haptic 
device. These shortcomings cause errors in the string lengths, which in turn, lead to positional 
errors of the end-effector and therefore affects the tracking accuracy of the Scalable-SPIDAR.  

Actual initialisation 
position 

Obtained Initialisation 
position 

Fig. 3 Built-in initialization procedure of Scalable-SPIDAR  
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Fig. 4 Illustration of Scalable-SPIDAR (Motors and stings, HDHC and Computer) 

The calibration process can now be carried out in two stages. We first determine a solution 
for the initialization problem. To this end, we propose a new procedure for initializing the haptic 
device, which will be outlined in the next section. Thereafter, we apply a calibration method to 
calibrate position readings from the haptic device within a defined working volume. 

4.1 Multimodal initialization procedure 

The built-in procedure conflicts with our need to a highly accurate initialization. The more 
accurate this initialization is, the higher tracking accuracy becomes. Therefore, we propose a 
new semi-automatic procedure for the haptic device initialization. To accomplish this 
initialization with a high level of accuracy, we use the IR optical tracking system. The 
underlying idea is to measure the actual initialization position (colored in green in figure 3) 
with respect to the room coordinate system. To this end, an IR marker is rigidly attached to the 
end of the end-effector. Here, the center of the cubic frame is taken to be the true initialization 
point. The vector v

 , shown in figure 5, gives the distance of the IR marker attached to the end-
effector relative to actual initialization point as well as the required direction to converge to it. 
In order to help the user to accomplish and repeat initialization in a precise manner, multimodal 
cues are needed. This can be derived by first converting spatial information into multimodal 
parameters. Let h be a function that takes distance from the origin as input and returns an index 
expressing the closeness of the end-effector to the origin: 

 

min
min

min

min

        
( )

    0               

             [ , , ]x y z

d d
if d d

dh d

if d d

d v with v v v v

  
 

 
 

 (2) 

Where d is the distance between the end-effector and the origin with respect to the room 
coordinate system and dmin is the minimal distance from which h starts fluctuating. In our case, 
d and dmin are expressed in millimeter.  
In the following subsection, multimodal cues used during the initialization process are 
presented.  
 
Audio cue: A discrete audio cue that increases in frequency when approaching the initialization 
point is used. Therefore, as the end-effector approaches the initialization point, the frequency 
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of the beeping sound increases. In our case, beep frequency is linked to the distance d according 
to:  
 
 min( ) 1000* ( )      f d h d if d d   (3) 

Haptic cue: First, the direction vector v


 is transformed into a force vector F


according to: 
 

 * ( )* MaxF s d F
 

 (4) 

Where ( )s x  is a sigmoid function that allows applying a progressive force to the end-effector 
given by: 

 
210((1 ( )) 0.5)( )   if   [ 0.5,0.5]h ds x e x      (5) 

 is the unit vector given that points in the direction of the origin 
1

Δ= .V
V

 
 and MaxF is the 

maximum force that can be exerted on the end-effector. This force vector is then exerted on the 
end-effector as a way to provide haptic guidance cue to the user to reach the origin. 
 

The initialization process can now be carried out in two steps. First, the built-in procedure 
places the end-effector in a limited region of the workspace close to the origin. However, as 
depicted in figure 3, this procedure results in a discrepancy of about a few centimeters. 
Therefore, it is called "unrefined initialization region". Due to the low sensitivity of the haptic 
device in small distance, the end-effector can’t be moved using force feedback capabilities. In 
order to improve initialization accuracy, one more step is needed. To this end, we perform the 
multimodal approach described above. Based on the high accuracy of the external tracker and 
multimodal cues, the user’s hand, holding the end-effector, is guided in a precise and repeated 
way to the origin. Consequently, a new initialization area that we name "precise initialization 
region", is obtained. 
 

 Fig. 5  Proposed intialization procedure 

Precise intialization 
region 

Unrefined intialization 
region 

Optical Tracking System 

Haptic coordinate system 

Room coordinate system 
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With the proposed initialization procedure described in the previous section, we are able to 
estimate the relationship between the haptic and the room coordinate system. Let H

ip and R
ip

represent the position of the end-effector respectively in the haptic and room coordinate 
systems. The transformation between these points is then given by: H

i
R

ip = p + t where t denotes 
the translation vector from origin of the room coordinate system to the haptic workspace origin: 

 

  0

t =    0

1500

 
 
 
 
 

 (6) 

4.2 Shortcomings of the mechanical design 

Unfortunately, additional errors in the tracked position remain due to discrepancy between the 
nominal kinematic model of the Scalable-SPIDAR and its actual realization. In fact, the actual 
realization does not quite meet the nominal design specifications required to accurately track 
the user’s hands within the workspace.  Problems arise mainly from shortcomings in the 
mechanical structure design (figure 6). In the next section, some of these shortcomings are 
investigated. 

Encoders are secured to the motor shaft 
Scalable-SPIDAR is a haptic device supported by strings in parallel that are actuated by 
tensioning motors. Each string is reeled on a pulley attached to a rotary encoder that is secured 
to the motor shaft. This configuration is identified as a source of problem. In fact, before running 
Scalable-SPIDAR, the user must specify the pulley radius in order to calculate changes in the 
length of strings. However, this radius is no longer constant, depending on the amount of string 
wound. Hence, this radius would change causing errors in length measurement-lengths are 
measured from the angular position of the pulley and its radius, which leads to errors in the 
reported end-effector position. 
Pulley size is very small 
The small radius of the used pulley further exacerbates errors in length measurement. It turned 
out that winding radius is not negligible if compared to the pulley radius especially when large 
amounts of string are reeled on pulley. As a consequence, the pulley radius will vary widely as 
the string is being wound resulting in a total discrepancy between the measured and the true 
length of string. 
Badly-designed string guide 
In the actual realization, string passes through a hole located in a plate and wraps around a 
pulley. This method conflicts with our need to a reliable winding control method. First, it 
increases system friction, damages the string and impedes it to wind around pulley on an ideal 
way. Second, it does not prevent string from sliding out of the grooves on the pulley. Indeed, if 
the pulley fails to wind the string fast enough, excessive string waiting to enter to the pulley 
will bend and forms a curve with a curvature large enough to slide out of the grooves on the 
pulley. Hence, the reeled string does not reflect the exact distance between the attaching point 
and the end-effector. Thus, the position measurement is no longer precise. 
Large SPIDAR’s dimensions 
The length of string that can be wound greatly affects the workspace volume. The longer the 
wound length is, the larger the workspace volume is. However, due to design issues described 
above, length measurement errors will increase as the workspace volume increases. Thereby, 
the large dimensions of the haptic device exacerbate length errors. 
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It can easily be seen from the investigation above that shortcoming in the mechanical 
structure design lead to a significant loss in tracking. To address this problem, calibration 
method is used instead of changing the mechanical structure. The calibration problem can be 
tackled using model-based or model-less method. Since the HDHC (High Definition Haptic 
Controller) software of the Scalable-SPIDAR haptic comes as a black box, it does not allow 
full functionality or control of the system. Moreover, the black box structure conceals the inner 
kinematic model of the system used to compute end-effector pose. Therefore, we have to carry 
out a model-less haptic device calibration. In fact, the model-less method does not need any 
kinematic model or identification steps. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4.3 Calibration method 

The calibration framework involves several steps: characterizing the Scalable-SPIDAR and 
providing methods for estimating the true end-effector position. This requires a reliable protocol 
for gathering large quantities of data in the working volume. 

4.3.1 Data collection protocol 

In order to characterize the Scalable-SPIDAR haptic device, one must collect tuples that 
consist of the measured data and the "truth values"-what a secondary accurate tracker should 
report. The accuracy of these actual values is crucial for the calibration method, since the goal 
of the calibration method is to map measured data into actual data. Therefore, we use the IR 
optical tracking device as a reference for the Scalable-SPIDAR. This is a legitimate choice 
because of its high accuracy. An overall view of the new procedure’s components is depicted 
in figure 7. It can be seen that the custom initialization procedure is efficient and able to place 
the end-effector in the center of the cubic frame. Moreover, to provide for well-distributed data 
that can be collected, a volumetric calibration protocol is developed. The underlying idea is to 
develop a quasi-static data acquisition method where acquisition is guided by a calibration 
fixture. To this end, a virtual cubic lattice divided into a sequence of small cubic cells first fills 
the screen of our visual-haptic setup. Each cell corresponds to a sub-space of the Scalable-
SPIDAR workspace. 

   Fig. 6 Basic structure of Scalable-SPIDAR’s motor block 

Encode
Pulley is 
too small 

Badly-designed 
string guide 

Motor Encoder 
secured to the 
motor shaft 
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The set of small cubic cells covers the entire Scalable-SPIDAR workspace. On the other hand, 
a virtual end-effector (the red sphere in figure 8) shows the position of the marker attached to 
the end-effector with respect to the room coordinate system. The target cubic cell is highlighted 
by changing its color to pink. A user holding the end-effector straight and moving it until the 
displayed end-effector ranges inside the colored cubic cell. Then, the program records the 
position given by the IR optical tracking system and the haptic device. Once these positions are 
recorded, the cubic cell vanishes ensuring that only one measurement was associated to this 
sub-space. This procedure continues until all the small cubic cells inside the virtual cubic lattice 
are sampled. The sample points were collected starting at the front of the volume, processing 
through the same x-z plane and then moving forward to the next plane. In practice, a sub-volume 
of 1 m3 is considered. This sub-volume is divided into 2197 small cubic cells. Hence, 2197-
point measurements inside the cubic lattice are sampled. The developed protocol seems suitable 
for collecting a large number of data points with a predetermined data distribution using a quasi-
static collection mode. Besides, it requires minimal user interaction. Indeed, to simplify human 
performance requirements in the data collection phase, we record data as soon the virtual end-
effector collides with the cubic cell.  Another big advantage of this protocol is that it allows 
collecting data over a flexible volume that can be changed by an expert. However, this protocol 
is time-consuming, especially when the number of samples increases significantly. In fact, the 
data collection takes about 80 minutes.  

 

Fig. 8 Display in the Scalable-SPIDAR of boxes to collect. The virtual end-effector (the red sphere) is moved 
inside colored box (colored pink) to collect point 

Obtained position with 
the new initialization 

d

Fig. 7 The new procedure calibration 
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Seeing the characterization data obtained using the previous collection protocol, the 
absolute position errors for each of the 2197 point were calculated. The absolute position error 
is measured as the distance between the tracked position by the Scalable-SPIDAR haptic device 
and the corresponding reference position as reported by the IR optical tracking system. 

 

 2 2 2
pos SPIDAR OTS SPIDAR OTS SPIDAR OTSerr = (x -x ) +(y -y ) +(z -z )  (7) 

 

Where the ( , , )SPIDAR SPIDAR SPIDARx y z  position is reported by the Scalable-SPIDAR and 

( , , )OTS OTS OTSx y z is the reference position.  

 
Figures 9 and 10 illustrate position errors in two formats of varying details. Figure 9 shows the 
absolute position errors spatially at each reference position ( , , )OTS OTS OTSx y z , with the error 
magnitude proportional to the corresponding colors. The plot clearly shows that errors are more 
pronounced when the end-effector is manipulated away from the center of the workspace 
toward the edge of the cubic frame. 

 
Fig. 9 Spatially-represented absolute position errors 

In figure 10, absolute position errors are plotted as a function of the sequence in which they 
were collected from the front of the volume to the back. Plotting position errors as 1D plot 
results in the loss of a lot of spatial information, but still shows the same trend, and from the 
plot’s periodicity we can infer that errors increase at the volume edges. 
The clusters of large errors at the upper left and right corner of the plot, also called outliers, will 
be investigated in the next section. 
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Fig. 10 Absolute position errors represented in sequence 

4.3.2 Machine-learning techniques for calibration 

The driving force of our current research is the development of a calibration procedure using 
regression techniques. In fact, the Scalable-SPIDAR haptic device is a multi-DOF device with 
complex-to model geometries. Moreover, some of the inaccuracy sources are difficult to model 
explicitly, which results in lack of model completeness and therefore in a loss of accuracy. 
Regression techniques provide attractive solutions for improving the tracking accuracy of the 
Scalable-SPIDAR. Indeed, the input-output relationship is performed in a black box method 
without the need for modelling explicitly the different errors sources affecting the device 
accuracy.  To this end, we look for a regression function f that provides mapping from measured 
to actual data. The measured data is directly read from the haptic device being calibrated. The 
actual values are reported by the IR optical tracking system. Although the mapping can be 
performed using conventional nonlinear regression, the use of machine learning techniques 
such as neural networks and support vector regression is preferred because they can 
approximate any complex regression (Pao 1989).  

The function-fitting paradigm from a machine learning point of view supposes that errors 
are additive and that the model Y=f(X)+ε  is a reasonable assumption (Hastie et al. 2009). 
Supervised learning attempts to learn f based on training set of N input-output pairs
( , ), 1,....i ix y i N . Where the symbol X denotes an input variable and Y denotes a quantitative 

output. Observed values are written in lowercase; hence the ith observed value of X is written 
as ix (where ix is a scalar or vector).The input value ix  is fed into an artificial system, known 

as learning algorithm which also produces outputs  ( )if x in response to the inputs. The learning 

algorithm has the property to modify its input/output relationship f  in response to the 

difference between the original and generated output ( )i iy f x . This process is known as 

learning by examples. Here the data pairs ( , ), 1,....i ix y i N correspond respectively to tracked 

position and true position reported by the IR optical tracking system. 

a. Neural network 

Our goal is to design a neural network capable of estimating the actual end-effector position 
based on its tracked position. It has been shown that a feed-forward network with hidden layers 
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is a universal approximator. This means that a multi-layer feed-forward network can 
approximate any continuous nonlinear function over a compact subset of n  to an arbitrary 
degree of accuracy (Hornik et al. 1989). This is achieved by training the neural network with 
an error back propagation algorithm by presenting points’ pairs of tracked position by Scalable-
SPIDAR and actual position reported by the IR optical tracking system. Therefore, the neural 
network devised for position error correction should accept three input coordinates of the 
measured position and should produce three output x, y and z coordinates of the corrected 
position. We need to decide on the network architecture (number of hidden layers, number of 
neurons in each layer, type of transfer function, etc.) and on the type of the error back 
propagation training algorithm. There is no recipe for selecting the right network complexity 
for a given problem and the optimal solution is often found by experimentation. One of the first 
decisions to be made is how many layers are needed in order to obtain a good model. It is hard 
to say which topology is better. A reasonable answer would specify the cost function for neural 
network’s performance, including the size of the neural network, accuracy and the like. 
According to Kecman (2001), it might be useful to try solving the problem at hand using a 
neural network with one hidden layer. In this work, we use a single layer perceptron also called 
the hidden layer back-propagation network with a tangent-sigmoid transfer function for the 
neurons in the hidden layer and linear transfer function for the neurons in the output layer 
(Bishop 1995). The right number of neurons in hidden layer required for an optimal solution is 
estimated experimentally by training networks of different sizes and determining the one with 
the best overall performances. Different error back-propagation training algorithms can be used 
to train feed-forward neural network. In order to obtain a fast training procedure in the sense 
that the network converges in a small number of iterations, we select Levenberg-Marquardt 
algorithm (Hagan and Menhaj 1994;Yu and Wilamowski 2011). Although neural network have 
good non-linear regression abilities, they also have some drawbacks. During the neural network 
optimization process, we need to move on to a surface having multiple local minima. Neural 
network’s learning/optimizing algorithms cannot avoid being stuck in a local minima, which 
can lead to a sub-optimal solution (Suykens et al. 2002). Thus, neural networks have the 
problem that one cannot be sure that the global minimum is approaching, as there are 
exponentially many local minima, which can lead to a sub optimal solution. This problem is 
significantly mitigated by using support vector machines. In fact, SVM are not plagued with 
the problem of local minima as neural network are and provide a unique solution (Smola and 
Schölkopf 2004). 

b. Support vector machine for regression 

Initially developed for solving pattern recognition problems, support vector machine techniques 
can be successfully applied in regression for a functional approximation problem (Kwiatkowska 
and Fargion 2003; (Kecman 2005) Given a training data set   , , 1,...,n

iD y i l   x  

where the input x denotes n-dimensional vectors nx  and outputs y , support vector 
regression attempts to learn the input-output relationship in a black box modeling approach. It 
originally consists in finding a function ( )f x that has at most an epsilon deviation from the 
actually obtained targets for all the training data with the smallest complexity. Hence, support 
vector regression (SVR) amounts to solve a constrained optimization problem, in which the 
complexity, measured by the norm of the weight parameters, is minimized. Allowing for the 
cases where the constraints cannot all be satisfied leads to minimizing the Vapnik linear loss 
function with  -insensitivity zone described by Melin and Castillo ( 2005) as: 
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         0               if ( , )

( , , ) ( , )     
( , )    otherwise  

y f
E y f y f

y f





     
 

x w
x x w

x w
 (8) 

where w denotes the weight vector. 

The support vector regression algorithm can therefore be written as a quadratic programming 
problem where both the L1- norm of the errors larger than epsilon and the L2-norm of the weight 
parameters are minimized.  

 
2

1

1
( , )

2

l

i i
i

C y f




 w x w  (9) 

where C is a constant providing the trade-off between minimizing training errors and 

minimizing the model complexity term
2

w . To deal with nonlinear regression tasks, SVR uses 

various kernel functions such as polynomial, sigmoidal and Radial Basis Function RBF kernel, 
that allow to extend linear methods to nonlinear problems through an implicit mapping to higher 
dimensional feature space. Compared to neural network, SVR has many advantages: intrinsic 
regularization, no local minima (convex problem with a unique solution) and good 
generalization ability from a limited amount of samples (Bloch et al. 2008). 

5. Experimental results and discussion 

In this section, a series of experiments was conducted to evaluate the performances of both 
neural and support vector regression. Each experiment used gathered data to approximate 
regression function that provide mapping between the tracked position by the Scalable-SPIDAR 
haptic device and the reference position reported by the optical tracking system. 

5.1  Data preprocessing 

Before applying the regression technique, input data need to be prepared to simplify either 
the neural network or support vector training. One important task is elimination of outliers. 
Training with outliers without awareness may lead to fitting unwanted data and may jeopardize 
function approximation (Huang et al. 1992) (Vapnik et al. 1997). A close examination of the 
1D box plot reveals that the points with large errors are isolated and inconsistent with the 
majority of data. This can be explained by the abnormal behavior of the motor placed at the 
upper left corner of the cubic frame. Therefore, we need a way to detect these data points and 
deflate their influence. We use informal box plots (Tukey 1977) to pinpoint the outlying points 
in the current dataset. Taking advantage of this method, we eliminate nearly 300 points of the 
2197 points. The absolute position errors distribution without outliers is plotted as a frequency 
histogram (Figure 11). Some of the representative statistics that describe much of this error 
distribution are given in table 1. As can be seen from this table, the mean absolute error value 
is rather large. This means an important discrepancy of about 270 mm between the tracked 
position and the true position that ideally has to be reached. This poor spatial tracking accuracy 
may cause inconsistency between the physical and virtual environments, which in turn, can 
render training in a virtual environment ineffective, or, more seriously, result in negative skill 
transfer. 
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Fig. 11 Absolute position errors represented as a 
frequency histogram      

 

Table 1  Error statistics for non-calibrated Scalable-
SPIDAR 

Absolute Position error 
Scalable-
SPIDAR 

Mean (mm) 267.8350 
Standard derivation (mm) 76.5174 

Maximum (mm) 430.9926 
 

 

Before applying regression techniques, we still need to scale data. In fact, the task of training 
regression algorithm is significantly simplified if data lie within a small range. We scale all 
inputs to have mean zero and standard deviation one.  
 

 
SPIDAR SPIDAR SPIDAR SPIDAR

OTS OTS OTS OTS

N =((P -Γ )./ )

N =((P -Γ )./ )








 (10) 

Where: 

SPIDAR SPIDAR SPIDARSPIDAR
Γ =γ .J and =σ .J  

 

OTS OTS OTSOTS
Γ =γ .J and =σ .J   

SPIDARγ : Matrix of mean components of the matrix of positions given by the Scalable-SPIDAR.  

OTSγ : Matrix of mean components of the matrix of positions given by the optical tracking 

system. 

SPIDARP : Positions reported by the Scalable-SPIDAR. 

OTSP : Positions reported by the IR optical tracking system. 

 J:       Identity matrix. 

SPIDARN : Standardized positions of the Scalable-SPIDAR.  

OTSN : Standardized positions of the optical tracking system. 

5.2  Calibration using neural network 

In the present study, we use a single-hidden layer feed-forward network which accept 
three inputs-x, y and z coordinates of the tracked position by the Scalable-SPIDAR and produce 
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three outputs x, y and z of the calibrated position. The selected network model had two layers, 

with a tangent-sigmoid transfer function 
2

2
( ) tanh 1

1 u
u u

e   


for the neurons in the 

hidden layer and linear transfer function ( )u u   for the neurons in the output layer (Figure 
12).  

          

Fig. 12 Single-hidden layer network used for the Scalable-SPIDAR calibration 

This network was then trained to provide the corrected outputs by modifying weights 
according to "training algorithm". The Lavender-Marquardt algorithm was preferred as it is 
saving time and well suited to function-approximation problems with networks of moderate 
size and number of parameters.  

Furthermore, deciding on the number of neurons in the hidden layer is essential for deciding 
on our overall neural network architecture and, therefore, must be carefully considered. To get 
the right number of neurons, we train neural networks with 3 to 24 neurons in the hidden layer 
and compute the average errors between the expected actual position and the calibrated position. 
Based on these results, we select the most effective configuration estimating the values of the 
given data set. Thus, in essence, we calibrate the Scalable-SPIDAR with different 
configurations and pick up the one that gives the best results. By plotting the mean absolute 
error versus the number of neurons in hidden layer, we can see that the optimal solution is 20. 

 

Fig. 13 Mean absolute position error versus number of neurons in hidden layer 

Analyses were conducted to evaluate the performances of neural network-based calibration. 
Figure 13 represents the spatial distribution of absolute position errors after calibration with the 
error magnitudes proportional to the corresponding color. As revealed by this plot, neural 
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network-based calibration is able to reduce the magnitude of absolute position errors from 267 
mm to less than 30 mm in almost whole workspace. 
 

 
Fig. 14 Absolute position errors represented spatially after neural-network based calibration  

As for figure 14, it depicts the distribution of absolute position errors as a function of distance 
to the Scalable-SPIDAR’s origin before and after calibration. As shown by the plot, neural 
network-based method is efficient, and able to achieve fewer errors in the whole working space. 
It is apparent that error becomes less sensitive to distance and even the errors at distances greater 
than 600 mm were successfully corrected by calibration. 

 
Fig. 15 Distribution of absolute position errors as a function of distance to the Scalable SPIDAR’s origin (before 

and after neural network-based calibration method) 

To gauge more the importance of the improvements obtained with the neural network-based 
calibration method, some representative statistics before and after calibration is presented in 
table 2. The mean tracked position error from the training data set is 267.8350±76, 5174 mm 
(table 2), whereas the mean position error after calibration is 6.4760 ± 3.4331 mm. The statistics 
proved that neural network has significantly decreased errors in the tracked position. 
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Table 2 Error statistics before and after neural network-based calibration 

Absolute Position Error 
 

Raw 
 

 
NN 

Mean (mm) 267.8350 6.4760 
Standard derivation (mm) 76.5174 3.4331 

Maximum (mm) 430.9926 25.9110 
 

After testing neural network with training data, we need to measure its ability to handle 
unseen data. The underlying idea is to construct a testing dataset. To this end, the end-effector 
of the Scalable-SPIDAR haptic device was moved in random trajectories of sequential points. 
These paths represent groups of data points within our predetermined working space. Following 
this, corresponding point measurements of both the Scalable-SPIDAR and the IR optical 
tracking system can be obtained, thus allowing evaluating the generalization capability of our 
network. 

Table 3 Error statistics in generalization 

Absolute Position Error 
 

Raw 
 

 
NN 

Mean (mm) 263.0445 14.5080 
Standard derivation (mm) 73.9771 8.3958 

Maximum (mm) 415.8266 74.5346 
 

Table 3 summarizes the results of the calibration based on the data from the testing dataset. A 
close examination shows that our neural network does not keep the same performances as in 
training, but it is still ranging within reasonable error band of 14.5080 ± 8.3958 mm. 

5.3 Calibration using support vector regression 

In this section, we applied support vector regression (SVR) for calibrating the Scalable-
SPIDAR haptic device. The convergence of support vector machine depends on the selection 
of a kernel function. Kernel functions project the data into high dimensional feature space. This 
work uses that radial basis function to perform better than polynomial and linear functions in 
demining a relationship between Scalable-SPIADR and optical tracking system data. In the 
following, trials radial basis kernels were applied: 

 
2

radial basis exp( * )i jfucntion gamma x x   (11) 

where gamma is known as the kernel parameter. 

A search was performed for the most effective capacity parameter C to enhance generalization 
accuracy of the regression method. The capacity measures the flexibility or richness of 
regression functions and gives the protection against over fitting. In experiments, the capacity 
was set to values between 30 and 100. Another parameter used in the training of support vector 
regression is epsilon, which checks the insensitivity of the regression. The algorithm assumes 
that estimations that lie within epsilon distance of their true values are accurate enough. Epsilon 
was chosen to be equal to 0.01. 
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To analyze the performances of the support vector regression, we plot the spatial distribution 
of absolute position errors as in section 5.2 but after calibration using support vector regression 
method. 

 

Fig. 16 Absolute position errors represented spatially after SVR calibration  

As we can see, figure 15 shows that SVR is quite effective and greatly improves the Scalable-
SPIDAR accuracy in comparison with figure 9. Support vector regression performs a good 
calibration in the whole workspace expect in its corners.   

 

Fig. 17 Distribution of absolute position errors as a function of distance to the Scalable-SPIDAR’s origin (before 
and after SVR calibration) 

Figure 16 shows that SVR is quite efficient and exhibits fewer errors. The Scalable-SPIDAR 
accuracy is less sensitive to distance to the Scalable-SPIDAR’s origin and even the errors at 
distances greater than 600 mm were corrected by calibration. We can see from table 4 that the 
SVR calibration was successful in reducing the mean absolute position error in tracked position 
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from 267.8350±76.5174 mm to 6.2765±2.8626 mm. The maximum possible error is about 
20.3819 mm 

Table 4 Error statistics before and after neural support vector regression 

Absolute Position Error 
 

Raw 
 

 
SVR 

Mean (mm) 267.8350 6.2765 
Standard derivation (mm) 76.5174 2.8628 

Maximum (mm) 430.9926 20.3819 
 

In order to measure the generalization ability of the support vector regression-based method, 
we use the same testing dataset created previously.  

Table 5 Error statistics in generalization using SVR 

Absolute Position Error 
 

Raw 
 

 
SVR 

Mean (mm) 263.0445 5.4509 
Standard derivation (mm) 73.9771 2.5501 

Ma-baseximum (mm) 415.8266 22.3333 
 

A close examination of table 5 reveals that SVR keeps convenient performance when handling 
unseen data. Both the mean and the standard deviation of absolute errors in position at the 
testing points are less than those by the neural network method. The SVR provided improved 
results at high error levels with a maximum position error of 22, 3333 mm. 

5.4 Comparison of the calibration results by support vector regression and neural 
network-based calibration techniques 

To stress the performances improvements obtained with machine-learning methods, we 
summarize the calibration results of the two methods discussed in this paper. The first method 
employs a single-layer feed forward network model as a calibration model. The second method 
uses a support vector regression to calibrate the Scalable-SPIADR readings. The design 
parameters were determined based on the guidelines described at the beginning of section 5.3. 
 

Table 6 Summary of the calibration results obtained by the two learning-machine techniques discussed in this 
paper 

Absolute Position Error 
 

Raw 
 

 
NN 

 
SVR 

Mean (mm) 267.8350 6.4760 6.2765 
Standard derivation (mm) 76.5174 3.4331 2.8628 

Maximum (mm) 430.9926 25.9110 20.3819 
 

 

Based on the error statistics listed in table 6 and above (table 3 and 5), support vector 
regression method outperformed the neural network-based method when applied to calibrate 
the position readings form the Scalable-SPIDAR. The significance of the improvements 
obtained by SVR was demonstrated more by its ability to generalize when handling unseen 
data. Actually, SVR shows higher robustness and greater estimation ability for future data 
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points. The obtained results suggest that the proposed SVR is better suited than the neural 
network-based method for the Scalable-SPIDAR calibration. This in accordance with our initial 
hypothesis. In fact, as we have mentioned above, neural network’s learning algorithms may 
stuck in local minima, thus providing suboptimal solution and limiting the effectiveness of the 
neural network-based calibration method  
The support vector regression has the advantage of being free from local minima, and thus can 
be used to find whether the selected neural network has reached the global minima. The major 
advantage of this approach is that it allows avoiding non-optimal calibration solution.  

5.5 Recalibration at runtime 

The one-time calibration of the Scalable-SPIDAR is a crucial step to provide accurate 
tracking data. However, issues influencing calibration such as the haptic controller behavior 
can change while using the Scalable-SPIDAR. Therefore, position estimation might deteriorate 
if haptic control failures occur. To keep tracking quality high, recalibration at runtime is 
required at suitable intervals. It seems more convenient to use data provided by the optical 
tracking system for unobtrusive calibration. In fact, if the Scalable-SPIDAR loses tracking, 
optical tracking data can then be used and calibration would be improved at runtime without 
disturbing the user. Combining the Scalable-SPIDAR and the Optical Tracking System into a 
hybrid tracking system aims to maintain an uninterrupted tracking data and the required spatial 
accuracy under varying conditions in the operating workspace. 

6. Conclusions  

In this paper, a novel calibration procedure was proposed to improve the tracking accuracy 
of a human-scale haptic device: the Scalable-SPIDAR. The basic idea of the procedure is to 
adopt the concepts of virtual reality and machine-learning techniques to calibrate the position 
errors present in the haptic device readings. In this paper, a visual-haptic VR setup was 
established to maintain an interrupted tracking and to enable haptic interaction with virtual 
objects in the virtual environment. Based on this setup, a multimodal intialization procedure 
was developed in order to help the user to accomplish and repeat the intialization of the 
Scalable-SPIDAR in a precise manner. Nevertheless, additional errors in the reported position 
remains due to serious problems in the mechanical structure design of the haptic device. To 
overcome this issue, a collection data protocol was developed first to characterize the Scalable-
SPIDAR’s tracking position errors. Then, a model-less approach using regression methods was 
adopted to correct these errors. Two nonlinear regression techniques, thus, have been used for 
the calibration of the haptic device. The first one is a neural network-based calibration method, 
while the second is based on the support vector regression.  
The obtained results above indicate that the proposed calibration techniques work well for 
position error, reducing the scalable-SPIDAR’s average absolute position error to about 6 mm. 
The position correction achieved by the calibration procedure thus offers a visible improvement 
in tracking accuracy in a VR system.  

Compared with other calibration methods, the proposed method employs machine-learning 
techniques such as neural network and support vector regression to tackle problems of tracking 
inaccuracy. Based on their universal approximation capability, these methods were able to 
perform the calibration of the Scalable-SPIDAR without the need for modeling explicitly the 
main error sources affecting its accuracy. Even though the proposed procedure is limited by the 
use of the Scalable-SPIDAR system, it is possible to extend it to other tracking systems. The 
distinguishing features of scalability and convince make from this procedure a flexible method 
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that can accommodate various virtual reality systems ranging from desktop, human scale and 
network environments.   

Furthermore, since the Scalable-SPIDAR is intended to serve as a 6-DOF human-scale 
haptic device, a straightforward extension to this work is to build an orientation calibration 
method. Therefore, the Scalable-SPIDAR can be used to accomplish several applications 
ranging from the simple "pick and place" task to more physical based interactions. 
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